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Abstract In this article we consider the problem of pricing and hedging high-
dimensional Asian basket options by Quasi-Monte Carlo simulations. We assume
a Black–Scholes market with time-dependent volatilities, and we compute the deltas
by means of the Malliavin Calculus as an extension of the procedures employed
by Kohatsu-Higa and Montero (Physica A 320:548–570, 2003). Efficient path-
generation algorithms, such as Linear Transformation and Principal Component
Analysis, exhibit a high computational cost in a market with time-dependent volatil-
ities. To face this challenge we then introduce a new and faster Cholesky algorithm
for block matrices that makes the Linear Transformation more convenient. We also
propose a new-path generation technique based on a Kronecker Product Approxi-
mation. Our procedure shows the same accuracy as the Linear Transformation used
for the computation of deltas and prices in the case of correlated asset returns, while
requiring a shorter computational time. All these techniques can be easily employed
for stochastic volatility models based on the mixture of multi-dimensional dynamics
introduced by Brigo et al. (2004a, Risk 17(5):97–101, b).
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1 Introduction and Motivation

In a few recent papers Dahl and Benth (2002) and Wang (2009) have investigated
the efficiency and the computational cost of the Principal Component Analysis
(PCA) used in the Quasi-Monte Carlo (QMC) simulations for the pricing of high-
dimensional Asian basket options in a multi-dimensional Black–Scholes (BS) model
with constant volatilities. In particular they have shown the essential role of the
Kronecker product both for a fast implementation, and for identifying the effective
dimension in the analysis of variance (ANOVA, see below). Since the convergence
rate of the QMC method is O

(
N−1 logd N

)
—here N is the number of simulation

trials, and d the nominal dimension of the problem—the theoretically higher asymp-
totic convergence rate of QMC could not be practically achieved in high dimensions.
On the other hand, particular applications in finance (see Paskov and Traub 1995)
have shown that the QMC provides an accuracy higher than the standard Monte
Carlo (MC) even for high dimensions.

To explain the success of the QMC in high dimensions Caflisch et al. (1997)
have introduced two notions of effective dimensions based on the ANOVA of
the integrand function. Consider an integrand function f for a MC problem with
nominal dimension d, and let A = {1, . . . , d} denote the labels of the input variables
of the function f : the effective dimension of f in the superposition sense is the
smallest integer dS such that

∑
|u|≤dS

σ 2( fu) ≥ pσ 2( f ), where fu is a function with
variables in the set u ⊆ A , σ 2(·) denotes the variance of the given function, |u| is the
cardinality of the set and 0 ≤ p ≤ 1 (for instance p = 0.99). On the other hand the
effective dimension of f in the truncation sense is the smallest integer dT such that∑

u⊆{1,2,...,dT } σ 2( fu) = pσ 2( f ). In other words the truncation dimension indicates the
number of variables essential to capture the given function f , while the superposition
dimension takes into account that, for some f ’s, the inputs might influence the
outcome through their joint action within smaller groups.

Different techniques have been proposed for a dimension reduction: the PCA
decomposition and the Brownian bridge (BB) however achieve this result indepen-
dently from the particular payoff of a European option. Imai and Tan (2006) have
instead proposed a general dimension reduction construction, the Linear Transfor-
mation (LT), that depends on the payoff function, and that minimizes the effective
dimension in the truncation sense. Several studies have investigated the efficiency of
the dimension reduction produced by these approaches. Wang (2009), for example,
has shown that the accuracy of the QMC simulations depends on both the dimension
reduction technique, and the quasi-random points. He also proved that the PCA
decomposition is always outperforming the BB as a result of the different grouping
strategies developed (see the cited article for more details). Moreover, Papageorgiou
(2002) has demonstrated that the accuracy of the QMC method used for the
pricing of certain specific derivative contracts is not substantially improved by a
BB construction. Finally Imai and Tan (2006) have shown that the LT approach
is more accurate than the standard PCA and BB, but has a higher computational
cost. In a previous paper one of the authors (Sabino 2011) has described how to
efficiently implement this technique and, even with a slower computer, has obtained
computational times that are about 30 times shorter than those originally presented
by Imai and Tan (2006).

In the present paper we address the problem of the time-dependent volatilities,
and since we can no longer rely on the properties of the Kronecker product, our task
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will be computationally harder. In order to reduce this computational complexity,
we first introduce a fast Cholesky (CH) decomposition algorithm tailored for block
matrices: this will already severely lower the computational cost. Then we present
a new path-generation technique based on the Kronecker Product Approximation
(KPA) of the correlation matrix of a multi-dimensional Brownian path: this returns
a suboptimal ANOVA decomposition with a remarkable computational advance.
In the case of time-dependent volatilities, the BB procedure also requires a slightly
different algorithm (see Sabino 2009 for details), but on the basis of the previous
observations we have decided not to include it in this study.

Our numerical simulations consist first in calculating the Randomized QMC
(RQMC) estimation of both the prices and the deltas of high-dimensional Asian
basket options in a BS market with time-dependent volatilities. In order to compute
the deltas we extend to a dependent multi-assets model the procedure employed
by Kohatsu-Higa and Montero (2003) in a single-asset setting. To do that we take
advantage of the Malliavin Calculus, and we allow a certain flexibility to enhance the
localization techniques introduced by Fournié et al. (1999). As far as the computation
of the Asian options prices is concerned, the KPA and LT approaches are checked
both in terms of accuracy and computational cost. We show that the LT procedure is
more efficient than the PCA—even from a computational point of view—provided
that we adopt our CH algorithm and the approach described in Sabino (2011). The
KPA and the PCA constructions perform equally well in terms of accuracy, but
with the former requiring a considerably shorter computational time. In the same
vein, the KPA and the LT display comparable accuracies in the computation of the
deltas. Finally we contrast our simulations—also using the standard CH and the PCA
decomposition methods—with both pseudo-random and Latin Hypercube Sampling
(LHS) generators.

We finally remark that all the methods described here can accommodate a market
with stochastic volatility where the evolution of the risky securities is modeled by a
mixture of multi-dimensional dynamics as in the papers by Brigo et al. (2004a, b). It
is noteworthy to say instead that none of these procedures can be applied to the
Heston-like multi-dimensional stochastic volatility models. In principle we might
still use the LT for the Euler discretization of the Heston model, but this could
be no longer applicable within more realistic frameworks involving discrete random
variables as proposed for instance by Alfonsi (2005).

The paper is organized as follows: the Section 2 describes Asian options, while the
Section 3 discusses some path-generation techniques and in particular, presents the
fast CH algorithm and the KPA construction. Section 4 shows then the numerical
simulations for the Asian option pricing, and Section 5 explains how to represent the
deltas of Asian basket options as expected values with the aid of Malliavin Calculus,
and shows their estimated values by RQMC. Section 6 finally summarizes the most
important results and concludes the paper.

2 Asian Basket Options

Assume a multi-dimensional BS market with M risky securities and one risk-
free asset. Denote B (t) = (B1 (t) , . . . , BM (t)) an M-dimensional Brownian motion
(BM) with correlated components and (Ft)t≥0 the filtration generated by this BM.



150 Methodol Comput Appl Probab (2013) 15:147–163

Moreover, denote ρik the constant instantaneous correlation between Bi(t) and
Bk(t), Si (t) the i-th asset price at time t, σi (t) the instantaneous time-dependent
volatility of the i-th asset return and r the continuously compounded risk-free rate.
In the risk-neutral probability, we assume that the dynamics of the risky assets are

dSi (t) = rSi (t) dt + σi (t) Si (t) dBi (t) , i = 1, . . . , M. (1)

The solution of Eq. 1 is

Si (t) = Si (0) exp
[∫ t

0

(
r − σ 2

i (s)
2

)
ds +

∫ t

0
σi (s) dBi (s)

]
, i = 1, ..., M. (2)

Discretely monitored Asian basket options are derivative contracts that depend
on the arithmetic mean of the prices assumed by a linear combination of the
underlying securities at precise times t1 < t2 · · · < tN = T, where T is the maturity
of the contract. By the risk-neutral pricing formula (see for instance Lamberton and
Lapeyre 1996) the fair price of the contract at time t is

a (t) = er(T−t)
E

⎡

⎣

⎛

⎝
M∑

i=1

N∑

j=1

wij Si
(
t j
) − K

⎞

⎠

+ ∣∣
∣∣Ft

⎤

⎦ , (3)

with the assumption that
∑

i, j wij = 1.
Pricing Asian options by simulation hence requires the discrete averaging of the

solution (2) at a finite set of times {t1, . . . , tN}. This sampling procedure yields

Si(t j) = Si(0) exp
[ ∫ t j

0

(
r − σ 2

i (t)
2

)
dt + Zi(t j)

]
i = 1, . . . , M, j = 1, . . . , N, (4)

where the components of the vector

(Z1(t1), . . . , Z1(tN); Z2(t1), . . . , Z2(tN); . . . ; Z M(t1), . . . , Z M(tN))T

are M × N normal random variables with zero mean and the following covariance
matrix

�MN =

⎛

⎜
⎜⎜
⎝

�(t1) �(t1) . . . �(t1)
�(t1) �(t2) . . . �(t2)

...
...

. . .
...

�(t1) �(t2) . . . �(tN)

⎞

⎟
⎟⎟
⎠

, (5)

where the elements of the M × M submatrices �(tn) are (�(tn))ik =∫ tn
0 ρikσi(s)σk(s)ds with i, k = 1, . . . , M; n = 1, . . . , N. This setting is also suitable

for time-dependent correlations. In the case of constant volatilities the covariance
matrix is

�MN =

⎛

⎜⎜
⎜
⎝

t1� t1� . . . t1�
t1� t2� . . . t2�
...

...
. . .

...

t1� t2� . . . tN�

⎞

⎟⎟
⎟
⎠

, (6)

where now � denotes the M × M covariance matrix of the logarithmic returns of
the assets. It follows from the last equation that the covariance matrix �MN can be
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represented as R ⊗ �, where ⊗ denotes the Kronecker product and R is the auto-
covariance matrix of a single BM. This simplification is not possible in the case of
time-dependent volatilities. We recall that the elements of R are

Rln = tl ∧ tn, l, n = 1, . . . N, (7)

and that R is invariant under reflections about the diagonal.

Definition 1 (Boomerang Matrix) The square matrix B ∈ R
nB×nB is a boomerang

matrix if it exists a vector b = (
b 1, . . . , b nB

) ∈ R
nB such that

Bhp = b h∧p, h, p = 1, . . . , nB. (8)

In this case b takes the name of elementary vector associated to B.

As a consequence R is boomerang, and in general the auto-covariance matrix of
every Gaussian process is boomerang. This definition can also be extended to block
matrices as follows.

Definition 2 (Block Boomerang Matrix) Partition the rows and the columns of a
square matrix B ∈ R

nB×nB to obtain:

B =
⎛

⎜
⎝

B11 . . . B1P
...

. . .
...

BP1 . . . BPP

⎞

⎟
⎠ , (9)

where for h, p = 1, . . . , P, Bhp ∈ R
D×D designates the (h, p) square submatrix and

nB = P × D; then B is a boomerang block matrix if we can find P matrices B1, . . . ,

BP with Bh ∈ R
D×D, h = 1, . . . , P such that

Bhp = Bh∧p, h, p = 1, . . . , nB. (10)

The vector b = (B1, . . . , BP)T takes the name of elementary block vector associated
to B.

From these definitions we find that �MN is block boomerang.
The payoff at maturity of the Asian basket option now is a(T) = (g(Z) − K)+ with

g(Z) =
M×N∑

k=1

exp (μk + Zk) (11)

where Z ∼ N (0, �MN) and

μk = ln(wk1k2 Sk1(0)) + rtk2 −
∫ tk2

0

σ 2
k1

(t)

2
dt (12)

with k1 = (k − 1) mod M; k2 = 	(k − 1)/M
 + 1; k = 1, . . . , M, where 	x
 denotes
the greatest integer less than or equal to x.
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3 Path-Generation Techniques

From the previous discussion it comes out that the pricing of Asian basket options
by simulation requires an averaging on the sample trajectories of an M-dimensional
BM. In general, if Y ∼ N (0, �Y) and X ∼ N (0, I) are two N-dimensional Gaussian
random vectors, we will always be able to write Y = CX, where C is a matrix
such that:

�Y = CCT . (13)

and the core problem consists in finding the matrix C. In our case �Y coincides with
�MN of Eq. 5. The accuracy of the standard MC method does not depend on the
choice of the matrix C because the order of the random variables is not important.
However, a choice of C that reduces the nominal dimension would improve the
efficiency of the (R)QMC method, and in the following we discuss a few possible
cases.

3.1 Cholesky Construction

The CH decomposition simply finds the matrix C among all the lower triangular
matrices. In the case of constant volatilities the matrix �MN is the Kronecker product
of R and �, and the Kronecker product is compatibile with a CH decomposition (see
Pitsianis and Van Loan 1993). In fact, denoting by C�MN , CR and C� the CH matrices
associated to �MN , R and � respectively, we have

C�MN = CR ⊗ C�. (14)

This now entails a remarkable reduction of the computational cost: it turns out
indeed that a O

(
(M × N)3

)
computation is reduced to a O

(
M3

) + O
(
N3

)
one.

When time-dependent volatilities are considered, however, we can no longer use
these properties of the Kronecker product: in their stead, since �MN is a block
boomerang matrix, we can take advantage of the following result:

Proposition 1 Let B ∈ R
nB×nB be a block boomerang matrix and let (B1, . . . , BP)T,

where Bh ∈ R
D×D, h = 1, . . . , P with nB = P × D, be its associated elementary block

vector. Then the CH matrix CB associated to B is

CB =

⎛

⎜
⎜⎜⎜
⎝

C1 0 . . . 0
... C2

. . . 0
...

...
. . .

...

C1 C2 . . . CP

⎞

⎟
⎟⎟⎟
⎠

(15)

where the D × D blocks Ch, h = 1, . . . , P are

Ch = Chol (Bh − Bh−1) (16)

with Chol denoting the CH factorization. We also assume B0 = 0.
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Proof Consider the hth row of CB and the mth row of its transposed matrix; we
then have

(C1, . . . , Ch, 0, . . . , 0)T · (
CT

1 , . . . , CT
m, 0, . . . , 0

)T =
h∧m∑

l=1

ClCT
l

=
h∧m∑

l=1

(Bl − Bl−1) = Bh∧m

and this concludes the proof. ��

3.2 Principal Component Analysis

Acworth et al. (1998) have proposed a path generation technique based on the PCA.
Following this approach we consider the spectral decomposition of �MN

�MN = E�ET = (
E�1/2) (

E�1/2)T
, (17)

where � is the diagonal matrix of all the positive eigenvalues of �MN sorted in
decreasing order and E is the orthogonal matrix (EET = I) of all the associated
eigenvectors. The matrix C solving Eq. 13 then is E�1/2. The amount of variance

explained by the first k principal components is the ratio:
∑k

i=1 λi∑d
i=1 λi

where d is the rank

of �MN . The PCA construction permits the statistical ranking of the normal factors,
while this is not possible by the CH decomposition. For a market with constant
volatilities, the Kronecker product reduces this calculation to the computation of
eigenvalues and eigenvectors of the two smaller matrices R and �. All these sim-
plifications, on the other hand, are no longer valid for the time-dependent volatilities.
Nevertheless we can still reduce the computational cost of a PCA decomposition in
a different way.

Let M1, M2, M3 and M4 be respectively p × p, p × q, q × p and q × q matrices,
and suppose that M1 and M4 are invertible. Assume then

M =
(

M1 M2

M3 M4

)

and define S1 = M4 − M3 M−1
1 M2 and S4 = M1 − M2 M−1

4 M3, namely the Schur
complements of M1 and M4 respectively. Then by Schur’s lemma the inverse M−1 is:

M−1 =
(

S4 −M−1
1 M2S−1

1
−M−1

4 S−1
4 S−1

1

)
. (18)

Taking into account the previous result it is possible to prove the following
proposition

Proposition 2 Let B ∈ R
nB×nB be a block boomerang matrix, and (B1, . . . , BP)T—

where Bh ∈ R
D×D, h = 1, . . . , P with nB = P × D—its associated elementary block

vector: then the inverse of B is symmetric block tri-diagonal. The blocks on the lower
(and upper) diagonal are Tl = − (Bl+1 − Bl)

−1, l = 1, . . . , P − 1 while those on the



154 Methodol Comput Appl Probab (2013) 15:147–163

diagonal are Dm = (Bm − Bm−1)
−1 (Bm+1 − Bm−1) (Bm+1 − Bm)−1, m = 1, . . . , P,

with the assumption that B0 = BN+1 = 0:

B−1 =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

D1 T1 0 . . . 0

T1 D2 T2
. . .

...

0 T2
. . .

. . . 0
...

...
. . .

. . . TP−1

0 0 0 TP−1 DP

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

(19)

This property can be used to reduce the computational cost of evaluating the PCA
decomposition in the case of time-dependent volatilities and in general for multi-
dimensional Gaussian processes. Indeed, if B is a non-singular square matrix then the
eigenvalues of B−1 are the reciprocal of the eigenvalues of B and the eigenvectors
coincide.

3.3 Linear Transformation

Imai and Tan (2006) have considered the following class of LT as a solution of Eq. 13:

CLT = CCh A (20)

where CCh is the CH matrix associated to the covariance matrix of the normal
random vector to be generated, and A is an orthogonal matrix, i.e. AAT = I. The
matrix A is introduced with the main purpose of minimizing the effective dimension
of a simulation problem in the truncation sense. Imai and Tan (2006) have proposed
to approximate an arbitrary function g, such that (g − K)+ is the payoff function of
a European derivative contract, with its first order Taylor expansion around ε̂

g(ε) = g(ε̂) +
n∑

l=1

∂g
∂εl

∣∣∣
ε=ε̂

	εl. (21)

The approximated function is linear in the standard normal random vector 	ε.
Considering an arbitrary point— such as ε̂ = 0—as expansion starting point, we
can derive the first column of the optimal orthogonal matrix A∗. It is possible to
find the complete matrix by expanding g about different points and then compute
the optimization algorithm. Imai and Tan (2006) have set: ε̂1 = 0 = (0, 0, . . . , 0),

ε̂2 = (1, 0, . . . , 0), . . . , ε̂n = (1, . . . , 1, 0), where the k-th point has k − 1 non-zero
components. The optimization can then be formulated as follows:

max
A·k∈Rn

(
∂g
∂εk

∣∣∣
ε=ε̂k

)2

, k = 1, . . . , n, (22)

subject to ‖A·k‖ = 1 and A∗
·j · A·k = 0; j = 1, . . . , k − 1; k ≤ n. In the case of Asian

basket options we have

g(ε) = g(ε̂) +
NM∑

l=1

[
NM∑

i=1

exp

(

μi +
NM∑

k=1

Cikε̂k

)

Cil

]

	εl. (23)
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Imai and Tan (2006) have then proved the following result:

Proposition 3 Consider an Asian basket options in a BS model, and def ine

d(p) =
(

e
(
μ1+∑p−1

k=1 C∗
1k

)

, . . . , e
(
μMN+∑p−1

k=1 C∗
MN,k

))T

(24)

B(p) = (
CCh)T

(d(p)), p = 1, . . . , MN. (25)

Then the p-th column of the optimal matrix A∗ is

A∗
·p = ± B(p)

‖B(p)‖ p = 1, . . . , MN. (26)

The matrices C∗
ik, k < p have already been found in the previous p − 1 steps, while

A·p must be orthogonal to all the other columns. This condition can be easily met by
an incremental QR decomposition, as described in Sabino (2011).

3.4 Kronecker Product Approximation

In a time-dependent volatility market the covariance matrix �MN has time-
dependent blocks. The multi-dimensional BM is the unique source of risk in the BS
market and the generation of the trajectories of the 1-dimensional BM does depend
on the volatilities. As a consequence we propose to find a constant covariance matrix
of the assets H in order to approximate, in an appropriate sense, the matrix �MN

as a Kronecker product of R and H. In the following we illustrate the proposed
procedure called Kronecker Product Approximation (KPA). Pitsianis and Van Loan
(1993) have proved the following proposition:

Proposition 4 Suppose G ∈ R
m×n and G1 ∈ R

m1×n1 with m = m1m2 and n = n1n2.
Consider the problem of f inding G∗

2 ∈ R
m1×n1 that realizes the minimum

min
G2∈Rm1×n1

‖ G − G1 ⊗ G2 ‖2
F , (27)

where ‖ · ‖2
F denotes the Frobenius norm. For f ixed h = 1, . . . , m2 and l = 1, . . . , n2

denote R(G)hl the m1 × n1 matrix def ined by the rows h, h + m2, h + 2m2, . . . , h +
(m1 − 1)m2 and the columns l, l + n2, l + 2n2, . . . , l + (n1 − 1)n2 of the original matrix
G. The elements of G∗

2 then are

(G∗
2)hl = Tr

(
R(G)T

hlG1
)

Tr
(
G1GT

1

) h = 1, . . . , m2, l = 1, . . . , n2, (28)

where Tr denotes the trace of a matrix.

In our setting we have G = �MN , G1 = R and G2 = H, and we remark that for any
i, j = 1, . . . , N, R(�MN))ij is a N × N boomerang matrix. Moreover, given two gen-
eral N × N boomerang matrices A and B, we can prove by direct computation that

Tr(AT B) = Tr(AB) =
N∑

j=1

(2(N − j) + 1) a jjb jj. (29)
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We then perform the PCA decomposition of R ⊗ H by relying on the properties
of the Kronecker product, but, if we use the PCA decomposition of the matrix
F = R ⊗ H, we do not get the required path. In order to produce the required
trajectory we then take

Z = CKPAε = C�MN (CF)−1 EH�
1/2
H ε (30)

where C�MN and CF are the CH matrices associated to �MN and F, respectively, and
EH�

1/2
H is the PCA decomposition of F: the matrix CKPA turns out to be the correct

covariance matrix because, denoting P = EH�
1/2
H , we have

CKPA (
CKPA)T = C�MN (CF)−1 PPT [

(CF)−1]T
CT

�MN
= C�MN CT

�MN
= �MN

since PPT = CFCT
F = F. Our fundamental assumption is here that the principal

components of Z are not too different from those of the normal random vector
Z′ whose covariance matrix is F. We expect that the KPA decomposition
would produce an effective dimension higher than that obtained by the PCA
decomposition, but with a substantial boon from the computational standpoint. Due
to properties of the Kronecker product, indeed, the Eq. 30 becomes

Z = C�MN

(
C−1

R ⊗ C−1
H

)
EH�

1/2
H ε, (31)

where CR and CH are the CH matrices of R and H, respectively, and this matrix
multiplication can be carried out quickly by block-matrices multiplication and
taking advantage of the fact that (due to the Propositions 1 and 2) C−1

R is a sparse
bi-diagonal matrix.

4 Computing the Option Price

We will now estimate the fair price of an Asian option on a basket of M = 10 un-
derlying assets with N = 250 sampled points in the BS model, with time-dependent
volatilities having the following expression

σi(t) = σ̂i(0) exp (−t/τi) + σi(+∞), i = 1, . . . M. (32)

The parameters chosen for the simulation are listed in Table 1, and of course we have
σ̂i(0) = σi(0) − σi(+∞). We implement this numerical investigation in two steps:
first we test the effectiveness of our path-generation procedures on the dimension
reduction and compute their computational times; then we compare the accuracy of
the simulations.

Table 1 Inputs parameters Si(0) = 100, ∀i = 1 . . . , N
K = 100
r = 4%
T = 1
σi(0) = 10% + i−1

9 40% i = 1 . . . , N
σi(+∞) = 9% ∀i = 1 . . . , N
τi = 1.5 ∀i = 1 . . . , N
ρij ⊂ {0, 40} i, j = 1 . . . , N
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Table 2 Effective dimensions Ch PCA LT KPA

Time-dependent volatilities
ρ = 0%

dT > 1900 dT = 14 dT = 10 dT = 19
ρ = 40%

dT > 1900 dT = 9 dT = 8 dT = 11

Table 2 shows the effective dimensions obtained by the different the path-
generation methods considered (p = 0.99). The LT construction provides the lowest
effective dimension, while the PCA decomposition performs almost as well as the LT
approach only for the correlation case, and the KPA returns a slightly higher effective
dimension. The CH decomposition collects 98.58% and 98.70% of the total variance
for dT ≈ 2000, respectively in the uncorrelated and in the correlated cases. To have
a more detailed comparison look at the Table 3 which displays the elapsed times
measured in Sabino (2011) by using an ad hoc incremental QR algorithm for the LT,
and assuming constant volatilities equal to the σi(0) of Table 1. The computation
was implemented in MATLAB running on a laptop with an Intel Pentium M,
processor 1.60 GHz and 1 GB of RAM. We computed 50 optimal columns for the
LT technique. The CH algorithm for block boomerang matrices has almost the same
cost as the one relying on the properties of the Kronecker product. As a consequence
the LT also requires almost the same computational cost, while the PCA needs a
time almost 20 times longer because now we can not rely on the properties of the
Kronecker product. In contrast, the KPA has almost the same computational time as
the PCA in the constant volatility case, and is the best performing path-generation
procedure from a computational time point of view. We have applied Proposition 2
to implement the PCA, and we have computed the eigenvalues and eigenvectors
of �MN relying only on the sparse function of MATLAB. The development of
algorithms tailored for the computation of the eigenvalues and eigenvectors of tri-
diagonal symmetric block matrices is still in progress: hopefully they could further
reduce the computational time and their performance will be presented in future
papers.

In the second part of our investigation we launched a simulation to estimate the
Asian option price using 10 replications, each consisting in 8192 random points,
following the strategy in Imai and Tan (2006). We used again different random gen-
erators: standard MC, LHS and RQMC generators. Concerning the computational
times of the price estimation, the CPU ratio between LHS and RQMC is almost 1

Table 3 Computational times
in seconds

Ch PCA LT KPA

Constant volatilities
ρ = 0%

0.60 25.77 71.14
ρ = 40%

0.59 25.55 71.02
Time-dependent volatilities

ρ = 0%
0.62 565.77 71.65 28.25

ρ = 40%
0.62 568.55 71.20 28.33
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while standard MC is 1.33 faster. As suggested in Glasserman (2004), we considered
both the product of the root mean square error (RMSE), and the square root of
the total computational time of the simulation as a measure of total accuracy of the
simulation. We denote this latter quantity as Err.

We used a Matouŝek affine plus random digital shift scrambled version (see
Matouŝek 1998) of the Sobol sequence satisfying Sobol’s property A (see Sobol
1976), and we also shunned generating a 2,500-dimensional Sobol’ sequence by
using the Latin Supercube Sampling (LSS) method (Owen 1998). Briefly speaking
this sampling procedure is a scheme for producing high-dimensional sequences out
from sets of lower-dimensional sequences. For instance, a 2,500-dimensional low
discrepancy sequence can be concatenated from 100 sets of 25-dimensional low
discrepancy sequences by suitably randomizing the run order of the points. For a
theoretical justification of the LSS method, see Owen (1998).

LHS can also be seen as an intermediate solution between pseudo- and quasi-
random points in terms of accuracy enhancement by stratification. It can be proved
indeed that LHS gives good variance reductions when the target function is the sum
of one-dimensional functions (see Stein 1987). On the other hand, the LT method
is designed to capture the lower effective dimension in the truncation sense for
linear combinations. As a consequence we should have a high accuracy when just
running the simulation using a combination of LHS and LT. We expect that the
KPA technique produces a suboptimal decomposition in the sense of ANOVA,
with the advantage of a lower computational effort. Our setting is organized to
check how large the improvement given by every factorization is. Tables 4 and 5
present the results of this investigation. The prices in Table 4 are all in statistical
agreement. Those obtained with the CH decomposition are almost independent from
the random number generator: KPA, PCA and LT all provide good improvements in
both the LHS and RQMC implementations for all the strike prices. The LT, however,
has an apparent advantage with respect to PCA and KPA, and this is still more
conspicuous in the uncorrelated case. In contrast, we observe that the KPA- and
PCA-based simulations give almost the same accuracy, assuming both correlated and
uncorrelated asset returns. Considering the total computational cost and the accuracy
we remark that the KPA performs better than the standard PCA. Moreover, all these

Table 4 Estimated at-the money prices and errors

ρ = 0% ρ = 40%

Price Err Price Err

MC Ch 3.180 0.700 5.190 1.400
KPA 3.120 0.700 5.190 1.410
PCA 3.110 0.750 5.200 1.490
LT 3.110 0.710 5.210 1.420

LHS Ch 3.120 0.420 5.200 0.680
KPA 3.120 0.310 5.201 0.190
PCA 3.120 0.330 5.201 0.200
LT 3.120 0.170 5.201 0.069

RQMC Ch 3.112 0.410 5.195 0.500
KPA 3.122 0.047 5.201 0.033
PCA 3.121 0.053 5.201 0.040
LT 3.122 0.018 5.201 0.019
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Table 5 At-the-money estimated 	’s (10−2) and errors (10−4) with RQMC

LT KPA PCA CH

	 Err 	 Err 	 Err 	 Err

ρ = 0%
6.18 0.43 6.18 0.60 6.18 0.51 6.21 0.82
6.20 0.40 6.21 0.49 6.20 0.51 6.23 0.60
6.23 0.46 6.23 0.47 6.23 0.58 6.25 0.65
6.27 0.40 6.27 0.44 6.27 0.54 6.28 0.76
6.31 0.32 6.31 0.50 6.31 0.57 6.33 0.65
6.36 0.30 6.36 0.52 6.36 0.49 6.38 0.60
6.41 0.27 6.41 0.50 6.41 0.46 6.43 0.65
6.47 0.27 6.47 0.49 6.47 0.49 6.49 0.76
6.53 0.27 6.54 0.50 6.53 0.55 6.55 0.71
6.60 0.35 6.61 0.42 6.60 0.57 6.61 0.60

ρ = 40%
5.478 0.030 5.484 0.060 5.481 0.077 5.468 0.599
5.535 0.033 5.541 0.060 5.537 0.082 5.525 0.654
5.594 0.029 5.600 0.060 5.597 0.077 5.587 0.654
5.654 0.033 5.661 0.065 5.657 0.077 5.640 0.545
5.717 0.040 5.723 0.070 5.718 0.082 5.710 0.599
5.781 0.044 5.789 0.065 5.784 0.071 5.770 0.708
5.848 0.041 5.853 0.052 5.851 0.071 5.832 0.654
5.916 0.044 5.921 0.060 5.918 0.077 5.900 0.599
5.985 0.028 5.991 0.050 5.987 0.071 5.971 0.545
6.055 0.032 6.061 0.060 6.057 0.077 6.046 0.654

constructions can be employed in stochastic and local volatility models based on the
mixture of multi-dimensional dynamics for basket options, as done in Brigo et al.
(2004a).

5 Computing the Sensitivities

In the financial jargon a Greek is the derivative of an option price with respect to
a parameter, and hence represents a measure of the price sensitivity with respect to
that parameter. The deltas (	’s) in particular are the components of the gradient
of the discounted expected outcome of the option with respect to the initial values
of the assets. The problem of computing the Greeks in finance has been studied by
several authors: here we extend the methodology employed by Kohatsu-Higa and
Montero (2003), based on the use of Malliavin Calculus, to the multi-assets case. The
main difficulties of this extension lie in the fact that the assets are now correlated, so
that the formulas in Kohatsu-Higa and Montero (2003) can not be directly extended
to the multi-dimensional case. The localization technique introduced by Fournié
et al. (1999) should moreover generally control all the components of the multi-
dimensional BM to improve the accuracy of the estimation. We write the dynamics
(Eq. 1) with respect to an M-dimensional BM W(t) with uncorrelated components

dSi(t) = rSi(t)dt + Si(t)σi(t)
M∑

m=1

αim(t)dWm(t) i = 1, . . . , M, (33)

where
∑M

m=1 αimαkm = ρik. We also take σim(t) = σi(t)
∑M

m=1 αim.
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The Malliavin calculus is a theory of variational stochastic calculus which provides
the tools to compute derivatives and integrals by parts of random variables (see
Nualart 2006 for more details on Malliavin Calculus). Let us denote by D1

s , . . . , DM
s

the Malliavin derivatives with respect to the components of W(t), while δSk =∑M
m=1 δSk

m stands for the Skorohod integral with δSk
m representing the Skorohod

integral on a single Wm(t). The domains of both the Malliavin derivatives, and the
Skorohod integral will be denoted denoted by D

1,2 and dom(δSk) respectively, while
δKr is the Kronecker delta. We prove then the following proposition:

Proposition 5 With x = S(0) and m(T) = ∑M
i=1

∑N
j=1 wijSi(t j) take

Gk = ∂m(T)

∂xk
=

∑N
j=1 wkjSk(t j)

xk
, k = 1, . . . , M (34)

Then, since a(T) ∈ D
1,2, the k-th delta (the k-th component of the gradient) is

	k = ∂a(0)

∂xk
= e−rT

E
[
a′(T)Gk

] = e−rT
E

[

a(T)

M∑

m=1

δSk
m (Gkum)

]

(35)

where u = (u1, . . . , uM) ∈ dom(δSk), z = (z1, . . . , zm) ∈ dom(δSk), Gku ∈ dom(δSk)

and

zm(s)
∑M

h=1

∫ T
0 zh(s)Dh

s m(T)ds
= um(s)

M∑

h=1

∫ T

0
zh(s)Dh

s m(T)ds �= 0, a.s.

Proof Compute

Dh
s a(T) = a′(T)Dh

s m(T) h = 1, . . . , M (36)

multiply the above equation by Gk and by zh(t)—so that z ∈ dom(δSk)—and finally
sum for all h = 1, . . . , M and integrate:

M∑

h=1

∫ T

0
Gkzh(s)Dh

s a(T)ds =
M∑

h=1

∫ T

0
Gkzh(s)a′(T)Dh

s m(T)ds. (37)

Due to the definition of u, and to the fact that a′(T)Gk does not depend on s, we can
write

a′(T)Gk =
M∑

m=1

∫ T

0
um(s)Gk Dm

s a(T))ds. k = 1, . . . , M (38)

Compute now the expected value of both sides in Eq. 38

E
[
a′(T)Gk

] = E

[
M∑

m=1

∫ T

0
um(s)Gk Dm

s a(T)ds

]

(39)
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and remark that by duality

	k = E
[
a(T))δSk(Gku)

]
k = 1, . . . , M. (40)

This concludes the proof. ��

Proposition 5 allows a certain flexibility in choosing either the process u, or better
z. We take then zh = αkδ

Kr
hk ; h, k = 1, . . . , M, αk = 1,∀k, and this implies that to

compute the k-th delta we can consider only the k-th term of the Skorohod integral,
thus reducing the computational cost. In particular, this choice is motivated by the
fact that in this way the localization technique needs to control only δSk

k (·), and hence
only the k-th component of W(t). We now define Lk and calculate for k = 1, . . . , M

Lk =
∫ T

0
Dk

s m(T)ds =
M∑

i=1

N∑

j=1

wijSi(t j)

∫ t j

0
σik(s)ds, (41)

∫ T

0
Dk

s Gkds =
N∑

j=1

w jkSk(t j)

xk

∫ t j

0
σkk(s)ds =

N∑

j=1

w jkSk(t j)

xk

∫ t j

0
σk(s)ds, (42)

∫ T

0
Dk

s Lkds =
N∑

j=1

wijSi(t j)

(∫ t j

0
σikds

)2

, (43)

so that

	k = E

[
a(T)δSk

k

(
Gk

LK

)]
, k = 1, . . . , M. (44)

Due to the properties of the Skorohod integral we then have for k = 1, . . . , M

δk

(
Gk

LK

)
= Gk

LK
Wk(T) − 1

L2
k

(
Lk

∫ T

0
Dk

s Gkds − Gk

∫ T

0
Dk

s Lkds
)

, (45)

Remark that with a different choice of z (for instance zh = αh) 	k would linearly de-
pend on the whole M-dimensional BM, eventually making the localization technique
less efficient.

We finally investigate the applicability of the RQMC approach to estimate the
expected value in Eq. 44 for k = 1, . . . , M. Take the same input parameters as in
Section 4, and generate the trajectories (the values Si(t j), i = 1, . . . , M, j = 1, . . . , N)
in Eqs. 41–43 as done in that section. Consider then the αim as the elements of
the CH matrix associated to ρim, i, m = 1, . . . , M: the Table 5 compares the deltas
obtained only with RQMC, with the same number of scenarios as in Section 4. We
adopted the same LT procedure used to estimate the option price, and not that for
the integrand function in Eq. 44: at first sight this does not seem to be an optimal
choice; but, would we have applied the LT for the integrand function in Eq. 44,
M = 10 decomposition matrices (one for each delta) should have been considered.
This would have increased the CPU time by at least 1/3 of the total time (or even
more, due to the larger number of terms to compute) thus making the calculation less
convenient. Table 5 shows that the PCA, LT and KPA approaches perform almost
equally well in terms of total accuracy, with the LT giving better results only for
correlated assets. In terms of total accuracy (Err), the KPA performs better than
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the PCA, the CH construction displaying Err’s that are even 10 times higher. As
previously stated, g can be considered a good approximation for the payoff function
in Eq. 44, but in the Malliavin expression a(T) is multiplied by a random weight that
depends on the Gaussian vector Z. The PCA and the KPA instead concentrate most
of the variation in the first dimensions of Z: this can be considered as an explanation
for the almost equal accuracy of the LT, PCA and KPA procedurs.

6 Conclusions

We have considered the problem of computing both the fair price, and the deltas of
high-dimensional Asian basket options in a BS market with time-dependent volatil-
ities by QMC simulations. In order to extend the QMC superior performances to
higher dimensions we need to employ path-generation techniques chiefly tailored to
reduce the nominal dimension. The LT and the PCA constructions try to accomplish
this task by exploiting the concept of ANOVA. For time-dependent volatilities in
a BS economy, however, the computational cost of the LT and the PCA cannot be
reduced by making use of the Kronecker product properties, so that the computation
is more difficult. To face this challenge, we have first produced a new and faster CH
algorithm for block matrices that remarkably cuts down the computational burden
and hence makes the LT procedure even more convenient than the PCA. Then,
we have presented a new path-generation technique, the KPA, that in the usual
applications is as accurate as the PCA, but is even more convenient with respect to
the computational costs. In addition, we proved that the KPA improves the RQMC
performances for both the estimation of the fair price, and the calculation of the
deltas of Asian basket options in a BS model with time-dependent volatilities. In
this setting the KPA provides the same accuracy of the LT in the case of correlated
asset returns, and in the estimation of the deltas. We have also extended to the multi-
assets case the procedures—based on the Malliavin Calculus—adopted by Kohatsu-
Higa and Montero (2003) for the computation of the sensitivities. Finally, all these
results can be easily applied to local volatility models that are based on the mixture
of multi-dimensional dynamics for basket options, as done in Brigo et al. (2004a).
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