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Abstract

Based on the concept of self-decomposable random variables we discuss the
application of a model for a pair of dependent Poisson processes to energy
facilities. Due to the resulting structure of the jump events we can see the
self-decomposability as a form of cointegration among jumps. In the con-
text of energy facilities, the application of our approach to model power or
gas dynamics and to evaluate transportation assets seen as spread options is
straightforward. We study the applicability of our methodology first assum-
ing a Merton market model with two underlying assets; in a second step we
consider price dynamics driven by an exponential mean-reverting Geometric
Ornstein-Uhlenbeck plus compound Poisson that are commonly used in the
energy field. In this specific case we propose a price spot dynamics for each
underlying that has the advantage of being treatable to find non-arbitrage
conditions. In particular we can find close-form formulas for vanilla options
so that the price and the Greeks of spread options can be calculated in close
form using the Margrabe formula [5] (if the strike is zero) or some well known
approximations as in Deng et al. [8].
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1 Introduction and Motivation

Several research studies have shown that the spot dynamics of commodity markets
is subjected to mean reversion, seasonality and jumps (see for example Cartea and
Figueroa [1]). In addition, some methodologies have also been proposed to take
dependency into account based on correlation and co-integration. However, these
approaches can become mathematically complex or non-treatable when leaving the
Gaussian-Itō world.

In this paper we address the problem of dependency in the 2-dimensional case
and start considering 2-dimensional jump diffusion processes with a 2-dimensional
compound Poisson component. We then introduce an intuitive approach to model
the dependency of 2-dimensional Poisson processes based on the self-decomposability
(see Cufaro Petroni [6], Cufaro Petroni and Sabino [7], Sato [10]) of the exponential
random variables used for its construction. We will see indeed in the subsequent sec-
tions that given two independent exponential rv ’s Y, Z ∼ E(λ), and a 0 -1 Bernoulli
rv B(1) ∼ B(1, 1− a) with a = P {B(1) = 0}, then also the rv defined as

X = aY + Za Za = B(1)Z (1)

is an exponential E(λ) resulting in a weighed sum of Y and Z where 0 < a < 1 is the
deterministic weight of Y , while B(1) is the random weight of Z. In other words X
is nothing else than the exponential Y down a-rescaled, plus another independent,
but intermittent with frequency 1 − a, exponential Z. It is apparent on the other
hand that, by construction, X and Y are not independent and it is possible to show
that a also represents precisely their correlation coefficient. This result is a direct
consequence of the self-decomposability of the exponential laws.

As a matter of fact, moreover, we could also produce pairs of a-correlated expo-
nentials X ∼ E(λ) and Y ′ ∼ E(µ) with different parameters by reformulating the
previous relation as

X = γY ′ + Za (2)

where γ = µa/λ, so that 0 < γ < µ

λ
. Considering thenX and Y ′ as two random times

with a positive random delay Za, the mathematical concept of self-decomposability
can help describing their co-movement and can answer some common questions
arising in the financial context:

• Once a financial institution defaults how long should one wait for a dependent
institution to default too?

• A market receives a news interpreted as a shock: how long should one wait to
see the propagation of that shock onto a dependent market?

• If different companies are interlinked, what is the impact on insurance risk?

Questions like the ones above are covered by the special case γ > 1. Our model is
then rich enough to describe cases where the second random time event does not
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only occur after the first one. Similar results based on linear structure of exponential
rvcan be found in Iyer et al. [13] whose purpose was to model a multi-component
reliability system.

It is worthwhile to notice that this bivariate exponential model implies a copula
function (see Cufaro Petroni and Sabino [7]) that is neither chosen upfront nor
whose parameters are estimated from market data: here the copula function does
not define the model, but rather the opposite.

Based on the self-decomposability of the exponentional rv ’s we are able to
construct 2-dimensional Poisson processes with dependent marginals (see Cufaro
Petroni and Sabino [7]). Because of the relationship among random times, the two
Poisson processes can be seen linked with a form of cointegration between their
jumps.

In the context of energy facilities, the application of our approach to model price
dynamics and to evaluate transportation assets seen as spread options is straight-
forward. To this purpose, we consider the TTF and NCG gas markets and assume
that each spot price dynamics is driven by an exponential mean-reverting Geomet-
ric Ornstein-Uhlenbeck (GOU) plus compound Poisson. In this specific case we
propose a stochastic dynamics of the spot prices that is slightly different form the
one in Cartea and Figueroa [1] with the advantage of being more treatable to find
non-arbitrage conditions. In particular we can find close-form formulas for vanilla
options hence the price and the Greeks of spread options can be calculated in close
form using the Margrabe formula [5] (if the strike is zero) or some well known ap-
proximations as in Deng et al. [8]. In any case our approach implies an explicit
algorithm for the simulation of the dependent Poisson processes and can be used in
Monte Carlo simulations.

Finally we compare the results obtained by our approach to the ones obtained
assuming that the two compound Poisson processes are independent or contain a
common Poisson component.

The extension to the multi-dimensional case will be the goal of future studies
as well as the extension to different dynamics other than Poisson. However, under
the assumption that only two underlyings have jump component, the price and the
Greeks of spread options can be obtained by the moment-matching methodology
proposed in Pellegrino and Sabino [14].

The paper is organized as follows. Section 2 summarizes the results for 2-
dimensional Poisson process that we presented in Cufaro Petroni and Sabino [7].
In section 3 we consider 2-dimensional jump diffusion processes having a Geometric
Brownian Motion (GBM) and GOU diffusive component. We also apply our method-
ology to the 2-factor Schwartz-Smith model [11] with jump diffusion where we find
analytical solutions for vanilla options as well. Section 4 presents the risk neutral
formulas for plain vanilla and spread options given the price dynamics introduced in
Section 3 and given the different types of 2-dimensional Poisson components. Sec-
tion 5 illustrates our approach with practical examples: we first assume a pure GBM
plus jump model (Merton model) and compare the results obtained by our approach
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to the ones obtained assuming that the two compound Poisson processes are inde-
pendent or contain a common Poisson component. In a second step we calibrate the
parameters of a 2-dimensional GOU plus jumps dynamics to model the TTF and
NCG day-head prices. Finally we compare the price of a transportation between
these two hubs assuming the three types of Poisson configuration mentioned above.
Section 6 concludes the paper with an overview of future studies and possible further
applications.

2 Dependent Poisson processes

A law with density (pdf ) f(x) and characteristic function (chf ) ϕ(u) is said to be self-
decomposable (sd) (see Sato [10] and Cufaro Petroni [6]) when for every 0 < a < 1
we can find another law with pdf ga(x) and chf χa(u) such that

ϕ(u) = ϕ(au)χa(u)

This definition selects an important family of laws with many relevant properties.
Remark however that, while a sd χa(u) can be explicitly expressed in terms of ϕ(u),
its corresponding pdf ga(x) can not be given in a general, elementary form from
f(x). We will also say that a random variable (rv) X is sd when its law is sd :
looking at the definition this means that for every 0 < a < 1 we can always find two
independent rv ’s Y (with the same law of X), and Za with pdf ga(x) and chf χa(u)
such that in distribution

X
d
= aY + Za

We can look at this, however, also from a different point of view: to the extent that
for 0 < a < 1 the law of Za is known, we can define the rv

X = aY + Za

which by self-decomposability will now have the same law of Y . It would be easy
to show that a also plays the role of the correlation coefficient between X and Y ,
namely

rXY = a

It is well known, in particular, that the exponential laws E1(λ) with pdf and chf

f1(x) = λe−λx
1x≥0 ϕ1(u) =

λ

λ− iu

are a typical example of sd laws (see Sato [10]). Remark that if Y ′ ∼ E1(µ), then
αY ′ ∼ E1

(

µ

α

)

for every α > 0, and hence in particular

Y =
µ

λ
Y ′ ∼ E1(λ)
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As a consequence we could also state the self-decomposability by means of exponen-
tial rv ’s with different parameters X ∼ E1(λ) and Y ′ ∼ E1(µ) because of course we
have

X = aY + Za =
aµ

λ
Y ′ + Za

provided that 0 < a < 1. In this paper, however, we will stick to the original
formulation with µ = λ. It is possible to show now (Cufaro Petroni and Sabino [7])
that the law of Za is a mixture of a law δ0 degenerate in 0, and an exponential
E1(λ), namely

Za ∼ aδ0 + (1− a)E1(λ)

and this entails that Za can be taken as the product of two id rv ’s: Z ∼ E1(λ), and
B(1) ∼ B(1, 1−a) (a Bernoulli with a = P {B(1) = 0}), which are also independent
from Y , namely

Za = B(1)Z

By summarizing, given two exponential rv ’s Y ∼ E1(λ) and Z ∼ E1(λ), and a
Bernoulli B(1) ∼ B(1, 1− a) (all mutually independent) the rv

X = aY +B(1)Z

is again an exponential E1(λ) defined as the weighed sum of Y and Z: while a is
the deterministic weight of Y , the weight of Z is random and is represented by
another (independent from both Y and Z) 0 -1 Bernoulli rv B(1) ∼ B(1, 1 − a).
In other words X is nothing else than the exponential Y down a-rescaled, plus
another independent, but intermittent with frequency 1−a, exponential Z. The self-
decomposability of the exponential laws ensures then that, if both the parameters
of Y and Z are λ, also X marginally is an E1(λ) for every 0 < a < 1. It is apparent
on the other hand that, by construction, X and Y are not independent and it is
easy to show that a represents their correlation coefficient

As initially suggested in Iyer et al. [13], we take now a sequence of iid rv ’s

Xk = aYk +Bk(1)Zk k = 1, 2, . . .

in such a way that for every k: Xk, Yk, Zk are E1(λ), Bk(1) is B(1, 1 − a), and
Yk, Zk, Bk(1) are mutually independent. Add moreover X0 = Y0 = Z0 = 0, P-a.s.
to the list, and then define the point processes

Tn =

n
∑

k=0

Xk ∼ En(λ) n = 0, 1, 2, . . .

Sn =
λ

µ

n
∑

k=0

Yk ∼ En(µ) n = 0, 1, 2, . . .

where En(λ) are Erlang (gamma) laws with pdf ’s and chf ’s

fn(x) = λ
(λx)n−1

(n− 1)!
e−λx

1x≥0 ϕk(u) =

(

λ

λ− iu

)n

n = 0, 1, 2, . . .
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where it is understood that E0 = δ0. We will finally denote with N(t) ∼ P(λt) and
M(t) ∼ P(µt) the dependent Poisson processes associated respectively to Tn and
Sn, and for our purposes we are interested in finding an explicit form of

pm,n(t) = P {M(t) = m, N(t) = n} n,m = 0, 1, 2, . . . t ≥ 0

To this end we first introduce the parameter

γ =
aµ

λ

and the shorthand notations

πk(α) = e−ααk

k! k = 0, 1, . . .

βℓ(n) =

(

n

ℓ

)

an−ℓ(1− a)ℓ ℓ ≤ n = 0, 1, . . .

respectively for the distributions of a Poisson P(α), a binomial B(n, 1 − a) (it is
understood that β0(0) = 1) and a binomial mixture of shifted Erlang laws Eℓ(λ),
and then we prove (see Cufaro Petroni and Sabino [7]) the following result

Proposition 2.1. When γ ≥ 1, namely aµ ≥ λ, we have

pm,n(t) =







0 n > m ≥ 0
Qn,n(t) m = n ≥ 0
Qm,n(t)−Qm,n+1(t) m > n ≥ 0

Qm,n(s, t) =
m
∑

k=n

(−1)k
m
∑

j=k

(

j

k

)

πm−j(µt)

(−a)j

n
∑

ℓ=0

βℓ(n)πj+ℓ(λt)Φ(j + 1; j + ℓ+ 1;λt)

When γ ≤ 1, namely aµ ≤ λ, we have

pm,n(t) =







Am,n(t)−Am,n+1(t) +Bm,n(t)− Bm,n−1(t) n > m ≥ 0
An,n(t)− An,n+1(t) +Bn,n(t) + Cn,n(t) m = n ≥ 0
Am,n(t)−Am,n+1(t) + Cm,n(t)− Cm,n+1(t) m > n ≥ 0

where we define for every n,m ≥ 0

Am,n(t) = πm(µt)
n
∑

k=0

βk(n)

[

1 + πk(λt− aµt)−
k
∑

j=0

πj(λt− aµt)

]

while for n ≥ m ≥ 0, and λt− aµt = w for short, it is

Bm,n(t) = πm(µt)

n−m
∑

k=0

πk

(w

a

)

n+1
∑

ℓ=0

βℓ(n+ 1)
wℓk!

(k + ℓ)!
Φ

(

ℓ, k + ℓ+ 1,
1− a

a
w

)
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and for m ≥ n ≥ 1 it is (for n = 0 we have Cm,0(t) = 0)

Cm,n(t) =
e−(1−a)µt

am

n
∑

ℓ=1

βℓ(n)
m
∑

k=n

ℓ−1
∑

j=0

(

k + ℓ− j − 1

k

)

(−1)ℓ−1−jπj(λt)πm+ℓ−j(aµt)Φ(k + ℓ− j,m+ ℓ− j + 1, aµt)

and Φ(j + 1; j + ℓ + 1;λt) for 0 ≤ ℓ ≤ n ≤ j ≤ m are the confluent hypergeometric
functions that are in fact elementary functions as proved Cufaro Petroni and Sabino
[7].

Proof: See Cufaro Petroni and Sabino [7] including the more general case for
pm,n(s, t) = P {M(s) = m, N(t) = n}n,m = 0, 1, 2, . . . t ≥ 0. Remark that
in the boundary case γ = 1 the previous two expressions coherently return the
same result. �

3 The Market Models

In this section we adapt the model described in Section 2 to the financial context. We
consider an usual Black-Scholes (BS) market and a market with geometric Ornstein
Uhlenbeck (GOU) processes with jumps similar to the one adopted by Cartea and
Figueroa [1]. Finally we focus on the Schwartz-Smith model with double jumps that
can be seen as a complete cointegrated model with jumps.

Hereafter, compared to Section 2, N1(t) and N2(t) replace M(t) and N(t) and
λ1 and λ2 replace µ and λ, respectively.

3.1 The GBM plus Jumps Case

Consider a BS market with two risky underlying assets whose dynamics are driven
by SDEs with the following solution (Merton model):

Si(T ) = exp



log Si(0) +

(

µi −
1

2
σ2
i

)

T + σiWi(T ) +

Ni(T )
∑

ni=1

log Jni

i



 , i = 1, 2, (3)

with dW1(t)dW2(t) = ρ(W )dt and log-normal jumps:

Ji = Mi exp

(

−ν2
i

2
+ νiZi

)

, i = 1, 2. (4)

where Zi ∼ N(0, 1) and Corr(Z1Z2) = ρ(D). We assume that the compound Poisson
processes and BM are independent.
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We now concentrate on the logarithm:

logSi(T )
d
= logSi(0) +

(

µi −
1

2
σ2
i

)

T + σiWi(T ) +Ni(T ) logMi

−ν2
i

2
Ni(T ) + νi

Ni(T )
∑

ni=1

Zni

i , i = 1, 2. (5)

The equations above can be rewritten as:

logSi(T )
d
= logSi(0) +

(

µi −
1

2
σ2
i

)

T +Ni(T ) logMi

−ν2
i

2
Ni(T ) +

√

σ2
i T +Ni(T )ν

2
i Hi, i = 1, 2, (6)

where given n and m, (H1, H2) ∼ N

((

0
0

)

,

(

1, ρ(J),n,m

ρ(J),n,m, 1

))

The calculation of

ρ(J),n,m can be found in the Appendix A.
For simplicity we denote

v
(J,n)
i (T ) =

(

σ
(J,n)
i

)2

= σ2
i T + nν2

i = v
(C)
i (T ) + v

(D,n)
i , (7)

where v
(C)
i and v

(D)
i denote the terminal variances of the continuous and discontin-

uous parts. In case the continuous part of the SDE has a time-dependent volatility
function, it is easy to see that the formulas still hold by replacing v

(C)
i by

∫ T

0
σ2
i (s)ds.

No-arbitrage conditions imply (see Joshi [3] pag 344):

µi − r = −λiE[Ji − 1] i = 1, 2. (8)

3.2 The Ornstein-Uhlenbeck plus Jumps Case

Energy markets often display mean-reversion and jumps. We here consider a one-
factor model plus jumps similar to the one introduced in Cartea and Figueroa [1].
Consider a market driven by a stochastic process whose solution is:

Si(t) = Fi(0, t) exp {Ui(t) + h(t)} , i = 1, 2, (9)

where h(t) is a pure deterministic function and Ui(t) is

Ui(t) = Ui(0)e
−kit + σi

∫ t

0

e−ki(t−s)dWi(s) + e−kit

Ni(t)
∑

ni=1

Y ni

i = UC
i (t) + UD

i (t) (10)

whose SDE is:

dUi(t) = −kiUi(t)dt + σidWi(t) + e−kitYidNi(t). (11)
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Y ni

i are copies of Yi ∼ N(Mi, ν
2
i ) and Corr(Y1, Y2) = ρ(D). Remark that compared to

the GBM case the rv ’s Y ni

i are not in terms of logarithms. The spot SDE is slightly
different from the one adopted in Cartea and Figueroa [1], indeed the exponential
term that multiplies the jump component is chosen such that the solution has no
random jumps with time-dependent jump size. Should we have considered as Cartea
and Figueroa [1],

dUi(t) = −kiUi(t)dt+ σidWi(t) + YidNi(t),

the solution would have been

Ui(t) = Ui(0)e
−kit + σi

∫ t

0

e−ki(t−s)dWi(s) + e−kit

Ni(t)
∑

ni=1

Y ni

i ekiT
ni
i

where T ni

i are the jump times. This setting leads to less tractable option formulas
as it will be shown here below.

In order to get no-arbitrage conditions, we impose E [S(T )|Ft] = F (t, T ) and for
simplicity we look at E[S(T )] = F (0, T ) to adjust our parameters and functions.

We then need to compute E

[

eU
C
i (t)+UD

i (t)
]

= E

[

eU
C
i (t)
]

E

[

eU
D
i (t)
]

.

It is well known that:

E

[

eU
C
i (t)
]

= exp

(

E
[

UC
i (t)

]

− 1

2
Var

[

UC
i (t)

]

)

= eai(t). (12)

with:

E
[

UC
i (t)

]

= U(0)e−kit,

Var
[

UC
i (t)

]

=
σ2
i

2ki

(

1− e−2kit
)

. (13)

Hereafter we will assume that Ui(0) = 0, i = 1, 2 that does not change the applica-
bility of the model. Finally we need to calculate:

E

[

eU
D
i (t)
]

= E



exp



e−kit

Ni(t)
∑

ni=1

Y ni

i







 = ebi(t). (14)

Knowing the moment-generating function of the compound Poisson process:

φ(u) = E



exp







u

Ni(t)
∑

n=1

Y ni

i









 = exp {λit (φYi
(u)− 1)} (15)

where

φYi
(u) = exp

{

Miu+
1

2
ν2
i u

2

}

(16)
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we easily obtain the required expected value.

E

[

eU
D
i (t)
]

= φ
(

e−kit
)

. (17)

bi(t) = λit
(

ee
−kit(Mi+

1
2
e−kitν2i ) − 1

)

(18)

Based on the results above, non-arbitrage is given by hi(t) = −ai(t) − bi(t). The
equations for the spot dynamics above can be rewritten as:

log Si(t)
d
= logFi(0, t)− bi(t) +Ni(t)Mie

−kit +
1

2
ν2
i e

−2kitNi(t)

−1

2

(

Var
[

U
(C)
i (t)

]

+ ν2
i e

−2kitNi(t)
)

+
√

Var
[

U
(C)
i (t)

]

+ ν2
i e

−2kitNi(t)Hi. (19)

Where Hi, i = 1, 2 have been defined in the previous section.

3.3 The Schwartz-Smith plus Jumps Case

Consider the two factor Schwartz-Smith model (see Schwartz Smith [11]):

U1(t) = U1(0)e
−kt + σ1

∫ t

0

e−k(t−s)dW1(s) + e−kt

N1(t)
∑

n1=1

Y n1
1

U2(t) = U2(0) + µt + σ2W2(t) +

N2(t)
∑

n2=1

Y n2
2

U(t) = U1(t) + U2(t). (20)

where S(t) = F (0, t)eh(t)+U(t) and we assume that the jumps of both process share
the same distribution Y1, Y2 ∼ N(M, ν). Simply taking the differential and some
algebra:

dU(t) = −k (µ+ U2(t)− U(t)) dt+ σdW + Y
(

e−ktdN1 + dN2

)

(21)

Should we consider the OU plus compound Poisson as in Cartea and Figueroa [1]
the process U(t) would be:

dU(t) = −k (µ+ U2(t)− U(t)) dt+ σ1dW1 + σ2dW2 + Y (dN1 + dN2)

= −k (µ+ U2(t)− U(t)) dt+ σdW + Y dN(t). (22)

where σ2 = σ2
1 + σ2

2 + 2σ1σ2ρ
(W ). With the latter equation above (22), the log of

the spot process can be expressed in terms of one BM and a compound Poisson-like
process.
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With the same procedure outlined in the previous subsection, no arbitrage con-
ditions can be obtained by taking the (conditional) expectation of the spot process:

E

[

eU
C(t)
]

= E

[

eU1(0)e−kt+σi

∫ t

0
e−k(t−s)dW1(s)+U2(0)+µt+σ2W2(t)

]

= exp

(

E
[

UC(t)
]

− 1

2
Var

[

UC(t)
]

)

= ea(t). (23)

Assuming once more U1(0) = 0 and U2(0) = 0 we have:

E
[

UC(t)
]

= µt,

Var
[

UC(t)
]

=
σ2
1

2k

(

1− e−2kt
)

+ σ2
2t+

2ρσ1σ2

k

(

1− e−kt
)

. (24)

For the discontinuous component we have:

eb(t) = E

[

eU
D(t)
]

= E



exp



e−kt

N1(t)
∑

n1=1

Y n1
1 +

N2(t)
∑

n1=1

Y n2
2







 =

=

+∞
∑

m1,m2=0

pm1,m2

[

exp

(

e−kt

m1
∑

n1=1

Y n1
1 +

m2
∑

n1=1

Y n2
2

)]

=

=
+∞
∑

m1,m2=0

pm1,m2φY

(

e−kt
)m1 × φY (1)m2 (25)

As done in Section 5.2, non-arbitrage is given by h(t) = −a(t)− b(t) where b(t) can
be computed numerically.

In contrast, in the case of Cartea and Figueroa [1], we have:

eb(t) = E

[

eU
D(t)
]

= E



exp



e−kt

N1(t)
∑

n1=1

Y n1
1 ekT

n1 +

N2(t)
∑

n1=1

Y n2
2







 (26)

that is more complex to treat
After some algebra, the log-spot dynamics above can be rewritten as:

logSi(t)
d
= logF (0, t)− b(t) + µt+N1(t)e

−kt

(

M + e−ktν
2

2

)

+N2(t)

(

M +
ν2

2

)

−

− 1

2

{

Var
[

U (C)(t)
]

+
(

e−2kitN1(t) +N2(t)
)}

ν2 +

+
√

Var [UC(t)] + (e−2kitN1(t) +N2(t)) ν2ǫ. (27)
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4 Risk-neutral Pricing Formulas

4.1 The simple European Plain Vanilla Options Case

In order to simplify the calculation and the notation, we represent the price of a call
option at time zero c(0) in terms of an abstract BS formula

c(0) = BS (P0, K, r, T, v, q) . (28)

Where P0, K, r, T , v, q denote the arguments: initial price, strike, risk-free rate,
maturity, terminal variance and dividend yield, respectively, for the Black-Scholes
formula.

• GBM Case. We need to rearrange Equation (6) given the market of Equation
(3) such that we can apply the abstract BS formula for the GBM-plus-jumps
case:

log Si(T ) = logSi(0)+Ni(T ) logMi +λi(1−Mi)T − v
(J,Ni(T ))
i

2
+

√

v
(J,Ni(T ))
i Hi

(29)

The price of a call (put) option on underlying asset i = 1 given the GBM-plus-
jumps market of Equation (3) is then:

c(0) =

∞
∑

n=0

πn1(λ1T )BS(S
(n)
1 (0), K, r, T, v

(J,n)
1 (T ), 0). (30)

where
S
(n)
1 (0) = S1(0)M

n
1 exp [λ1T (1−M1)] . (31)

and v
(J,n)
1 (T ) is defined in Equation (7).

• GOU Case. In contrast for the OU-plus-jumps market of Equation (9), the
starting point argument for the abstract BS formula is:

S
(n)
1 (0) = F1(0, T )e

pni (T ), (32)

where v
(J,n)
1 (T ) = Var

[

U
(C)
1 (T )

]

+ ne−2k1Tν2
1 and

pn1 (t) = −b1(t) + ne−k1t

(

1

2
e−k1tν2

1 +M1

)

. (33)

• Schwartz-Smith Case. Assuming Equation (20) a semi-closed form formula
can be found following the procedure outlined in the GBM and GOU cases.

c(0) =

∞
∑

n1,n2=0

P (N1(T ) = n1, N2(T ) = n2)BS(S(n1,n2)(0), K, r, T, v(J,n1,n2)(T ), 0).

(34)
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where

S(n1,n2)(0) = F (0, t)e
−b(t)+µt+n1(t)e−kt

(

M+e−kt ν2

2

)

+n2(t)
(

M+ ν2

2

)

, (35)

and
v(J,n1,n2)(T ) = Var

[

UC(T )
]

+
(

e−2kiTn1 + n2

)

ν2 (36)

Moreover, for both settings in Equations (20) and (22) given the non-arbitrage
conditions, the simple algorithm to generate the dependent Poisson processes
of Section 2 offers an easy Monte Carlo implementation to compute the price
of vanilla options.

Having obtained the risk-neutral conditions on each underlying asset, it is straight-
forward to obtain formulas for spread options.

4.2 Spread Options Case

The application to spread options is the native framework to compare our approach
with cointegrated jumps compared to other jump-diffusion cases. We start consid-
ering a spread option with zero-strike, based on the results of Margrabe [5], with
the same conditioning approach applied in Subsection (4.2) we get that the price of
a spread option with zero strike given the market of Equation (3) or Equation (9)
is:

s(0) =
∞
∑

n1,n2=0

P (N1(T ) = n1;N2(T ) = n2)BS(S
(n1)
1 (0), S

(n2)
2 (0), 0, T, v(M,n1,n2)(T ), 0)1,

(37)

where v(M,n1,n2)(T ) = v
(J,n1)
1 (T ) + v

(J,n2)
2 (T ) − 2ρ(J,n1,n2)

√

v
(J,n1)
1 v

(J,n2)
2 is the spread

terminal variance. The definition of Sm
2 and v

(J,m)
2 follows from the subsection above.

In the literature different analytical approximations are available when the strike
is not zero (see for instance Deng and Lee [8] or Kirk [4]), the extension to the jump
diffusion case is just a matter of adapting the parameters of the approximation.
Employing Monte Carlo methods is not complicated because the simulation of the
2-dimensional path is not a complex task and as well as is the 2-dimensional Poisson
generation.

We will deserve future studies to a market of more than two assets that have
a jump component. The current framework cannot cope with multi-asset spread
options unless one considers that the third asset has no jump term. Pricing multi-
assets spread options then can be tackle via simulation, analytical approximations
as done in Deng and Lee [9] and Pellegrino and Sabino [15] or by applying mo-
ment matching and using one of the solutions available for two legs as explained in
Pellegrino and Sabino [14].

In the following, we compare three different Poisson models:

1when the Margabe option is written on the spot it can be seen that the price is independent
of r, in contrast to the situation of a spread option on the forward.
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• Independent Jumps. N1(t) and N2(t) are independent Poisson processes.
The spread option formula is:

s(0) =

∞
∑

n1,n2=0

πn1(λ1T )πn2(λ2T )BS(S
(n1)
1 (0), S

(n2)
2 (0), 0, T, v(M,n1,n2)(T ), 0).

(38)

• One Common Jump. Ni(t) = N(t)+NX
i , i = 1, 2, where N(t) and NX

i are
all mutually independent Poisson processes. The spread option formula is:

s(0) =
∞
∑

n=0,n1,n2≥n

πn1−n(λ
X
1 T )πn2−n(λ

X
2 T )πn(λT )×

BS(S
(n1−n)
1 (0), S

(n2−n)
2 (0), 0, T, v(M,n1−n,n2−n), 0) (39)

• Cointegrated Jumps. Ni(t), i = 1, 2 described in Subsection 4.2. The
spread option formula is:

s(0) =
∞
∑

n1,n2=0

P (N1(T ) = n1;N2(T ) = n2)BS(S
(n1)
1 (0), S

(n2)
2 (0), 0, T, v(M,n1,n2)(T ), 0)

(40)
where pn1,n2 = P (N1(T ) = n1;N2(T ) = n2) are defined in Proposition 2.1.

The payoff of the spread options above considers the values of the two underlying
at the same time T . Other types of spread options instead look at the two under-
lying at different times, e.g. the payoff may be (S1(T1)− S2(T2))

+, T2 < T1. In
this case one needs to readapt the formulas and consider the probabilities pn1n2 =
P (N1(T1) = n1;N2(T2) = n2) and they can be found in Cufaro Petroni and Sabino
[7].

5 Numerical Experiments

In this section we presents the numerical experiments assuming the GBM and GOU
dynamics plus jumps explained in the previous sections. The case with GBM consid-
ers realistic parameters and is meant to study the spread option values with different
types of bivariate Poisson processes; in contrast the GOU case is based on real data
of TTF and NCG day-ahead prices.

5.1 GBM. Application to Spread Options

We compare the spread option value obtained using Equations (38)-(40) changing
the correlation between the two Poisson processes. In particular, assuming Ni =
N(t) +NX

i (t) we have Cov[N1(t), N2(t)] = Var[N(t)] = λt, then the instantaneous
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Table 1: Parameters of the GBM and Compound Poisson processes

(a) Continuous Part.

No Jump With Jumps

Case A Case B

S1(0) 100 100 100

S2(0) 100 100 100

σ1 0.49 0.37 0.2

σ2 0.35 0.23 0.15

ρ(W )(%) 96 60 80

(b) Discontinuous Part

Case A Case B

ρ(D)(%) 99 50

λ1 20 40

λ2 20 20

ν1 0.10 0.05

ν2 0.07 0.04

M1 1.1 1.05

M2 1.1 1.05
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(b) Case B

Figure 1: Spread Option Values in the Cases A and B when M1 = M2 = 1

correlation is ρN1N2 = λ√
λ1λ2

; in case of cointegrated jumps this can be obtained
numerically. Naturally, in case λ1 6= λ2 the perfect correlation cannot be obtained.

We consider two cases:

Case A . λ1 = λ2 = 20, where for cointegrated jumps γ = a < 1.

Case B . λ1 = 40, λ2 = 20 where for cointegrated jumps γ < 1 can assume values
lower or higher than 1, when a < 0.5 and a > 0.5, respectively.

The parameters are shown in Table (5.1). In both cases we consider an at-the-money
spread option with zero strike, K = 0 and maturity T = 1 such that we can use the
exact Margrabe formula. One can use some approximation for the spread option
value for non-zero strikes without changing the validity of our tests because.

We also compute the spread value with a pure GBM with no jumps with the
parameters of the first column of the first table in (5.1) that are chosen such that
they match the average spread terminal variance v(M,⌊λ1T ⌋,⌊λ2T ⌋), where ⌊·⌋ denotes
the integer part.

We first observe that the behavior of Equations (38)-(40) depends on the values
of the probabilities pn1,n2 and the values of the BS formulas separately. The former
quantities do not depend on the distribution of the jumps while the latter ones are
independent on the structure of dependence between the Poisson processes.
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Table 2: Spread Option Values without jumps and independent Compound Poisson
processes.

No Jump Independent Jump

Case A Case B Case A Case B

Option Value 7.27 11.92 25.23 19.27

Table 3: Spread Option Values with Common and Cointegrated Compound Poisson.
Case A Option Value Case A Case B Option Value Case B

a ρN1N2(%) λ Common Cointegrated ρN1N2(%) λ Common Cointegrated

0.1 9 1.80 24.30 24.22 7 2.09 18.87 18.87

0.15 14 2.71 23.76 23.64 11 3.13 18.66 18.67

0.2 18 3.63 23.20 23.05 15 4.16 18.45 18.46

0.25 23 4.55 22.63 22.44 18 5.19 18.25 18.26

0.3 27 5.47 22.04 21.81 22 6.21 18.04 18.05

0.35 32 6.40 21.42 21.16 26 7.23 17.83 17.83

0.4 37 7.34 20.78 20.48 29 8.24 17.61 17.62

0.45 41 8.29 20.11 19.78 33 9.25 17.40 17.40

0.5 46 9.24 19.41 19.05 36 10.25 17.18 17.18

0.55 51 10.20 18.68 18.29 40 11.25 16.97 16.96

0.6 56 11.17 17.90 17.49 43 12.24 16.75 16.74

0.65 61 12.16 17.08 16.64 47 13.23 16.53 16.51

0.7 66 13.15 16.20 15.74 50 14.21 16.30 16.29

0.75 71 14.17 15.25 14.78 54 15.19 16.08 16.06

0.8 76 15.20 14.21 13.75 57 16.16 15.85 15.83

0.85 81 16.26 13.06 12.61 61 17.13 15.62 15.60

0.9 87 17.36 11.74 11.33 64 18.09 15.38 15.37

0.95 93 18.53 10.14 9.82 67 19.05 15.15 15.14

Figure (5.1) clearly shows that the expected jump size has a relevant impact in
the option value because under the assumption M1 = M2 = 1 the price in almost
independent on the choice of the Poisson model.

Figures (5.1) show the difference among the joint probabilities of the Poisson
processes. The isolines of the contour plot of pn1n2 resemble to a sort of ellipse
whose axis are parallel to the X-Y axis that is expected for independent Poisson
both in case A and B. The positive correlation of the Poisson processes in the other
configuration is reflected by the fact that the axis are now rotated counterclockwise.
In addition for cointegrated Poisson the higher value of the probabilities is more
concentrated around the expected value.

This is more evident in the figure with λ1 = λ2 and it is worth noticing once
more that for γ > 1 the matrix pn1n2 is lower triangular for the cointegrated Poisson
while it is full for the structure with one common Poisson process. Finally, Table 5.1
displays the results with expected jump size different from zero. λ where chosen such
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Figure 2: Contour plot, probabilities with λ = λ = 20.
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that the correlations of the ‘cointegrated’ and ‘common’ Poisson processes coincides.
The effect of the correlation between the Poisson processes is noticeable. The

value of the spread option is decreasing when ρN1N2 is increasing that is in line with
the intuition because the spread terminal variance decreases.

In the case A, the jump sizes are perfectly correlated and the spread option
values using the common Poisson setting is always higher than the values obtained
with our methodology. This is somehow reflected by the concentration of the isoline
of the probabilities. Using a common Poisson reduces the spectrum of jump events,
for instance in an extreme setting where λ = λ1 = λ2, N1(t) cannot jump more that
N2(t), while this is not the case for the cointegrated Poisson process. In contrast,
the choice of the Poisson model has no remarkable effect on the price of the spread
option in the configuration B. This in our opinion does not diminish the value of our
methodology, as shown for the results of the configuration A, because in any case
the probabilities pn1n2 differ between the two different Poisson examples. With the
same ρN1N2 the price of the spread option seems to highly depend on the number of
the jumps of both processes rather than when they occurred and that explains the
small differences. Furthermore, assuming for instance λX

2 = 0 implies λ2 = λ and
N2(t) cannot have more jumps than N2(t) that coincides with the properties of our
model only if γ > 1, that means that our model gives a richer set of combinations.

5.2 GOU. Application to Gas Transports

In this section we apply our methodology in order to price a gas transport between
TTF and NCG hubs modeled as a spread option (NCG minus TTF). We assume
that each dynamics behaves as a GOU plus a compound Poisson and calibrate the
parameters. As done for the GBM example we do not consider transport costs (no
strike) and adopt the Margrabe formula in Equations (38)-(40).

In particular, the calculation date is end of December 2013 with a historical
time window of 2 years for the estimation period. We concentrate then on the
transportation value for the first and second quarters, Q1, Q2 2.

The estimation procedure can be split into two steps. As a first step, after
filtering out the time-dependent components of each process, one can estimate the
parameters of the one-dimensional processes, θi = (ki, σi, λi,Mi, νi). As a second
step then, one can estimate the remaining joint parameters defined by the two-
dimensional model3.

Consider an equally spaced time grid t0, t1, . . . , tT with ti+1 − ti = ∆t and the
Euler scheme of each SDE in Equation (41)

Ui(t+ 1) = (1− ki∆t)Ui(t) + σi

√
∆tǫi,t+1 + e−kit

1i(t+ 1)Yi. (41)

2The technique here discussed does not reflect EGC view.
3A slightly different example on how to derive the parameters of GOU process can be found at

http://de.mathworks.com/help/fininst/simulating-electricity-prices-with-mean-reversion-and-jump-diffusion.html

http://de.mathworks.com/help/fininst/simulating-electricity-prices-with-mean-reversion-and-jump-diffusion.html
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where

1i(t+ 1) =

{

1, with probability λi∆t

0, with probability 1− λi∆t.
(42)

Hence the transition density is a combination of Gaussian densities:

pi (Ui(t+ 1), t+ 1|Ui(t), t) = (1− λi∆t)N
(

µC
i (t), σ

C(t)
)

+ λi∆tN
(

µJ
i (t), σ

J(t)
)

.
(43)

N (x) denotes the density function of a Gaussian random variable and µC
i (t) =

(1− ki∆t)Ui(t), µ
J
i (t) = (1− ki∆t)Ui(t) +Mie

−kit and σC
i (t) = σi

√
∆t, (σJ

i (t))
2 =

σ2
i∆t + e−2kitν2

i . The parameters θi = (ki, σi, λi,Mi, νi) can be calibrated by mini-
mizing the log-likelihood function with the usual constrains on the parameters:

θi = argmin

T−1
∑

t=0

log (pi (Ui(t + 1), t+ 1|Ui(t), t)) . (44)

The calibration of the parameters for the two-dimensional process depends on the
model specification written in Section 2.

• Independent Jumps. In case of independent Poisson processes the joint
probability are simply:

p0,0 = (1− λ1∆t) (1− λ2∆t) , p1,0 = λ1∆t (1− λ2∆t)

p0,1 = (1− λ1∆t) λ2∆t, p1,1 = 1− p0,1 − p1,0 − p0,0. (45)

The only two remaining parameters to estimate are ρ(W ) and ρ(J) and can be
obtained by minimizing the log-likelihood of the two dimensional process. The
transition density is

p (U(t + 1), t+ 1|U(t), t) =

N
(

µCC(t),ΣCC(t)
)

p0,0 +N
(

µCJ(t),ΣCJ(t)
)

p0,1 +

N
(

µJC(t),ΣJC(t)
)

p1,0 +N
(

µJJ(t),ΣJJ(t)
)

p1,1. (46)

where

µCC(t) =
(

µC
1 (t), µ

C
2 (t)

)

, ΣCC(t) =

(

(σC
1 )

2 ρ(W )σC
1 σ

C
2

ρ(W )σC
1 σ

C
2 (σC

2 )
2

)

,

µCJ(t) =
(

µC
1 (t), µ

J
2 (t)

)

, ΣCJ(t) =

(

(σC
1 )

2 ρ(W )σC
1 σ

C
2

ρ(W )σC
1 σ

C
2 (σJ

2 )
2

)

,

µJC(t) =
(

µJ
1 (t), µ

C
2 (t)

)

, ΣJC(t) =

(

(σJ
1 )

2 ρ(W )σC
1 σ

C
2

ρ(W )σC
1 σ

C
2 (σC

2 )
2

)

,

µJJ(t)
(

µJ
1 (t), µ

J
2 (t)

)

, ΣJJ(t) =

(

(σJ
1 )

2 ρ(J)σJ
1 σ

J
1

ρ(J)σJ
1 σ

J
2 (σJ

2 )
2

)

.

We do not neglect the o (∆t2) terms that are necessary to estimate ρ(D).
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• Common Jumps. One cannot detect the presence of the common Poisson
process only looking at each log process independently.

After some algebra, the pair (1i(t+ 1)) is bi-dimensional Bernoulli rvwith:

p0,0 = 1−
(

λX
1 + λX

2 + λ
)

∆t, p1,0 = λX
1 ∆t

p0,1 = λX
2 ∆t, p1,1 = λ∆t = 1− p0,1 − p1,0 − p0,0.(47)

In contrast to the case above, we neglect o (∆t2) terms that implies that we are
neglecting the possibility that the Poisson processes NX

1 (t) and NX
2 (t) jump

simultaneously in the unit of time ∆t. The functional form of the transition
density is the one of Equation (46), with different probability weights.

• Cointegrated Jumps

– Case 1. γ > 1. Based on the results of Proposition (2.1) up to O(∆2)
terms we have:

p0,0 = 1− λ1∆t, p1,0 = (λ1 − λ2)∆t− λ1

(

λ1

γ
− λ2

)

∆t2

p0,1 = 0, p1,1 = λ2∆t. (48)

– Case 2. 0 < γ ≤ 1.

p0,0 = 1− (λ1 + λ2(1− γ))∆t, p0,1 = λ2(1− γ)∆t

p1,0 = (λ1 − γλ2)∆t, p1,1 = γλ2∆t. (49)

Here above we neglect o(∆t2) terms (see Appendix B for the proof of this
last case)

The results of the calibration are shown in Table 5.2. The expected jump sizes and
their correlation are very small and negligible. Comparing the values of λ and a or γ
the correlation between the two Poisson processes is also small. Based on the study
in Section 5.1 we can expect that the selection of a specific Poisson model will not
bring a remarkable difference.

Table 5.2 shows the values of the transportation in Q1 and Q2 with different dy-
namics. The prices obtained with the different configurations meet the expectations
after having a look at the estimated parameters. Remark that in this case the prices
with cointegrated jumps are higher than those with common jumps; this is explained
by the fact that the correlation parameters are different, the latter configuration has
higher values both for ρW and ρN1N2 .

Once more, although our methodology is parameterized by γ and a that is the
correlation between the exponential rv ’s that construct the Poisson process, it im-
plies a structure that goes beyond the linear correlation.
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Table 4: Market parameters for NCG and TTF

(a) Parameters of the Single Underlyings.

Market k σi µi νi λi

NCG 9.75 0.09 0.001 0.07 35.37

TTF 26.38 0.15 0.003 0.02 26.70

(b) Common Parameters

Method ρ(W )(%) ρ(D)(%) λ a

Independent 43 −1.0 NA NA

Common 40 −1.0 8.93 NA

Cointegrated 35 −1.0 NA 0.27

Table 5: TTF-NCG Gas Transport Prices
Transportation Value

Independent Common Cointegrated

Q1 49.14 49.35 49.79

Q2 34.99 35.48 36.27

6 Conclusion and Future Studies

Based on the concept of self-decomposability we have studied the use of the 2-
dimensional co-dependent Poisson processes proposed in Cufaro Petroni and Sabino
[7] to model energy derivatives and in general to price spread options. Due to the
particular relationships among inter arrival times, we can see this dependence as a
form of coitegration among jumps.

To put into the context of modeling energy market and facilities, we have shown
how combine 2-dimensional compound Poisson processes with Geometric Browian
Motions and Geometric Ornstein and Uhlenbeck dynamics. In the latter case, we
have also proposed a dynamics for day-ahead prices that allows (semi-)closed for-
mulas for plain vanilla options with an easy derivation of risk-neutral conditions.

Focusing on the pricing of spread options, we have compared the option prices
using our methodology and different types of Poisson processes. We have shown
that our methodology can cope with a wide range of possibilities that go beyond the
pure correlation between marginal Poisson and can answer several questions that
arise in the financial context.

In our study we have considered transportation assets between two gas hubs but
the applicability can be extended other financial situations. Straightforward appli-
cations are in credit and insurance risk where our approach can answer questions
regarding the time of contagion or time of propagation of certain information.

In addition, the self-decomposability and subordination technique can be promis-
ing tools to study dependency beyond the Gaussian-Itō world. For instance, in
Cufaro Petroni and Sabino [7] we have detailed how to obtain dependent Erlang
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(Gamma) rv ’s that can be used to create and simulate dependent variance gamma
processes. Furthermore in recent papers, Sexton and Hanzon [12] and Hanzon et al.
[2] have studied the use of two sided Exponential-Polynomial-Trigonometric (ETP)
density functions to option pricing where EPT are distributions with a strictly proper
rational characteristic function. Due to the fact that the Erlang and exponential
distributions belong to this class, it will be worthwhile to investigate the use of
self-decomposability to create dependence for this larger class of distributions.



N Cufaro Petroni and P Sabino: Cointegrating jumps for energy facilities 23

A Calculation of ρ(J)

• The GBM plus Jumps Case.

ρ(J),n,m = Corr
[

σ1W1(T ) +
√
nν1Z1, σ2W2(T ) +

√
mν2Z2

]

=

= =
ρ(W )σ1σ2T + ρ(D)

√
nmν1ν2

√

v
(J,n)
1 (T )v

(J,m)
2 (T )

. (50)

• The Ornstein-Uhlenbeck plus Jumps Case.

ρ(J),n,m = Corr (L1, L2) =

=

ρ(W )σ1σ2

2
√
k1k2

√
1− e−2k1t

√
1− e−2k2t + ρ(D)

√
nmν1ν2e

−(k1+k2)t

√

v
(J,n)
1 (T )v

(J,m)
2 (T )

(51)

where L1 = σ1

∫ t

0
e−k1(t−s)dW1(s)+

√
nν1e

−k1tZ1 and L2 = σ2

∫ t

0
e−k2(t−s)dW2(s)+√

mν2e
−k2tZ2.

B Calculation of p0,0, p0,1, p1,0 and p1,1

Based on the results in Cufaro Petroni and Sabino [7] the joint cdf of X1 ∼ E1(λ1)
and X2 ∼ E1(λ2) is

H(x1, x2) = 1x1∧x2
γ
≥0

[(

1− e−λ1(x1∧x2
γ )
)

− e−λ2x2

(

1− e−(λ1−γλ2)(x1∧x2
γ )
)]

(52)

For ∆t small we can assume that no more that one jump can occur hence:

p1,1 = P(X1 ≤ ∆t, X2 ≤ ∆t) = H(∆t,∆t)

p1,0 = P(X1 ≤ ∆t, X2 ≥ ∆t) = F1(∆t)−H(∆t,∆t)

p0,1 = P(X1 ≥ ∆t, X2 ≤ ∆t) = F2(∆t)−H(∆t,∆t)

p0,0 = P(X1 ≥ ∆t, X2 ≥ ∆t) = 1− p1,1 − p0,1 − p0,1

Finally, the results in section 5.2 are obtained considering only O(∆t) terms and
splitting between γ > 1 and 0 ≤ γ ≤ 1.
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