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We study the applicability to energy facilities of a model for correlated Poisson processes generated by
self-decomposable jumps. In this context the implementation of our approach, both to shape power or gas
dynamics, and to evaluate transportation assets seen as spread or exchange options, is rather natural. In
particular we first enhance the Merton market with two underlying assets making jumps at times ruled
by correlated Poisson processes. Here however - at variance with the existing literature - the correlation is
no longer provided only by a systemic common source of synchronous macroeconomic shocks, but also by
a delayed synaptic propagation of the shocks themselves between the assets. In a second step we consider
a price dynamics driven by an exponential mean-reverting geometric Ornstein-Uhlenbeck plus compound
Poisson: a combination which is well suited for the energy markets. In our specific instance, for each
underlying we adopt a jumping price spot dynamics that has the advantage of being exactly treatable to
find no-arbitrage conditions. As a result we are able to find closed formulas for vanilla options, so that
the price of the spread options can subsequently be calculated (again in closed form) using the Margrabe
formula if the strike is zero (exchange options), or with some other suitable procedures available in
the literature. The exchange option values obtained in our numerical examples show that, compared to
the other Poisson models we analyzed, the dependence introduced by the self-decomposition gives more
relevance to the timing of the jumps and not only to their frequency.

1. Introduction and motivations

Several research studies have shown that the spot dynamics of commodity prices is subjected to
mean reversion, seasonality and jumps (see for example (5)). In addition, some methodologies have
also been proposed to take into account a dependence based on the concepts of correlation and
cointegration. These approaches, however, can quickly become non-treatable outside the Gaussian-
Itō world. In this paper we then address the problem of dependence in the 2-dimensional case
by considering 2-dimensional jump diffusion processes with a 2-dimensional compound Poisson
component. In particular, to model the dependence in a 2-dimensional Poisson process, we take
advantage of the self-decomposability (see (7, 8, 20)) of the exponential random variables (rv) used
for its construction. It is possible to show (see (8)) indeed that given two independent exponential
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rv ’s Y, Z ∼ E(λ), and a Bernoulli rv B(1) ∼ B(1, 1 − a) with a = P {B(1) = 0}, then also the
rv X = aY + B(1)Z is an exponential E(λ) resulting in a weighed sum of Y and Z: a is the
deterministic weight of Y , while B(1) is the random weight of Z. This fact is a direct consequence
of the self-decomposability of the exponential laws. It is apparent on the other hand that, by
construction, X and Y are not independent, and it is possible to show that a also represents
precisely their correlation coefficient. By the way it is also possible produce pairs of a-correlated
exponentials X ∼ E(λ) andW ∼ E(µ) with different parameters just by reformulating the previous
relation as X = aµW/λ+B(1)Z.
Considering now our correlated, exponential rv ’s X and Y (or W ) as two random times with a

positive random delay B(1)Z, the present model can help describing their co-movement and can
answer some commonplace questions arising in a financial context:

• if a financial institution defaults, how long should one wait for a dependent institution to
default?

• if a market receives some news interpreted as a shock, how long should one wait to see the
propagation of that shock onto a dependent market?

• if different companies are interlinked, what is the impact on insurance risk?

It turns out that questions like these are covered by the special case aµ/λ > 1, so that the present
model is rich enough to describe cases where the second random time event occurs before the first
one. Similar results based on linear structure of exponential rv ’s can also be found elsewhere in the
literature (23) in papers whose main purpose is to model a multi-component reliability system.
By taking advantage of the self-decomposability of the exponential laws we are then able to

construct 2-dimensional Poisson processes with dependent marginals (8), and – with some termi-
nological stretching – the two Poisson processes can be seen as linked by some kind of cointegration
between their jumps.
Based on these observations, we propose to introduce a form of, say, synaptic risk-interactions in

analogy with what happens for the diffusion of information on a network: the individual reaction
in every node propagates with a delay to other nodes, inducing then a new reaction and so on.
For example, several previous papers (see (6, 2)) consider a Merton model with two underlying
assets where the macro-economic shocks to the system are modeled by common arrival jumps with
correlated jump sizes, while independent shocks are added to represent the idiosyncratic compo-
nents. At variance with (6, 2) we here assume that the macro-economic shocks can impact each
underlying asset with random and correlated time delays. This relative timing of the correlated
Poisson processes apparently allows for an enhanced flexibility of the model in the practical appli-
cations because we no longer have to rely only on common shocks (see (8) for further details on
cross-correlation and relative timing).
In the context of the energy facilities, the application of our approach to modeling the price

dynamics, and to evaluating the transportation assets seen as spread or exchange options, is rather
straightforward. To this purpose, we consider the German EEX and French Powernext power
markets and we assume that each spot price dynamics is driven by an exponential mean-reverting
geometric Ornstein-Uhlenbeck (GOU) plus a compound Poisson. In this specific case we adopt a
stochastic dynamics of the spot prices that is slightly different from the one proposed in other
studies (see (5)), but with the relevant advantage of being more treatable. In particular we are able
to find closed-form formulas for vanilla options so that the price of spread options can be calculated
in closed form using the Margrabe formula (15) (if the strike is zero), or some other well known
approximation as proposed in the existing literature (see (18, 1, 3)). In any case our approach also
suggests an explicit algorithm for the simulation of the dependent Poisson processes that can be
used in the Monte Carlo simulations.
Finally in the numerical investigation, in order to better highlight the impact of the jump timing

of the Poisson processes, we neglect the idiosyncratic component. We then compare the effect of
the timing of the Poisson processes based on the self-decomposition to the one of two independent
Poisson processes, or to the one of correlated Poisson processes where their correlation is produced
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by a common Poisson part.
Our numerical examples show that, compared to the other Poisson models we analyzed, mod-

eling the dependence between Poisson process via self-decomposition gives more relevance to the
dependence structure between the two markets, to the timing of the jumps and not only to their
frequency. In particular the exchange option prices calculated with our methodology coupled to
GOU processes with jumps may seem counterintuitive or may even seem wrong if one relies on
pure linear correlation assumptions.
The paper is organized as follows: the Section 2 summarizes the notations and the results for a

2-dimensional Poisson process as discussed in (8). In the Section 3 we then consider 2-dimensional
jump diffusion processes having a Geometric Brownian Motion (GBM) and a GOU diffusive compo-
nent. We also apply our method to the 2-factor Schwartz-Smith model in (21) with jump diffusion
where we find analytical solutions for vanilla options as well. Subsequently the Section 4 presents
the risk neutral formulas for plain vanilla and exchange options given the price dynamics introduced
in Section 3 and for several different types of 2-dimensional Poisson components. The Section 5
illustrates then our approach with practical examples: we assume a pure GBM plus jump model
and compare the results obtained by our approach to the ones obtained assuming that the two
compound Poisson processes are independent, or contain a common Poisson component. In a sec-
ond step we show the applicability of our approach with GOU plus jumps dynamics to price an
interconnection between the EEX and Powernext day-head prices. The Section 6 finally concludes
the paper with an overview of future inquiries and possible further applications.

2. Joint Poisson distributions

A law with density (pdf ) f(x) and characteristic function (chf ) φ(u) is said to be self-decomposable
(sd) (see (20, 7)) if for every 0 < a < 1 we can find another law with pdf ga(x) and chf χa(u) such
that

φ(u) = φ(au)χa(u)

We will also say that a rv X is sd when its law is sd : looking at the definition this means that for
every 0 < a < 1 we can always find two independent rv ’s Y (with the same law of X), and Za with
pdf ga(x) and chf χa(u) such that in distribution

X
d
= aY + Za

From a reverse point of view, when for 0 < a < 1 the law of Za is known, we can define the rv
X = aY + Za which (by self-decomposability) will now have the same law of Y . It would be easy
to show that a also plays the role of the correlation coefficient between X and Y , namely

rXY = a

It is well known, in particular, that the exponential laws E(λ) with pdf and chf

f1(x) = λe−λx x ≥ 0 φ1(u) =
λ

λ− iu

are a typical example of sd laws (see (20)), and it is possible to show (see (8)) that in this case Za

turns out to take the form

Za = B(1)Z ∼ a δ0 + (1− a)E(λ)

3



November 3, 2017 Quantitative Finance Cufaro˙Sabino˙SD

where Z ∼ E(λ), and B(1) ∼ B(1, 1−a) (a Bernoulli with a = P {B(1) = 0}) are independent from
Y , so that its law is a mixture of a δ0 degenerate in 0, and an exponential E(λ). In conclusion, given
two exponential rv ’s Y ∼ E(λ) and Z ∼ E(λ), and a Bernoulli B(1) ∼ B(1, 1 − a) (all mutually
independent) the rv X = aY + B(1)Z ∼ E(λ) is again an exponential which is now a-correlated
with Y .
Now, for given λ1, λ2 > 0 and 0 < a < 1, take first a sequence of iid rv ’s

Xk = aYk +Bk(1)Zk k = 1, 2, . . .

in such a way that for every k the rv ’s Xk, Yk, Zk are E(λ2), Bk(1) is B(1, 1−a), and Yk, Zk, Bk(1)
are mutually independent (we understand that X0 = Y0 = Z0 = 0, P-a.s.), and then for n =
0, 1, 2, . . . define the two point processes

Sn =
λ2
λ1

n∑
k=0

Yk ∼ En(λ1) Tn =
n∑

k=0

Xk ∼ En(λ2)

where the symbols En(λ) denote the Erlang (gamma) laws with pdf ’s and chf ’s

fn(x) = λ
(λx)n−1

(n− 1)!
e−λx x ≥ 0 , φk(u) =

(
λ

λ− iu

)n

n = 0, 1, 2, . . .

and it is understood that E0 = δ0, while E1(λ) = E(λ). Define finally the two dependent Poisson
processesN1(t) ∼ P(λ1t) andN2(t) ∼ P(λ2t) associated respectively to Sn and Tn: for the purposes
of the present paper it is instrumental now to have an explicit form of the joint probabilities

pm,n(t) = P {N1(t) = m, N2(t) = n} n,m = 0, 1, 2, . . . t ≥ 0

To this end let us introduce first the shorthand notations

πk(α) = e−αα
k

k!
k = 0, 1, . . .

βℓ(n) =

(
n

ℓ

)
an−ℓ(1− a)ℓ ℓ ≤ n = 0, 1, . . .

respectively for the distributions of a Poisson P(α), and of a binomial B(n, 1−a) (it is understood
that β0(0) = 1): then it is possible to prove (see (8)) that when aλ1 ≥ λ2, it is

pm,n(t) =

0 n > m ≥ 0
Qn,n(t) m = n ≥ 0
Qm,n(t)−Qm,n+1(t) m > n ≥ 0

Qm,n(s, t) =

m∑
k=n

(−1)k
m∑
j=k

(
j

k

)
πm−j(λ1t)

(−a)j
n∑

ℓ=0

βℓ(n)πj+ℓ(λ2t)Φ(j + 1, j + ℓ+ 1;λ2t)

while on the other hand when aλ1 ≤ λ2, we have

pm,n(t) =

Am,n(t)−Am,n+1(t) +Bm,n(t)−Bm,n−1(t) n > m ≥ 0
An,n(t)−An,n+1(t) +Bn,n(t) + Cn,n(t) m = n ≥ 0
Am,n(t)−Am,n+1(t) + Cm,n(t)− Cm,n+1(t) m > n ≥ 0
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where, taking for short w = λ2t− aλ1t, we understand that for every n,m ≥ 0 it is

Am,n(t) = πm(λ1t)

n∑
k=0

βk(n)

1 + πk(w)−
k∑

j=0

πj(w)


for n ≥ m ≥ 0 it is

Bm,n(t) = πm(λ1t)

n−m∑
k=0

πk

(w
a

) n+1∑
ℓ=0

βℓ(n+ 1)
wℓk!

(k + ℓ)!
Φ

(
ℓ, k + ℓ+ 1,

1− a

a
w

)

and finally for m ≥ n ≥ 1 it is (for n = 0 we have Cm,0(t) = 0)

Cm,n(t)=
e−(1−a)λ1t

am

n∑
ℓ=1

βℓ(n)

m∑
k=n

ℓ−1∑
j=0

(
k + ℓ− j − 1

k

)
× (−1)ℓ−1−jπj(λ2t)πm+ℓ−j(aλ1t)Φ(k + ℓ− j,m+ ℓ− j + 1; aλ1t)

Here Φ(j + 1, j + ℓ+ 1; z) for 0 ≤ ℓ ≤ n ≤ j ≤ m are the confluent hypergeometric functions (see
(9) for their definition and properties) which in fact are here just elementary functions (see (8)).

3. The market models

We will now adapt the ideas presented in the Section 2 to a financial context, and to this end we will
consider first a Black-Scholes (BS) market, then a market led by geometric Ornstein Uhlenbeck
(GOU) processes with jumps similar to that adopted elsewhere in the literature (see (5)), and
finally a Schwartz-Smith model with jumps.

3.1. The GBM plus jumps case

We consider a generalization of the Merton model (16) introduced in (6) and (2) with two underlying
assets. The original setting in (6) and (2) assumes common arrival jumps related to macro-economic
shocks and additionally independent shocks relative to the idiosyncratic component. We propose to
introduce a third form of, say, synaptic interactions in analogy with what happens for the diffusion
of information on a network: the individual reaction in every node propagates with a delay to other
nodes, inducing then a new reaction and so on.
Following the notation in (12), we consider dynamics driven by:

Si(T ) = exp

logSi(0) + (µi − 1

2
σ2i

)
T + σiWi(T ) +

Ni(T )∑
ni=1

log Ji,ni
+

Pi(T )∑
pi=1

logQi,pi

 , i = 1, 2,

(1)
with dW1(t) dW2(t) = ρ(W )dt, where ρ(W ) denotes the constant correlation among the two BM’s,
and with log-normal jump sizes

Ji =Mi exp

(
−ν

2
i

2
+ νiZi

)
, i = 1, 2; (2)
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where Zi ∼ N(0, 1) are standard normal with Corr(Z1, Z2) = ρ(D). Analogously,

Qi = Ai exp

(
−α

2
i

2
+ νiYi

)
, i = 1, 2; (3)

where Yi ∼ N(0, 1) are independent standard normal also independent of Zi. The parameters
Mi, Ai, νi, α1 are scalar constants, the Poisson processes Ni(t) are defined in section 2 while Pi(t)
are two independent Poisson processes with intensity ψi, i = 1, 2 also independent of Ni(t).
We then focus our attention on the logarithm

logSi(T )
d
= logSi(0) +

(
µi −

1

2
σ2i

)
T + σiWi(T ) +Ni(T ) logMi + Pi(T ) logAi

−ν
2
i

2
Ni(T )−

α2
i

2
Pi(T ) + νi

Ni(T )∑
ni=1

Zi,ni
+ αi

Pi(T )∑
pi=1

Yi,pi
, i = 1, 2. (4)

that can also be rewritten as

logSi(T )
d
= logSi(0) +Ni(T ) logMi + Pi(T ) logAi +

(
µi −

1

2
σ2i −

ν2i
2
Ni(T )−

α2
i

2
Pi(T )

)
T

+
√
σ2i T +Ni(T )ν2i + Pi(T )α2

iHi, i = 1, 2, (5)

where for given Ni(t) = ℓi, Pi(t) = mi, (H1,H2) ∼ N

((
0
0

)
,

(
1 ρ

(J)
ℓ1,ℓ2,m1,m2

ρ
(J)
ℓ1,ℓ2,m1,m2

1

))
. An

explicit calculation of ρ
(J)
ℓ1,ℓ2,m1,m2

can be found in the Appendix A.

For short we will denote as v
(J)
i,ℓi,mi

(T ) or
(
σ
(J)
i,ℓi,mi

)2
the terminal variance

v
(J)
i,ℓi,mi

(T ) =
(
σ
(J)
i,ℓi,mi

)2
= σ2i T + ℓiν

2
i +miα

2
i = v

(C)
i (T ) + v

(D)
i,ℓi,mi

, (6)

where v
(C)
i and v

(D)
i are the terminal variances of the continuous and discontinuous parts. In the

case of time-dependent volatility functions, it is easy to see that the formulas still hold by replacing

v
(C)
i (T ) with

∫ T
0 σ2i (s) ds.

In (6) it is presented a general change of measure that allows to take into account all the jump
risks. The main goal of our study, however, is to show the impact of assuming the inter-arrival
times of the Poisson processes to be correlated via self-decomposition. Although the application
of the change of measure in (6) is straightforward to our dynamics, we will hereafter adopt the
original choice of Merton (16) where all the jump risks are unpriced.
The no-arbitrage conditions then imply (see (12) p. 344)

µi − r = −λiE[Ji − 1]− ψiE[Qi − 1] i = 1, 2. (7)

3.2. The Ornstein-Uhlenbeck plus jumps case

Energy markets often display mean-reversion and jumps. By considering then a one-factor model
plus a jump component similar to that introduced in the previous subsection, we take a market
driven by the stochastic process
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Si(t) = Fi(0, t) exp {Ui(t) + h(t)} , i = 1, 2, (8)

where h(t) is a pure deterministic function, Fi(0, t) is the forward curve at time t = 0 and

Ui(t) = Ui(0)e
−kit+σi

∫ t

0
e−ki(t−s)dWi(s)+e

−kit

Ni(t)∑
ni=1

Zi,ni
+

Pi(t)∑
pi=1

Yi,pi

 = UC
i (t)+UD1

i (t)+UD2

i (t).

(9)
Moreover the process Ui(t) turns out to be driven by an OU process with jumps according to the
SDE

dUi(t) = −kiUi(t)dt+ σidWi(t) + e−kit (ZidNi(t) + YidPi(t)) , (10)

where ki represents the mean reversion rate and σi the diffusion coefficient. In contrast to the
GBM case of the previous section, we have defined the jump sizes as Zi,ni

being independent copies

of Zi ∼ N(Mi, ν
2
i ) and Corr(Z1, Z2) = ρ(D). Analogously, Yi,pi

are copies of Yi ∼ N(Ai, α
2
i ) with

Corr(Y1, Y2) = 0 also independent of Zi,ni
.

Our spot SDE however is slightly different from the one adopted in (5), because the exponential
coefficient in front of the jump component is chosen in such a way that the solution has no random
jumps with time-dependent jump size. This implies that our model has time-decreasing jump sizes
driven by the mean reversion rate ki. Had we considered instead, as in (5), the SDE

dUi(t) = −kiUi(t)dt+ σidWi(t) + ZidNi(t) + YidPi(t),

the solution would have been

Ui(t) = Ui(0)e
−kit + σi

∫ t

0
e−ki(t−s)dWi(s) + e−kit

Ni(t)∑
ni=1

Zi,ni
ekiTi,ni +

Pi(t)∑
pi=1

Yi,pi
ekiGi,pi

 ,

where Ti,pi
and Gi,pi

are the jump times of Ni(t) and Pi(t), respectively. Our setting however turns
out to be advantageous because it leads to more tractable option formulas as it will be shown here
in the following.
The power market of the model presented is obviously incomplete and hence the discounted spot

price process in the risk-neutral measure is not necessarily a martingale. From now on we assume
that the model is specified in the risk-neutral measure Q: this will be for simplicity hereafter
implicitly understood in the expectations. We use the same approach of the Lemma 3.1 in (10) to
get the deterministic function h(t) consistent with forward curve.
In order to get no-arbitrage conditions, we then impose E [S(T )|Ft] = F (t, T ) and for

simplicity we look at E[S(T )] = F (0, T ). We then need to compute the three terms in

E
[
eU

C
i (t)+U

D1
i (t)+U

D2
i (t)

]
= E

[
eU

C
i (t)
]
E
[
eU

D1
i (t)

]
E
[
eU

D2
i (t)

]
. It is well known that:

E
[
eU

C
i (t)
]
= exp

(
E
[
UC
i (t)

]
− 1

2
V
[
UC
i (t)

])
= eai(t). (11)
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with:

E
[
UC
i (t)

]
= U(0)e−kit,

V
[
UC
i (t)

]
=

σ2i
2ki

(
1− e−2kit

)
. (12)

Without loss of generality, hereafter we will assume that Ui(0) = 0, i = 1, 2. Finally, we need then
to calculate:

E
[
eU

D1
i (t)

]
= E

exp
e−kit

Ni(t)∑
ni=1

Zi,ni

 = ebi(t). (13)

E
[
eU

D2
i (t)

]
= E

exp
e−kit

Pi(t)∑
pi=1

Yi,pi

 = eci(t). (14)

Knowing the moment-generating function of the compound Poisson process:

ϕ1(u) = E

exp
u

Ni(t)∑
n=1

Zi,ni


 = exp {λit (ϕZi

(u)− 1)} (15)

where

ϕZi
(u) = exp

{
Miu+

1

2
ν2i u

2

}
(16)

we easily obtain the required expected value.

E
[
eU

D1
i (t)

]
= ϕ1

(
e−kit

)
. (17)

bi(t) = λit
(
ee

−kit(Mi+
1

2
e−kitν2

i ) − 1
)

(18)

Analogous calculations yield:

ci(t) = ψit
(
ee

−kit(Ai+
1

2
e−kitα2

i) − 1
)

(19)

Based on the results above the no-arbitrage is given by hi(t) = −ai(t) − bi(t) − ci(t), and the
equations for the spot dynamics above can be rewritten as:

logSi(t)
d
= logFi(0, t)− bi(t)− ci(t) + e−kit (MiNi(t) +AiPi(t)) +

1

2
e−2kit

(
ν2iNi(t) + α2

iPi(t)
)

−1

2

(
V
[
U

(C)
i (t)

]
+ e−2kit

(
ν2iNi(t) + α2

iPi(t)
))

+ (20)√
V
[
U

(C)
i (t)

]
+ e−2kit

(
ν2iNi(t) + α2

iPi(t)
)
Hi

8
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where as done in the previous section for fixed Ni(T ) = ℓi and Pi(t) = mi we define:

v
(J)
i,ℓi,mi

(T ) = V
[
U

(C)
i (t)

]
+ e−2kit

(
ν2i ℓi + α2

imi

)
= v

(C)
i (T ) + v

(D)
i,ℓi,mi

, (21)

and Hi, i = 1, 2 accordingly.

3.3. The Schwartz-Smith plus jumps case

In this section we consider the two factor Schwartz-Smith model as in (21) plus a jump-diffusion
component:

U1(t) = U1(0)e
−kt + σ1

∫ t

0
e−k(t−s)dW1(s) + e−kt

N1(t)∑
n1=1

Z1,n1

U2(t) = U2(0) + µt+ σ2W2(t) +

N2(t)∑
n2=1

Z2,n2
+

P (t)∑
p=1

Yp

U(t) = U1(t) + U2(t) (22)

where S(t) = F (0, t) eh(t)+U(t), Zi,ni
being independent copies of Zi ∼ N(Mi, ν

2
i ) and

Corr(Z1, Z2) = ρ(D), and where finally Yp are copies of Y ∼ N(A,α) once more independent
of Zi,ni

. Simply taking the differential and after some algebra we get

dU(t) = k (µ+ U2(t)− U(t)) dt+ σdW (t) + Z1

(
e−ktdN1(t) + Z2dN2(t) + Y dP (t)

)
(23)

where σ2 = σ21 + σ22 + 2σ1σ2ρ
(W ).

With the same procedure outlined in the previous subsection, the no-arbitrage conditions can be
obtained by taking the (conditional) expectation of the spot process

E
[
eU

C(t)
]
= E

[
eU1(0)e−kt+σi

∫ t

0
e−k(t−s)dW1(s)+U2(0)+µt+σ2W2(t)

]
= exp

(
E
[
UC(t)

]
− 1

2
V
[
UC(t)

])
= ea(t). (24)

Assuming then once more U1(0) = 0 and U2(0) = 0 we have

E
[
UC(t)

]
= µt,

V
[
UC(t)

]
=
σ21
2k

(
1− e−2kt

)
+ σ22t+

2ρσ1σ2
k

(
1− e−kt

)
. (25)

After doing the transformation ϵ1
d
= Z1, ϵ2

d
= ρ(D)Z1 +

√
1− (ρ(D))2, and some algebra we can

9
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write for the discontinuous component:

eb(t) = E
[
eU

D1 (t)
]
= E

exp
e−kt

N1(t)∑
n1=1

Z1,n1
+

N2(t)∑
n2=1

Z2,n2

 =

=

+∞∑
ℓ1,ℓ2=0

pℓ1,ℓ2 exp
(
ℓ1M1e

−kt + ℓ2M2

)
exp

((√
ℓ1ν1e

−kt + ρ(D)
√
ℓ2ν2

)2)
exp

(
ℓ2ν

2
2(1− (ρ(D))2)

)
(26)

and

ec(t) = E
[
eU

D2 (t)
]
= E

P (t)∑
p=1

Yp

 = exp (ψt (ϕY (1)− 1)), (27)

where ϕ(1) = exp
(
A+ 1

2α
2
)
and c(t) = ψt (ϕY (1)− 1) As done in Section 3.1, the no-arbitrage is

found by choosing h(t) = −a(t)− b(t)− c(t) where b(t) can be computed numerically. Finally, after
some algebra, our log-spot dynamics can be rewritten as

logSi(t)
d
= logF (0, t)− b(t)− c(t) + e−ktM1N1(t) +M2N2(t) +AP (t) +

1

2

[(
ν1
√
N1(t)e

−kt + ρ(D)ν2
√
N2(t)

)2
+ ν22N2(t)

(
1− (ρ(D))2

)
+ α2P (t)

]
−

1

2
v
(J)
N1(t),N2(t),P (t) +

√
v
(J)
N1(t),N2(t),P (t)H. (28)

where

v
(J)
N1(t),N2(t),P (t) = V

[
U (C)(t)

]
+
(
ν1
√
N1(t)e

−kt + ρ(D)ν2
√
N2(t)

)2
+ν22N2(t)

(
1− (ρ(D))2

)
+α2P (t).

(29)
and H is a standard normal random variable.

4. Risk-neutral pricing formulas

4.1. The European Plain Vanilla options case

In order to simplify the calculations, we represent the price of a call option at time zero, c(0), in
terms of an abstract BS formula:

c(0) = BS (P0,K, r, T, v, q) (30)

where P0, K, r, T , v, q denote the initial price, strike, risk-free rate, maturity, terminal variance
and dividend yield. Following the procedure shown in (12), getting a vanilla option pricing formula
will then be a matter of plugging the terminal variance, the initial price and the dividend yield
into the abstract formula after applying a conditioning argument on the Poisson probabilities.

10
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• GBM case. Rearranging Equation (5) given the condition (7) we have:

logSi(T ) = logSi(0) +Ni(T ) logMi + Pi(T ) logAi + λi(1−Mi)T + ψi(1−Ai)T (31)(
r −

v
(J,Ni(T ))
i

2

)
+

√
v
(J,Ni(T ))
i Hi.

The price of a call (put) option on underlying asset i = 1 given the GBM-plus-jumps market
of Equation (1) is then

c(0) =
∞∑

n1,p1=0

πn1
(λ1T )πp1

(ψ1T ) BS(S1,n1,p1
(0),K, r, T, v

(J)
1,n1,p1

(T ), 0) (32)

where

S1,n1,p1
(0) = S1(0)M

n1

1 Ap1

1 exp [λ1T (1−M1) + ψ1T (1−A1)] (33)

and v
(J)
1,n1,p1

(T ) is defined in Equation (6).
• GOU case. In contrast, for the OU-plus-jumps market (8), r = 0, the initial price argument

for the abstract BS formula is

S1,n1,p1
(0) = F1(0, T )e

β1,n1,p1 (T ), (34)

where v
(J)
1,n1,p1

(T ) is defined in Equation (21) and

β1,n1,p1
(t) = −b1(t)− c1(t) + e−k1t

[
n1

(
1

2
e−k1tν21 +M1

)
+ p1

(
1

2
e−k1tα2

1 +A1

)]
. (35)

• Schwartz-Smith case. Assuming finally (22), a semi-closed form formula can be found
following the procedure outlined in the GBM and GOU cases

c(0) =

∞∑
n1,n2,p=0

pn1,n2
(T )πp(ψT )BS(Sn1,n2,p(0),K, 0, T, v

(J)
n1,n2,p(T ), 0). (36)

where pn1,n2
(T ) is defined in section 2,

Sn1,n2,p(0) = F (0, t)eβn1,n2,p(T ), (37)

βn1,n2,p(t) = −b(t)− c(t) + e−ktM1n1 +M2n2 +Ap+ (38)

1

2

[(
ν1
√
n1e

−kt + ρ(D)ν2
√
n2

)2
+ ν22n2

(
1− (ρ(D))2

)
+ α2p

]

and v
(J)
n1,n2,p(T ) is defined in Equation (29).

Having obtained the risk-neutral conditions on each underlying asset, it is straightforward to obtain
formulas for exchange options.

11
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4.2. Exchange options

The application to spread options turns out to be the natural framework to compare our approach
based on self-decomposable jumps, with other jump-diffusion cases. We start considering exchange
options with zero-strike: building on the results of (15), with the same conditioning approach
applied in the Section 4.1 we find that the price of an exchange option given the market (1) or (8)
is

s(0) =
∞∑

n1,n2,p1,p2=0

pn1,n2
(T )πp1

(ψ1T )πp2
(ψ2T )BS(S1,n1,p1

(0), S2,n2,p2
(0), 0, T, v(M)

n1,n2,p1,p2
(T ), 0)

(39)

where v
(M)
n1,n2,p1,p2(T ) = v

(J)
1,n1,p1

(T ) + v
(J)
2,n2,p2

(T )− 2ρ
(J)
n1,n2,p1,p2

√
v
(J)
1,n1,p1

v
(J)
2,n2,p2

is the spread terminal

variance.
In the available literature different analytical approximations are available when the strike is

not zero (see for instance (18, 1, 13)), moreover the extension to the jump diffusion case is also
addressed in recent papers (see (17, 3, 4)).
For example, the methods discussed in (17) or (3) are applicable if the characteristic function of

the underlying forming the spread is known analytically. Such approaches could also be used in our
model but, since this mainly requires the knowledge of the characteristic function of the bivariate
self-decomposable Poisson process in simple form, we will postpone this enquiry to future studies.
For the time being the extension to the full spread option case will rely just on the truncation of the
infinite series paired with one of the approximation procedures applicable to the log-normal case.
Hence the computational cost depends, on one hand, on the truncation of the infinite series, as for
the case with the zero strike, and on the other hand, on the computational effort needed by the
approximation procedure chosen to calculate the spread option for the log-normal case for given
n1, n2, p1, p2. Moreover, the Greeks can be obtained by simply using either the results of the BS
model in the case of zero strike or again one of the numerical methods or approximation available
for the log-normal case with strike different from zero.
The use of Monte Carlo methods is also possible by generating the 2-dim dependent and self-

decomposable rv ’s that constitute the Poisson process. The current framework however cannot
for the time being cope with a multi-asset spread option case unless one considers that the third
asset has no jump term. The problem of pricing the multi-assets spread options in any case can
be tackled via simulations and analytical approximations as done in (19) and (25), or by applying
moment matching and using one of the solutions available for two legs as in (24).

5. Numerical experiments

In this section we presents some numerical experiments assuming the GBM and GOU dynamics
plus jumps as explained in the previous sections.
In order to better investigate the features of the self-decomposable correlated Poisson processes,

we neglect for the time being the component of common jumps in the GBM and GOU and im-
plement our numerical study focusing on the pair N1(t) and N2(t). In the following, we compare
three different Poisson process models:

• Independent jumps: here N1(t) and N2(t) are independent Poisson processes, and the
exchange option formula is

s(0) =
∞∑

n1,n2=0

πn1
(λ1T )πn2

(λ2T ) BS(S1,n1
(0), S2,n2

(0), 0, T, v(M)
n1,n2

(T ), 0) (40)

12
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• Correlation via common jumps: when instead Ni(t) = N(t) +NX
i , i = 1, 2, where N(t),

with intensity λ and NX
i are mutually independent Poisson processes, the exchange option

formula is

s(0) =

∞∑
n=0

n1,n2≥n

πn1−n(λ
X
1 T )πn2−n(λ

X
2 T )πn(λT )

×BS(S1,n1−n(0), S2,n2−n(0), 0, T, v
(M)
n1−n,n2−n, 0) (41)

• Correlation via self-decomposability:finally if we take Ni(t), i = 1, 2 as described in the
Section 4.2, the exchange option formula becomes

s(0) =

∞∑
n1,n2=0

pn1,n2
(T ) BS(S1,n1

(0), S2,n2
(0), 0, T, v(M)

n1,n2
(T ), 0) (42)

where the joint probabilities pn1,n2
(T ) = P {N1(T ) = n1, N2(T ) = n2} are taken from the

Section 2.

The payoff of the exchange options illustrated above considers the values of the two underlying at
the same time T : other types of exchange options however look at the two underlying at different
times, for instance the payoff could be (S1(T1)− S2(T2))

+, T2 < T1. In this case one needs to
readapt the formulas by considering the probabilities at pn1n2

= P {N1(T1) = n1, N2(T2) = n2}:
explicit formulas for these probabilities can be found in (8).
The case with GBM considers realistic parameters and is meant to study the exchange option

values with different types of bivariate Poisson processes; the GOU case instead is based on real data
from EEX and Powernext day-ahead prices. Hereafter we show that, compared to the other Poisson
models we analyzed, modeling the dependence between Poisson process via self-decomposition gives
more relevance to the dependence structure between the two markets, to the timing of the jumps
and not only to their frequency. In particular, our numerical example with real data shows cases
where the exchange option prices can assume values that are counterintuitive or may seem even
wrong if one relies on pure linear correlation assumptions.
Finally, the computational cost depends on the choice to truncate the infinite series. In our

numerical example, we adopt the strategy of truncating the terms higher than ni,max = 3⌊λiT ⌋
where ⌊·⌋ denotes the integer part.

5.1. GBM: Applications to the exchange options

We compare the exchange option values obtained using the equations (40)-(42) by changing the
correlation between the two Poisson processes. In particular, assuming Ni = N(t)+NX

i (t) we have
Cov(N1(t), N2(t)) = V [N(t)] = λt, then the instantaneous correlation is Corr(N1(t), N2(t)) =
ρN1N2

= λ√
λ1λ2

and is time-independent; in case of self-decomposable jumps this can be obtained

numerically. It is apparent that in the case λ1 ̸= λ2 a perfect correlation cannot be achieved. We
consider two cases:

A) λ1 = λ2 = 20, and hence for self-decomposable jumps with a < 1 we always have aλ1 < λ2;
B) λ1 = 40, λ2 = 20, where for self-decomposable jumps we find either aλ1 < λ2 or aλ1 > λ2

respectively for a < 0.5 and a > 0.5.

Our choice for the parameters is shown in the Table 1: in both the cases we consider an at-the-
money spread option with zero strike, K = 0 and maturity T = 1 so that we can use the exact
Margrabe formula. One can also use suitable approximation techniques for the spread option value
with non-zero strikes without changing the validity of our tests. We have also computed (see Table

13
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Table 1. Parameters of the GBM and compound Poisson processes
(a) Continuous Part.

No Jump With Jumps
Case A Case B

S1(0) 100 100 100
S2(0) 100 100 100
σ1 0.49 0.37 0.2
σ2 0.35 0.23 0.15

ρ(W )(%) 96 60 80

(b) Discontinuous Part

Case A Case B

ρ(D)(%) 99 50
λ1 20 40
λ2 20 20
ν1 0.10 0.05
ν2 0.07 0.04
M1 1.1 1.05
M2 1.1 1.05
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Figure 1. Exchange option values in the cases A and B when M1 = M2 = 1

Table 2. Spread option values without jumps and independent compound Poisson processes.

No Jump Independent Jumps
Case A Case B Case A Case B

Option Value 7.27 11.92 25.23 19.27

Table 3. Comparison of computational times (msec).

Time (msec) Independent Common SD
Case A 489 706 898
Case B 636 862 975

2) the exchange option value for a pure GBM with the parameters listed in the first column of (a)
in Table 1: these parameters are suitably chosen in order to match the average spread terminal

variance v
(M)
⌊λ1T ⌋,⌊λ2T ⌋, where ⌊·⌋ denotes the integer part.

The numerical calculations have been implemented in MATLAB 2015b on a 64bit computer
with Processor with CPU of 2.3 GHz and with 8 GB RAM. Table 3 shows the computational
times needed in all the three cases. We remark first of all that the outcomes of the equations (40)
- (42) depend both on the values of the probabilities pn1,n2

, and on the values of the BS formulas
separately, and that in their turn the probabilities pn1,n2

do not depend on the distribution of the
jump size, while the BS formulas are independent from the structure of dependence between the
Poisson processes. The Figure 1 clearly shows that the expected jump size has a relevant impact
in the option value because under the assumption M1 = M2 = 1 the price is almost independent
from the choice of the Poisson model. The Figure 2 on the other hand displays the differences
among the joint probabilities of the Poisson processes. As expected, for independent Poisson, both
in case A and B, the isolines of the contour plot of pn1,n2

resemble to a sort of ellipse whose axis
are parallel to the X-Y axis. The positive correlation of the Poisson processes is on the other hand
reflected in the fact that the axes are now rotated counterclockwise. However, in contrast to the
Poisson process with common jumps, the one constructed via self-decomposition concentrate more
probability mass around its expected value and when the difference between n1 and n2 is small.
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Figure 2. Contour plot of the joint probabilities of the Poisson processes.

Table 4. Spread option values with common and Self-decomposable (SD) compound Poisson.

Case A Option Value Case A Case B Option Value Case B
a ρN1N2(%) λ Common SD ρN1N2(%) λ Common SD
0.1 9 1.80 24.30 24.22 7 2.09 18.87 18.87
0.15 14 2.71 23.76 23.64 11 3.13 18.66 18.67
0.2 18 3.63 23.20 23.05 15 4.16 18.45 18.46
0.25 23 4.55 22.63 22.44 18 5.19 18.25 18.26
0.3 27 5.47 22.04 21.81 22 6.21 18.04 18.05
0.35 32 6.40 21.42 21.16 26 7.23 17.83 17.83
0.4 37 7.34 20.78 20.48 29 8.24 17.61 17.62
0.45 41 8.29 20.11 19.78 33 9.25 17.40 17.40
0.5 46 9.24 19.41 19.05 36 10.25 17.18 17.18
0.55 51 10.20 18.68 18.29 40 11.25 16.97 16.96
0.6 56 11.17 17.90 17.49 43 12.24 16.75 16.74
0.65 61 12.16 17.08 16.64 47 13.23 16.53 16.51
0.7 66 13.15 16.20 15.74 50 14.21 16.30 16.29
0.75 71 14.17 15.25 14.78 54 15.19 16.08 16.06
0.8 76 15.20 14.21 13.75 57 16.16 15.85 15.83
0.85 81 16.26 13.06 12.61 61 17.13 15.62 15.60
0.9 87 17.36 11.74 11.33 64 18.09 15.38 15.37
0.95 93 18.53 10.14 9.82 67 19.05 15.15 15.14

The adoption of a common Poisson reduces instead the spectrum of the jump events: for instance
in an extreme setting where λ = λ1 = λ2, N1(t) cannot jump more that N2(t), while this is not
the case for the Poisson processes correlated via self-decomposition. Because of the fact that the
impact of the BS formulas is common to the three case, the differences among the exchange option
values is only attributable to the different type of dependence between the Poisson processes.
Table 4 then displays the results with an expected jump size different from zero: the intensity

λ of N(t) was chosen in such a way that the correlations for the self-decomposable and common
Poisson models coincide. The effect of the correlation between the Poisson processes is remarkable
in the sense that the value of the exchange option is decreasing when ρN1,N2

is increasing, this
behavior being in line with the intuition because the spread terminal variance decreases.
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In the case A, the jump sizes can be almost perfectly correlated, and the exchange option values
using the common Poisson setting is always higher than the values obtained within our model.
This is indeed a consequence of the higher concentration of the probability isolines for the self-
decomposable Poisson model; it is as if the exchange option has a lower terminal covariance.
On the other hand the choice of the Poisson model seems to bring no remarkable repercussion

on the price of the exchange option in the configuration B. Given the parameters of Table 1 and
the same ρN1,N2

, the price of the exchange option seems to highly depend on the number of the
jumps of both processes, rather than on the timing of their occurrence: this appears to be a likely
account for the small detected differences.

5.2. GOU: Applications to the power interconnectors

In this section we apply our methodology to the pricing of power interconnectors between EEX and
Powernext modeled as exchange options (Powernext minus EEX ). To this end we assume that each
dynamics behaves as a GOU plus a compound Poisson; as done for the GBM example we do not
consider transport costs (no strike) and adopt the Margrabe formula in the equations (40) - (42).
We will further suppose that the calculation date is the end of December 2015 with a historical
time window of 2 years for the estimation period. We concentrate then on the power spread value
for the first and second quarters (Q1, Q2) in 20161. The choice of these maturities is justified by
the fact that pure spot models are used for short maturities, while it is a common practice to use
forward models for longer maturities and add a volatility premium to the forward volatility.
Since the expectations in the pricing formulas are in the risk neutral measure, a few remarks are

necessary for the estimation of the parameters of the spot model. Some approaches propose indeed
the assumption of living already in a risk-neutral world, and also of incorporating a market price of
risk in the drift (see (14)). The main goal of our work, however, being not the parameters estimation,
for sake of simplicity we will refrain from considering a market price of risk. As a consequence our
estimation procedure will be split into two steps: at first, after filtering out the time-dependent
components of each process, one can estimate the parameters of the one-dimensional processes,
θi = (ki, σi, λi,Mi, νi). Then, as a second step, one can estimate the remaining joint parameters
defined by the two-dimensional model2

Consider an equally spaced time grid t0, t1, . . . , tT with ti+1 − ti = ∆t and the Euler scheme of
each SDE in (10)

Ui(t+ 1) = (1− ki∆t)Ui(t) + σi
√
∆t ϵi,t+1 + e−kit1i(t+ 1)Yi. (43)

where

1i(t+ 1) =

{
1, with probability λi∆t

0, with probability 1− λi∆t.
(44)

The transition density can then be seen as a combination of Gaussian densities:

pi (Ui(t+ 1), t+ 1|Ui(t), t) = (1− λi∆t)N
(
µCi (t), σ

C(t)
)
+ λi∆tN

(
µJi (t), σ

J(t)
)
. (45)

1The technique here discussed does not reflect the UGC view.
2An example of how to derive the parameters of the GOU process in (5) can be found at
http://de.mathworks.com/help/fininst/simulating-electricity-prices-with-mean-reversion-and-jump-diffusion.html. Although

set in a different context, this procedure can be adapted to our case.
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where N (µ, σ) denotes the density function of a Gaussian law N(µ, σ) and

µCi (t) = (1− ki∆t)Ui(t) µJi (t) = (1− ki∆t)Ui(t) +Mie
−kit

σCi (t) = σi
√
∆t (σJi (t))

2 = σ2i∆t+ e−2kitν2i

The parameters θi = (ki, σi, λi,Mi, νi) can then be calibrated by maximizing the log-likelihood
function with the usual constrains on the parameters

θi = argmax

T−1∑
t=0

log (pi (Ui(t+ 1), t+ 1|Ui(t), t)) . (46)

The calibration for the two-dimensional process apparently depends on the model specifications
listed in the Section 2 as explained below

• Independent jumps. The joint probability are simply

p0,0 = (1− λ1∆t) (1− λ2∆t) , p1,0 = λ1∆t (1− λ2∆t)

p0,1 = (1− λ1∆t)λ2∆t, p1,1 = 1− p0,1 − p1,0 − p0,0 (47)

The only two remaining parameters to estimate are ρ(W ) and ρ(J) and can be obtained by
maximizing the log-likelihood of the two dimensional process. The transition density is

p (U(t+ 1), t+ 1|U(t), t) = N
(
µCC(t),ΣCC(t)

)
p0,0 +N

(
µCJ(t),ΣCJ(t)

)
p0,1

+N
(
µJC(t),ΣJC(t)

)
p1,0 +N

(
µJJ(t),ΣJJ(t)

)
p1,1 (48)

where

µCC(t) =
(
µC1 (t), µ

C
2 (t)

)
, ΣCC(t) =

(
(σC1 )

2 ρ(W )σC1 σ
C
2

ρ(W )σC1 σ
C
2 (σC2 )

2

)
,

µCJ(t) =
(
µC1 (t), µ

J
2 (t)

)
, ΣCJ(t) =

(
(σC1 )

2 ρ(W )σC1 σ
C
2

ρ(W )σC1 σ
C
2 (σJ2 )

2

)
,

µJC(t) =
(
µJ1 (t), µ

C
2 (t)

)
, ΣJC(t) =

(
(σJ1 )

2 ρ(W )σC1 σ
C
2

ρ(W )σC1 σ
C
2 (σC2 )

2

)
,

µJJ(t)
(
µJ1 (t), µ

J
2 (t)

)
, ΣJJ(t) =

(
(σJ1 )

2 ρ(J)σJ1 σ
J
1

ρ(J)σJ1 σ
J
2 (σJ2 )

2

)
.

We do not neglect the o
(
∆t2

)
terms because they are necessary to estimate ρ(D).

• Correlation via common jumps. One cannot detect the presence of the common Poisson
process only looking at each log process independently. After some algebra one finds that the
pair (1i(t+ 1)) is a 2-dimensional Bernoulli rv with:

p0,0 = 1−
(
λX1 + λX2 + λ

)
∆t, p1,0 = λX1 ∆t

p0,1 = λX2 ∆t, p1,1 = λ∆t = 1− p0,1 − p1,0 − p0,0. (49)
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Table 5. Market parameters for EEX and Powernext, standard errors are in parenthesis
(a) Parameters of the single underlyings.

Market k σi µi νi λi
EEX 42.50(3.66) 1.66(0.028) −0.10(0.018) 0.16(0.0069) 95.32(16.74)

Powernext 41.64(2.97) 1.52(0.013) −0.06(0.019) 0.38(0.033) 56.74(8.01)

(b) Common parameters

Method ρ(W )(%) λ a
Independent 43(5.5) NA NA
Common 43(5.5) 34.12(6.12) NA

Self-decomp 43(5.5) NA 0.44(0.09)

Table 6. Powernext-EEX interconnector prices

Interconnector Value (EUR)
Independent Common Self-decomposable

Jan 289.51 289.64 310.08
Feb 287.40 287.40 290.81
Mar 263.17 263.17 263.37
Q2 405.05 405.05 405.06

At variance with the previous case, we neglect here the o
(
∆t2

)
terms, in the sense that we are

neglecting the possibility that the Poisson processes NX
1 (t) and NX

2 (t) jump simultaneously
in the unit of time ∆t. The functional form of the transition density is similar that of equation
(48) but with different probability weights.

• Correlation via self-decomposability
◦ aλ1 > λ2: from the Section 2, up to O(∆t2) terms, we have

p0,0 = 1− λ1∆t, p1,0 = (λ1 − λ2)∆t− λ1λ2
1− a

a
∆t2

p0,1 = 0, p1,1 = λ2∆t. (50)

◦ aλ1 ≤ λ2: in a similar way, by neglecting the o(∆t2) terms (see Appendix B), we get

p0,0 = 1− ((1 + a)λ1 + λ2)∆t, p0,1 = (λ2 − aλ1)∆t

p1,0 = (1− a)λ1∆t, p1,1 = aλ1∆t. (51)

The results of the calibration are shown in Table 5. The expected jump sizes are both negative and
their correlation (ρ(D) ≈ 0) is very small: as a consequence we will neglect it hereafter. Although
the main purpose of our paper is not the parameters estimation, one can notice that the increase
of renewable energy, on the other hand, has changed the statistics of the power day-ahead prices:
even very negative day-ahead prices have been quoted on some days (for instance Christmas 2013
in EEX ). Moreover the statistics of spot prices is still non-Gaussian, but big positive spikes are
less frequent. In any case we are here considering log-prices: comparing the values of λ, λ1, λ2 and
a or, we can conclude that the correlation between the two Poisson processes is of the order of
45%. In the case of Poisson processes with common jumps, the correlation is not time dependent,
while in our self-decomposable case the correlation depends on time and it is not a, even if it can
still give a reasonable order of magnitude for the correlation.
Table 6 shows instead the values of the power-spread in the quarters Q1 and Q2 and the detail of

the first three months with the different dynamics. As shown in Section 4.2, the pricing formulas are
double sums over probabilities and BS formulas. The three models differ in the Poisson probability
terms, while the values of the BS terms are the same, hence the price difference is only attributable
to the different 2-dimensional Poisson law. The results listed in the Table 6 show that the prices
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of the interconnector are similar for the cases with independent and common jumps for all the
maturities. The model with self-decomposable jumps returns instead appreciably higher values for
all the maturities with a larger difference in January and February whilst at longer maturities the
difference reduces because of the effect of the mean reversion rate.
The fact that the prices obtained with our methodology are larger than that with independent

jumps may seem counterintuitive, and also wrong. In fact, with the assumption of independent
jumps the exchange option value increases with decreasing linear correlation between the Brow-
nian motions. Our model instead, that is parameterized by a, implies a structure of dependence
that is not based on the simple linear correlation and its effects are remarkable in the examples
illustrated above. Indeed, if one relies on linear correlations only, given the fact that the pair of
Poisson processes is positively correlated, one would indeed expect the price to be lower than the
one obtained with uncorrelated jumps. On the other hand, in this numerical example the corre-
lation induced by the 2-dimensional Poisson process with common jumps does not barely affect
the exchange option value. Apparently, the cases of common and independent jumps give rise to
comparable results because the different probability weights have the same effect on the overall
exchange option prices.
In contrast, compared to the other approaches, our model gives more emphasis to the timing of

the jumps, and not only to their frequency. In particular, the choice of common jumps imposes
that a certain news to one of the two markets may cause an instantaneous propagation of the
information and simultaneous jump of both spot prices, if the jumps belong to the common source,
or no propagation if the news is associated to NX

1 or NX
2 . On the other hand, our solution has not

this restriction: a shock to one of the two markets may have caused both prices to jump however at
different times. That explains why the values of the exchange options obtained with our model are
higher that those obtained with the model with common jumps although the linear correlations
have similar numerical values. Since the difference among the prices obtained with a 2-dimensional
Poisson process with independent or with a common jump is negligible we can conclude that,
compared to these two other methodologies, our model gives more relevance to the interaction and
the dependence between the two markets.

6. Conclusions and perspectives

Building on the concept of self-decomposability we have studied the use of pairs of co-dependent
Poisson processes, first proposed in (8), to produce a model for energy derivatives, and in general
to price exchange options. Due to the particular relationships among inter arrival times, with some
abuse of terminology, we can think to this dependence as a form of cointegration among jumps.
Based on these observations, we propose to introduce a form of synaptic risk-interactions in

analogy with what happens for the diffusion of information on a network: the individual reaction
in every node propagates with a delay to other nodes, inducing then a new reaction and so on.
In the context of modeling energy markets and facilities, we have shown how to combine

2-dimensional compound Poisson processes with Geometric Brownian Motions and Geometric
Ornstein-Uhlenbeck dynamics.
In contrast to Geometric Brownian motion plus jumps in (6, 2) where the macro-economic

shocks to the system are modeled by common arrival jumps with correlated jump sizes, while
independent shocks are added to represent the idiosyncratic components, we assume that the
macro-economic shocks can impact each underlying asset, and its reaction can propagate to the
other assets with random and correlated time delays. The relative timing of the correlated Poisson
processes apparently allows for an enhanced flexibility of the model in the practical applications
because we no longer have to rely on common shocks only.
In the Geometric Ornstein-Uhlenbeck case, we have adopted a dynamics for day-ahead prices that

allows the derivation of simple (semi-)closed form formulas for plain vanilla options. Focusing then
on the pricing of exchange options, we have compared the option prices calculated using our model
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with that derived from several different kinds of Poisson processes. We have found in particular
that the formulas based on our coupling procedure can readily cope with a wide range of issues
going well beyond the pure linear correlation modeling, and can answer several questions that arise
in the financial context. Indeed, compared to the other methodologies we analyzed, modeling the
dependence between Poisson process via self-decomposition gives more relevance to the dependence
structure between two markets, to the timing of the jumps and not only to their frequency. Our
numerical examples shows cases where the exchange option prices can assume values that are
counterintuitive or may seem even wrong if one relies on pure linear correlation assumptions.
In this paper in fact we have considered just power interconnectors as energy facilities, but

the model applicability can be extended without difficulty to other financial situations. Straight-
forward applications are in credit and insurance risk where our approach can answer questions
regarding the time of contagion or time of propagation of certain information. In addition, the
self-decomposability and the subordination techniques can be promising tools to study the depen-
dence structure beyond the Gaussian-Itō world. In (8), for instance, it has already been detailed
how to obtain dependent Erlang (Gamma) rv ’s that can be used to create and simulate dependent
variance gamma processes. Furthermore several recent papers (see (22, 11)) have studied the use
of two sided Exponential-Polynomial-Trigonometric (ETP) density functions to option pricing: the
EPT are distributions with a strictly proper rational characteristic function. Due to the fact that
the Erlang and exponential distributions belong to this class, it will be worthwhile to investigate
the use of self-decomposability to create dependence for this larger class of distributions.
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Appendix A: Calculation of ρ(J)

• The GBM plus Jumps Case.

ρ
(J)
ℓ1,ℓ2,m1,m2

= Corr
[
σ1W1(T ) +

√
ℓ1ν1Z1 +

√
m1α1Y1, σ2W2(T ) +

√
ℓ2ν2Z2 +

√
m2α2Y2

]
=

=
ρ(W )σ1σ2T + ρ(D)

√
ℓ1ℓ2ν1ν2√

v
(J)
1,ℓ1,m1

(T )v
(J)
2,ℓ2,m2

(T )
. (A1)

• The Ornstein-Uhlenbeck plus Jumps Case.

ρ
(J)
ℓ1,ℓ2,m1,m2

= Corr (L1, L2) =

=

ρ(W )σ1σ2

2
√
k1k2

√
1− e−2k1t

√
1− e−2k2t + ρ(D)

√
ℓ1ℓ2ν1ν2e

−(k1+k2)t√
v
(J)
1,ℓ1,m1

(T )v
(J)
2,ℓ2,m2

(T )
(A2)

where Li = σi
∫ t
0 e

−ki(t−s)dWi(s) + e−kit
(
νi
√
ℓiZi +

√
miαiYi

)
, i = 1, 2.

Appendix B: Calculation of p0,0, p0,1, p1,0 and p1,1

From the results in (8) the joint cdf of X1 ∼ E1(λ1) and X2 ∼ E1(λ2) is

H(x1, x2) = 1λ1
λ2

x1∧ x2
a
≥0

[(
1− e−(λ1x1∧λ2x2

a )
)
− e−λ2x2

(
1− e−(1−a)(λ1x1∧λ2x2

a )
)]

(B1)

For ∆t small we can assume that no more that one jump can occur hence:

p1,1 = P (X1 ≤ ∆t,X2 ≤ ∆t) = H(∆t,∆t)

p1,0 = P (X1 ≤ ∆t,X2 ≥ ∆t) = F1(∆t)−H(∆t,∆t)

p0,1 = P (X1 ≥ ∆t,X2 ≤ ∆t) = F2(∆t)−H(∆t,∆t)

p0,0 = P (X1 ≥ ∆t,X2 ≥ ∆t) = 1− p1,1 − p0,1 − p0,1

Finally, the results in the Section 5.2 are obtained splitting between the cases aλ1 > λ2 and
aλ1 ≤ λ2.
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