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Abstract
Stochastic logistic and θ-logistic models have many applications in biological
and physical contexts, and investigating their structure is of great relevance.
In the present paper we provide the closed form of the path-like solutions for
the logistic and θ-logistic stochastic differential equations, along with the exact
expressions of both their probability density functions and their moments. We
simulate in addition a few typical sample trajectories, and we provide a few
examples of numerical computation of the said closed formulas at different
noise intensities: this shows in particular that an increasing randomness—while
making the process more unpredictable—asymptotically tends to suppress in
average the logistic growth. These main results are preceded by a discussion
of the noiseless, deterministic versions of these models: a prologue which
turns out to be instrumental—on the basis of a few simplified but functional
hypotheses—to frame the logistic and θ-logistic equations in a unified context,
within which also the Gompertz model emerges from an anomalous scaling.
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1. Introduction

Investigation of population dynamics can be traced back to the Fibonacci series in thirteenth
century, and have been then developed until the present day [1–3] with the introduction of
various models designed to describe a very large number of systems with both theoretical and
practical relevance [4, 5]. Phenomenological equations have been proposed to account for the
macroscopic behaviors resulting from a suitable averaging.

On a macroscopic level, two approaches became very popular along the years and can now
be considered as prototypical: the Verhulst (logistic) model [6] and the Gompertz model [7],
both introduced in the first half of the nineteenth century, and then resumed and developed
in the first half of the twentieth century. The θ-logistic equation (Richards model) [8, 9] was
subsequently added as a flexible generalization of the logistic evolution. The corresponding
laws can indeed be obtained resorting to a proportionality between the differential increment
of the size of a system and its current size, and then suitably correcting it by adding a nonlin-
ear factor that prevents an un-physical (Malthusian) explosion allowed only in the first stage
of the evolution: this will eventually drive the system toward a finite asymptotic dimension,
namely to a stable equilibrium point. The said correction is in fact related to the finite amount
of resources available for a given system, and to its growing density, two features both leading
to a reduction of the resources allotted individually. As a matter of fact, any growing organ-
ism is an active matter system [10, 11], i.e. an open dynamical system getting resources in an
exchange with the surrounding environment (e.g. metabolic exchanges in the case of biological
systems), and only unbounded resources and no spatial limitations could allow for indefinite
growth. In studying these systems, various approaches have been developed within the large
research field usually denoted as population dynamics (a term actually including many differ-
ent topics). These approaches include standard statistical mechanics methods [12–14], entropic
techniques [15–17], and stochastic models [18–22]. On the other hand, although in general the
description of a system depends on the specific scale that has been chosen, and on different
scales different descriptions are established, for all biological systems multiscale problems are
a permanent feature. This requires a multiscale approach as that described in [23] in which the
proper selection of a microscopic dynamics leads to an accurate derivation of the mesoscopic
and macroscopic models with the identification of a unified framework that allows to deduce
these structures at each scale using the same principles and similar parameters.

The present paper is mainly focused on the stochastic approach, and in particular on the
stochastic logistic and θ-logistic models, whose exploitation leads also to interesting appli-
cations in specific physical frameworks (for recent examples see [24–28]). Investigating the
mathematical structures of these models can thus be very useful, besides being interesting in
itself. It is to be remarked that the Gompertz stochastic model is already rather well established:
its distributions are indeed log–normal and it has been shown that its macroscopic evolution
is properly described by the median of the process [29]. The same cannot be said, instead,
for the logistic and θ-logistic models, whose solution procedures are rather more tangled. The
key point is that the logistic and θ-logistic solutions are expressed in terms of exponential
functionals of Brownian motion (EFBM), convoluted processes of relevant interest in the finan-
cial context [30–32]. Exploiting however their explicit distribution available in the literature
[31], we are able to provide a closed form for the distributions at one time of the logistic and
θ-logistic stochastic processes, and the exact expressions of their associated moments. We pro-
vide also the time plots of the sample trajectories, and a few numerical evaluations of the exact
formulas for the most relevant moments (expectation and variance) to explore their behavior
and their changes at different levels of randomness.
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These results are preceded by an analysis of the logistic, θ-logistic and Gompertz equations
in their noiseless, deterministic layout, with the aim of getting first a perspicuous and uni-
fied interpretation of their structure, and then a more definite identification of the underlying
hypotheses leading to the macroscopic evolutions. After a look to the form of the equations with
a focus on the important role of time scales, we start again from the very beginning, i.e. from
the task of describing how the average growth of a system, made up by many individuals, leads
to the macroscopic laws. We show that this result can be deduced from rather simplified—but
working—assumptions, with macroscopic laws connecting percentage increments, and then
realizing a self-controlled evolution. Within this framework we recognize a θ-hierarchy in dis-
sipating resources, and we also suggest a unifying procedure accounting for the emergence
of the—seemingly eccentric—Gompertz term, by providing a more defined physical meaning
to a known mathematical approach, and by including in so doing the Gompertz growth in the
θ-logistic frame as a limiting case.

The paper is organized as follows: in the section 2 we present the preliminary analysis
of the deterministic logistic and θ-logistic equations in a unified context, with the inclu-
sion in the same framework of the Gompertz model as a limiting case. The next section 3
contains our main results with respect to the stochastic implementations of the logistic
and θ-logistic models. Here, after summarizing the state of the art including the explicit
stationary distributions and the path-wise solutions of the stochastic differential equations
(SDEs), we show, by exploiting a few trajectories simulations and some numerical com-
putation, the strong impact of the noise intensity on both the process predictability and its
asymptotic expectation. After that we also provide the exact expressions (in integral form)
of the distributions and moments of the stochastic logistic and θ-logistic processes, along
with some numerical plot of the most important issues (mean and variance) in the logistic
instance, and a concise examination of them. Discussion and conclusions finally follow in the
section 4.

2. Deterministic growth models

2.1. An overview of known results

In this section we will briefly summarize the main features of the logistic and Gompertz
equations, and we will find out their general structure in what we regard as their most reveal-
ing setting, a formulation that will provides a hint for later developments. At the same time we
will also put in evidence the important role played by the time scales. In our models the main
variable will be the macroscopic size of the system n(t), namely the (dimensionless) number
of elementary components (e.g. the cells in a biological systems) at the instant t. The θ-logistic
equation then usually takes the form

dn(t)
dt

= ωen(t) − ω f nθ+1(t) (1)

(the simple logistic is recovered for θ = 1), while the Gompertz equation reads

dn(t)
dt

= ωen(t) − ω f n(t) ln n(t) (2)

where the constants ωe=
1/τe and ω f =

1/τ f are the reciprocal of the characteristic times τe and
τf . The θ-logistic equation can also be recast in the form
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dn(t)
dt

= ωen(t)

[
1 −

(
n(t)
K

)θ
]

, K =

(
τ f

τe

) 1
θ

=

(
ωe

ω f

) 1
θ

(3)

while in the Gompertz case we have

dn(t)
dt

= ωen(t)

(
1 − ln n(t)

ln K

)
, K = e

τ f
τe = e

ωe
ω f (4)

that for later convenience can also be written as

dln n(t)
dt

= −ω f ln
n(t)
K

(5)

The quantity K in the previous equations is the asymptotic value of n(t) when t →∞, i.e. the
value of n that sets its derivative to zero, and that is also known as carrying capacity. It is
known that the solutions of our equations for n(0) = n0 respectively are (see for example [1,
3, 22])

n(t) =
Kn0

n0 + (K − n0)e−ωet
(simple logistic) (6)

n(t) =
Kn0

θ

√
nθ

0 + (Kθ − nθ
0)e−θωet

(θ-logistic) (7)

n(t) = K exp{α0 e−ω f t} α0 = ln(n0/K) (Gompertz) (8)

Looking back now at the equations (3) and (4), we see that they are all of the general form

dn(t)
dt

= ωen(t) [1 − h(n(t))] (9)

where 0 < h(n(t)) < 1, and therefore also 0 < 1 − h(n(t)) < 1, because we always have
n(t) < K if—as it is realistic in our investigation—we take n0 < K. The second member in
the equations is a product of two terms: the first term, that by himself would produce an expo-
nential explosion n0 eωet, is corrected by the second one (a negative feedback, usually known as
individual growth rate): it is this counteraction that drives the system toward its finite asymp-
totic size. Remark that, accordingly, one can assume almost vanishing values of h(n(t)) at the
early stage of the evolution, the region of time where Malthusian growth dominates, while the
value 1 is asymptotically approached for t →∞, when the number attains its maximum value
and stops growing.

As for the two characteristic times, it is apparent that τe is the time scale of the purely
exponential growth, while, as emerges from (1) and (2), τf characterizes the strength or speed
of the correcting term. Obviously it will be τf > τe, and usually also τf � τe. The carrying
capacity emerges from the competition between the correction and exponential trends, and it
is in fact connected with their ratio: the slower the action of the feedback w.r.t. the explosion,
the larger the carrying capacity. In the Gompertz case the carrying capacity is the exponential
of the said ratio. Since moreover the whole growth is controlled by the individual growth rate,
the braking mechanism must be linked to the decrease of resources available for an elementary
component of the system.

Before concluding the section, it is useful for later convenience to introduce a rescaled
variable x(τ ) = x(ωet) = n(t)/K and a rescaled time τ = ωet so that the form of the logistic
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and θ-logistic equations respectively become

ẋ(τ ) = x(τ ) (1 − x(τ )) ẋ(τ ) = x(τ )
(
1 − xθ(τ )

)
(10)

while the corresponding solutions with x0 = n0/K are

x(τ ) =
x0

x0 + (1 − x0)e−τ
x(τ ) =

(
xθ0

xθ0 + (1 − xθ0)e−θ τ

)1/ θ

(11)

2.2. Merging the equations

2.2.1. General principles of a unified model. The form of the previous equations, and more
specifically the nonlinear term h(t), is usually chosen by resorting to phenomenological criteria
depending on the specific system to be described. Otherwise it can emerge—again phenomeno-
logically—by coupling differential equations, as happens for example to the logistic case in the
epidemiological context. In this section, before proceeding to deal with the stochastic models,
we therefore deem instrumental to linger a bit longer on these identification criteria, looking
for a description derived from suitable—albeit still phenomenological—general assumptions.
To this end we will reboot our procedure starting again from the beginning, i.e. from the gener-
ally recognized main goal of a population dynamics inquiry: taken an evolving natural system
consisting, at a given time, of a large number of components, address the problem of fore-
casting the growth of this number at later times. Our aim is not to obtain a thorough unified
view of a system on different scales, as in the multiscale approach mentioned in the introduc-
tion, but rather to get a general framework that provides well defined criteria accounting for
the phenomenological evolutions here considered. The idea is to get an intermediate descrip-
tion—as is usually done in the physical contexts—by resorting to a simplified model that,
although based on somewhat rough premises, can catch the essential features of the evolution
mechanisms, providing in this way a conceptually clear link with the deep characteristics of
the natural phenomena we are studying. What we want to achieve is better clarified by starting
from a few basic questions to be answered: being the components active particles, how their
evolution could be explicitly constrained by the exchanges of energy (this term conventionally
summarizes any kind of resources), and how the description could then be translated only in
terms of the numbers of components? How could these constraints induce a self-conditioning
mechanism? And eventually, and most important, can the logistic or θ-logistic evolutions and,
possibly, also the Gompertz evolution, be framed in a common, unified context? In order to
answer these questions we will introduce below our simplified model where, besides obviously
assuming a bounded amount of resources, the key points are first to introduce an explicit energy
dependence, and then to connect the relative values (percentages) of the relevant quantities,
automatically providing in so doing a self controlling mechanism that leads to an asymp-
totic final size. Furthermore, the different possible scalings with the number of components
of the resources exploitation, linked to what is interpreted as the occurrence of different levels
of cooperation (coherence) among the components themselves, lead to a description only in
terms of numbers of active particles, and account for different θ-logistic evolutions. Finally this
scheme turns out to be sufficiently general to include, as a singular limit case, the Gompertz
evolution in the same framework.

Moving on to construct our model, if we denote with n(t) the average number of active
particles of our system at the generic instant t, the main point is to compute its increment
Δn(t)

.
= n(t +Δt) − n(t) at a subsequent time t +Δt. Here Δn(t) will be supposed to result

from the accumulation of many microscopic increments produced by the possible occurrence
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of random events (the birth or death of one individual, one mitosis, and so on) between t and t +
Δt: at this stage of the inquiry, however, we will keep this underlying microscopic probabilistic
mechanism only in the background. Without yet assuming a fully stochastic model, indeed, we
will only surmise the existence of this random underworld as a background justification of our
coarse grained deterministic equations. Remembering now the criteria above exposed, we are
thus led to the following simplified hypotheses:

(a) At each instant, the system can rely on a finite and fixed (mean) amount of resources, of
different origins, conventionally denoted by ET, whose specific nature is not relevant in
our scheme because, eventually, all the quantities will be translated in terms of number of
components.

(b) Within the system the active particles exploit these resources both to survive and to grow,
but survival takes precedence in the sense that, at each stage, the resources available for
growth are what is left of ET once the resources for survival have been taken out. Fur-
thermore, at each step every active particle needs on average a quantity εs of resources to
survive.

(c) Growth stops when the total amount of resources ET is only sufficient to the survival of
all the active particles: in that case the population achieves its maximum, finite dimension
K a.k.a. carrying capacity.

(d) There is a constant, average rate of increment per unit time ωe = τ−1
e of the number of

active particles, so that the average rate of increase in dt will be ωedt. In the literature ωe

is often called probability per unit time and has been already introduced in very different
contexts as, for example, in the Drude simplified model of conduction [33]

Before further developing our model from the previous assumptions, we consider first an
ideal case to provide some suggestions for the more realistic ones. We will suppose then that
there are no limitations to the available resources (ET = ∞) and to the available space. In this
case, whatever the need for survival resources, at any instant the availability of growth resources
would be boundless, and thus the population increment would be obtained by simply applying
the average rate of increase to the whole number n(t)

dn(t) = ωe n(t) dt (12)

with a resulting Malthusian explosion n(t) = n0 e ωet. Here of course n0 denotes the system
size at time zero. The previous relation can however be also written as

dn(t)
n(t)

= ωe dt × 1

On the lhs we find the (infinitesimal) percentage increment of the number, while from the rhs
we see that this increment results from the product of the average rate of increment in dt and 1.
Being in our case the available resources not bounded, the factor 1 can be simply interpreted as
the fraction of resources available for growth at any instant. On the basis of this consideration
we are led then to propose the following principle:

A growth equation is obtained by imposing that the percentage increment of a population
in a small time interval dt is equal to the product between the average rate of increment
in the same time interval, and the percentage of resources (w.r.t. the total ones) that is
left available after the survival resources have been used

We will see soon that this latter percentage depends only on the population size.
Going now to more realistic instances, we start from the simplest case by supposing that at

each instant the resources are evenly distributed among all the n(t) individuals. Being εs the
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mean amount of resources exploited by an active particle to survive, in our approximation we
first of all have

ET = εs K

Then, according to our hypotheses, if n(t) < K is the number of active particles at the instant t,
the resources exploited for survival at that instant are Es(t) = εsn(t) < ET, and those available
for growth are Eg(t) = ET − Es(t) = εs (K − n(t)) so that

dn(t)
n(t)

= ωe dt
Eg(t)
ET

= ωe dt
K − n(t)

K
= ωe dt

(
1 − n(t)

K

)
(13)

and finally in terms of the reduced number and time

dx(τ )
x(τ )

= dτ (1 − x(τ )) (14)

that can be easily rearranged into the simple logistic equation (10) (θ = 1). The result (1) can
then be quickly retrieved by reintroducing the variable n(t) and the characteristic time τe, and
defining the time τf = τeK.

On the other hand—according to whether the system has a coherent character, with con-
sequent collective and synergistic behaviors, or, on the contrary, it displays inefficiencies and
non-collaborating components—resource scalings different from the linear one are allowed.
A generalized scaling ET = (εsK)θ and Es(t) = εsnθ(t) can thus be introduced, giving rise to
the θ-logistic equation

dx(τ )
x(τ )

= dτ (1 − xθ(τ )) (15)

In this formulation, however, the Gompertz model still seems to stand apart: would it be pos-
sible to recover even this equation within the framework of the previous scheme? In the next
section we will provide a path to a positive answer.

2.2.2. Retrieving the Gompertz equation. To explain in the above context the eccentric log-
arithmic term of the Gompertz model, we must at once recognize that we can no longer start
from some kind of proportionality between the percentage increase of n(t) and the time interval
Δt. We will instead suppose more in general for the reduced quantities

Δx(τ )
x(τ )

= w(x(τ ),Δτ ) (16)

wherew(x(τ ),Δτ ) is a function still to be determined. To this purpose we preliminarily remark
that, to be consistent, the procedure we will establish must anyway lead to a final result that
fulfills some obvious constraints:

• w(x(τ ),Δτ ) must become small for large times, and must approach 1 for small times
• w(x(τ ),Δτ ) must go to zero with Δτ as a continuity requirement

We also expect moreover that, at the end of our procedure, at the rhs of the equation we will
find again the product of an infinitesimal probability times a percentage term constraining the
growth.

We go on now by assuming thatw(x(τ ),Δτ ) generalizes the θ-logistic term with the anoma-
lous scaling θ(Δτ ) = ω fΔτ + o(Δτ ), where τ f = ω−1

f is the characteristic time-scale. We
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therefore take the function

w(x(τ ),Δτ ) = 1 − x(τ )ω f Δτ+o(Δτ ) (17)

which apparently fulfills the required constraints: since indeed K is the maximum asymptotic
value of n(t), for t →∞ we find x(τ ) → 1 and the increment of the number (i.e. the correcting
term) tends to become small, while in a very early stage of evolution x(τ ) � 1 and w ≈ 1.
The requirement w(x(τ ),Δτ ) ≈ 0 when Δτ ≈ 0, is clearly fulfilled as well. We can then take
advantage of a power expansion to write

w(x(τ ),Δτ ) = 1 − e(ω f Δτ+o(Δτ )) ln x(τ ) = 1 −
(
1 + ω f Δτ ln x(τ )

)
+ o(Δτ ) (18)

finding first

w(x(τ ), dτ )) = −ω f ln x(τ )dτ (19)

and then finally the Gompertz equation (5) for the reduced variables

dx(τ )
dτ

= −ω f x(τ ) ln x(τ ), (20)

If we remember that x(τ ) = n(t)/K, and τe
.
= (ln K)−1τf , we can also retrace the factorized

form of (4) as a product of the probability per unit time and a reduced percentage of available
resources. This concludes the retrieval of the Gompertz model within the framework of our
general scheme.

Remark that the Gompertz growth is obtained when θ → 0 in a suitable sense, justifying in
this way its maximally coherent character. Moreover, some physical sense can be ascribed to
the well known mathematical result 1 − xθ = −θ ln x + o(θ) when θ → 0 often recalled in the
literature when the Gompertz model is investigated: the meaning indeed is that scaling in the
Gompertz growth depends on the microscopic scales (times) of the system. In turn this fact
can clarify once again the origin of the extremely coherent character of Gompertz evolution,
because the cooperation level extends on the microscopic domain.

By summarizing, the conceptual frame introduced above allows to clarify the growth rules,
and in particular to explicitly highlight their link with the exchange of energy between the
active particles and the surrounding environment, naturally inducing in this way a self con-
trolling mechanism. Furthermore, it suggests that different ways of resources exploitation, due
to the different levels of connection and collaboration among the active particles, give rise
to different scaling with the number of components, thus offering the possibility of inserting
all the θ-logistic evolutions in a single framework in which the different levels of coherence
are indexed by the parameter θ: this also allows to include in the same hierarchy the Gom-
pertz model, opening the way to a physical interpretation of a well known mathematical limit
in terms of maximal coherence. Moreover, the simplified model, here introduced, also offers
more interesting perspectives, as will be illustrated at the end of the paper within the conclusive
remarks.

3. Stochastic growth models

We will now discuss a few questions arising from the introduction of fluctuations and leading
to stochastic growth models. Here, the reduced number x(τ ) will be promoted to a full-fledged
stochastic process X(τ ) in the reduced, dimensionless time τ = ωet, but since from now on

8



J. Phys. A: Math. Theor. 53 (2020) 445005 N Cufaro Petroni et al

there will be no risk of ambiguity we will revert in the following to the simpler notation X(t)
where it will be always understood that t is the dimensionless time.

In our scheme it will be rather natural to take fluctuations on the fraction

Qg =
Eg

ET
=

ET − Es

ET

of the resources available for the growth. Considering indeed the general θ-logistic case and
following an usual procedure [22], we will simply add to Qg a white noise Ẇ(t) (namely a
process such that E

[
Ẇ(t)

]
= 0, E

[
Ẇ(t)Ẇ(s)

]
= 2D δ(t − s), where D is a constant diffusion

coefficient and E [ · ] denotes the expectation) and therefore (15) will become

dX(t)
X(t)

=
(
Qg + Ẇ(t)

)
dt =

[
X(t)(1 − Xθ(t)) + Ẇ(t)

]
dt (21)

giving rise finally to the SDE

dX(t) = X(t)
(
1 − Xθ(t)

)
dt + X(t)dW(t) (22)

where we exploited the well known fact that the white noise Ẇ(t) is the (distributional) deriva-
tive of a Wiener process W(t) ∼ N(0, 2Dt) in the sense that Ẇ(t)dt is in fact the increment
dW(t) where E [dW(t)] = 0 and E [dW(t)dW(s)] = 2D δ(t − s)dtds. Remark that with this pro-
cedure, whatever the growth law considered, the stochastic term is always given by XdW: this
term is widely adopted in the literature about the logistic and θ-logistic cases, although mul-
tiplicative noises, or even more complex additive stochastic terms, have been introduced both
in discrete and continuous time versions [20–22, 34–41]. In the Gompertz instance, adding
this noise term directly leads to the a geometric Wiener process and, as pointed out in the
introduction, in this case all the aspects of the model, and its connection with the macroscopic
equation, are completely defined. For the stochastic logistic and θ-logistic models instead only
a few aspects have been completely elaborated, while others, and very important too, still are
not. In the following, we first summarize the results already obtained in the literature, and then
we discuss our main new results.

3.1. A few preliminary results about the logistic models

Many aspects of the logistic and θ-logistic stochastic models have been already systematically
discussed (see for instance [42]): we will recall here just a few relevant results useful in the
following sections. First, the stationary distributions have been computed and their stability
has been studied too [36]; also quasi-stationary distributions have been investigated in the dis-
crete case [2, 37, 38]. The stationary distribution for the stochastic θ-logistic equation is the

generalized gamma law Gθ

(
1−D

D , 1
(θD)1/θ

)
with probability density functions (pdf)

f s(x) =
θ x

1−D
D −1 e−

xθ
θD

(θD)
1−D
θD Γ

(
1−D
θD

) (23)

provided that D < 1. This last condition ensures normalization, and defines the region of sta-
bility of the system. The simple logistic case is obtained by choosing θ = 1 (for computational
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Figure 1. Expectations and variances of stationary θ-logistic processes as a function of
D and for several values of θ.

details, see also [42]). It is also easy to see then that the moments in the stationary distribution
(23) are

E
[
Xk(t)

]
= (θD)

k
θ
Γ
(

1+(k−1)D
θD

)
Γ
(

1−D
θD

) (24)

and in particular for the simple logistic (θ = 1) we have E [X(t)] = 1 − D and
V[X(t)] = D(1 − D). These simple results (and their generalizations for the θ-logistic
cases shown in the figure 1) suggest that the asymptotic (ergodic) stationary level of a random
logistic is in average suppressed by high noise intensity (D near to 1). In other words, the noise
acts as an effective disruption on the logistic growth: a relevant point that will be resumed
later.

Even the path-wise solutions of the processes are explicitly known [21, 42]. If indeed we
define the following Wiener process with constant drift

Z(t) = (1 − D)t + W(t) ∼ N ((1 − D)t, 2Dt) (25)

it is possible to show that the solution of the θ-logistic SDE (22) with initial condition
X(0) = X0, P − a.s. is

X(t) =

(
Xθ

0 e θZ(t)

1 + θXθ
0

∫ t
0 e θZ(u)du

)1/θ

(26)

that is correctly brought back to the noiseless, deterministic solution (11) by switching off
the noise (D = 0 and W(t) = 0, P − a.s., namely Z(t) = t) and by taking a degenerate initial
condition X0 = x0, P − a.s. The solution of the simple logistic SDE (22) with θ = 1 finally is

X(t) =
X0 eZ(t)

1 + X0
∫ t

0 e Z(u)du
(27)

3.2. Sample paths, distributions and moments

Despite the expressions (26) and (27) being fully explicit, to compute the (non-stationary)
expectation E [X(t)] and the higher moments E

[
Xk(t)

]
is not at all a simple task, and since not

even a perturbative approach in terms of small noisy disturbances seems to be available [43],
the fully non-perturbative tools will be in fact required. Looking at the expressions (26) and

10
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(27) we see on the other hand that the integrals in the denominators (the terms hardest to crack)
are indeed processes usually called EFBM of the type∫ t

0
e aW(u)+b udu (28)

that have been extensively studied in the financial context [30–32]. Remark that since
the Wiener process is Gaussian we have W(t) ∼ N(0, 2Dt), and therefore it is also
θZ(t) ∼ N

(
θ(1 − D)t, 2θ2Dt

)
. As a consequence the integrand of our EFBM is log–normal

e θZ(t) ∼ ln N
(
θ(1 − D)t, 2θ2Dt

)
and the following expectations are easily calculated

E
[
e θZ(t)

]
= eθ [1+(θ−1)D] t E

[∫ t

0
e θZ(u)du

]
=

eθ [1+(θ−1)D] t − 1
θ [1 + (θ − 1)D]

(29)

Many other results about these EFBM are collected in the literature [30–32], but their exact
distributions are rather convoluted, and on the other hand the determination of the moments of
(26) and (27) requires precisely the utilization of these tangled joint distributions of Z(t) with
its corresponding EFBM. In the following we will therefore provide a few exact formulas for
the pdf and the moments of our process X(t), along with some numerical estimate of the values
of these moments.

3.2.1. Trajectories simulations. We will stop first, however, to present a few numerical simula-
tions of the sample trajectories of the process X(t) confining ourselves for clarity to the simple
logistic case (27) with θ = 1. We will progressively turn the noise on by increasing the diffusion
coefficient D, and we will compare the random paths of the process with both its deterministic
behavior (the smooth, monotonic black curve) and its asymptotic, stationary expectation (the
horizontal, red line). It is apparent then from the first pair of plots in the figures 2 and 3 that
for a reasonably low level of noise (here D is either 0.005 or 0.05) the random paths fluctuate
close to the deterministic curve, and then asymptotically stabilize around their ergodic expec-
tation. Moreover the stationary variance grows with D. When on the other hand the value of
the diffusion coefficient increases toward 0.5 or 0.7 as in the figures 4 and 5 the behavior of the
trajectories begins to be much more irregular with spikes and flat spots surrounding a decreas-
ing asymptotic expectation. If finally D approaches the value 1 (we remember that in order to
find a possible stationary solution we must suppose D < 1) the random samples in the figure 6
become quite unpredictable with paths that mostly never take off, while a few other trajectories
briefly explode to larger values: asymptotically however the paths crash near to zero. Finally in
the figure 7 the ergodic relaxation toward the stationary fluctuation (the variability of the paths
looks indeed to be stabilized) is apparent when we consider a somewhat longer time span. As a
matter of fact our pictures display just a few examples, but the general conduct of the trajecto-
ries seems in fact to be already well sketched out and is in perfect agreement with the remarks
about the stationary solutions put forward in the section 3.1.

3.2.2. A reformulation in terms of the standard Brownian motion. In order to be able to take
advantage more easily of the results existing in the literature we will first convert our previous
formulas into a slightly different, customary notation [31]: to this purpose we introduce the
standard Brownian motion Bt ∼ N(0, t) and its corresponding EFBM

B(ν)
t = Bt + νt ∼ N(νt, t) 2B(ν)

t = 2Bt + 2νt ∼ N(2νt, 4t) (30)

A(ν)
t =

∫ t

0
e2B(ν)

s ds =
∫ t

0
e2(Bs+νs)ds At = A(0)

t (31)

11
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Figure 2. Sample paths of a simple logistic X(t) with D = 0.005. The horizontal red line
represents the asymptotic, stationary expectation.

Figure 3. Sample paths of a simple logistic X(t) with D = 0.05. The horizontal red line
represents the asymptotic, stationary expectation.

and then using the self-similarity properties of a Wiener process
√
λW(t) = W(λt) Bs =

W(s)√
2D

= W
( s

2D

) √
2D Bt = B2Dt = W(t)

we can reduce our previous formulas to this new notation. First with the change of integration
variable

s =
Dθ2

2
u

we have ∫ t

0
e θZ(u)du =

2
Dθ2

∫ Dθ2t/2

0
eθZ

(
2s

Dθ2

)
ds =

2
Dθ2

∫ τ

0
eθZ

(
2s

Dθ2

)
ds τ =

Dθ2

2
t

On the other hand we have

θZ

(
2s

Dθ2

)
= θW

(
2s

Dθ2

)
+

1 − D
Dθ

2s = 2W
( s

2D

)
+

1 − D
Dθ

2s

= 2Bs +
1 − D

Dθ
2s = 2(Bs + νs) = 2B(ν)

s ν =
1 − D

Dθ

12
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Figure 4. Sample paths of a simple logistic X(t) with D = 0.5. The horizontal red line
represents the asymptotic, stationary expectation.

Figure 5. Sample paths of a simple logistic X(t) with D = 0.7. The horizontal red line
represents the asymptotic, stationary expectation.

and hence ∫ t

0
e θZ(u)du =

2
Dθ2

∫ τ

0
e2B(ν)

s ds =
2A(ν)

τ

Dθ2
τ =

Dθ2

2
t ν =

1 − D
Dθ

(32)

This puts the denominator of (26) in terms of (31). Now we must reduce also the numerator to
a function of the exponential of B(ν)

τ with the same τ and ν of A(ν)
τ . Since we have

θZ(t) = θW(t) + (1 − D)θt = 2W

(
θ2t
4

)
+ (1 − D)θt = 2B Dθ2

2 t
+ (1 − D)θt

= 2

(
Bτ +

(1 − D)θ
2

t

)
= 2 (Bτ + ντ ) = 2B(ν)

τ

the formula (26) for the process paths in terms of A(ν)
τ and B(ν)

τ finally becomes

X(t) =

⎛
⎝ xθ0 e 2B(ν)

τ

1 +
2xθ0
Dθ

A(ν)
τ

⎞
⎠

1
θ

=

(
Dθ xθ0 e 2B(ν)

τ

Dθ + 2xθ0A(ν)
τ

) 1
θ

τ =
Dθ2

2
t ν =

1 − D
Dθ

(33)
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Figure 6. Sample paths of a simple logistic X(t) with D = 0.9. The horizontal red line
represents the asymptotic, stationary expectation.

Figure 7. Ergodic relaxation in time toward stationary fluctuations around the asymp-
totic expectation (red line).

where D > 0, τ > 0 and ν > −1. This will give us in the following the possibility of directly
exploiting a few preexisting results.

3.2.3. Probability density functions. We know (see for instance [31]) that the joint pdf of
A(ν)
τ , B(ν)

τ in their respective values a and b is

g(a, b) =
e ν b − ν2τ

2 − 1+e2b
2a

a
ϑ

(
eb

a
, τ

)

=
e−

ν2τ
2 + π2

2τ e (ν+1) b − 1+e2b
2a

a2
√

2π3τ

∫ ∞

0
e−

eb
a cosh s sinh s e−

s2
2τ sin

πs
τ

ds (34)

ϑ(r, v) =
r e

π2
2v√

2π3v

∫ ∞

0
e−

s2
2v −r cosh s sinh s sin

πs
v

ds (35)

and therefore, in addition to being able to simulate trajectories, we are also in a position to
calculate both the pdf of X(t) and its moments. We see indeed from (33) that X(t) is a function

14
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of A(ν)
τ and B(ν)

τ , and being apparently A(ν)
τ � 0 it is also easy to realize that

Y(t) = eB(ν)
τ �

(
X(t)
x0

) θ
2

We can then first find the joint pdf h(x, y) of X(t) and Y(t) with the following monotone variable
transformation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x =

(
D θ xθ0 e 2b

D θ + 2xθ0a

)1/θ

� 0

y = e b �
(

x
x0

)θ/2

� 0

⎧⎪⎨
⎪⎩

a =
D θ

2

(
y2

xθ
− 1

xθ0

)
� 0

b = ln y
(36)

and afterward calculate the univariate pdf of X(t) by simple marginalization. The Jacobian of
the transformation being

J =

∣∣∣∣∂x/∂a ∂x/∂b
∂y/∂a ∂y/∂b

∣∣∣∣ =
∣∣∣∣∂x/∂a ∂x/∂b

0 e b

∣∣∣∣
= e b ∂x

∂a
= −2 e−b

Dθ2

(
D θ xθ0 e 2b

D θ + 2xθ0a

) 1+θ
θ

= −2x1+θ

Dθ2 y

the new joint pdf is

h(x, y) =
g (a(x, y), b(x, y))

|J(x, y)| (37)

so that from (34) with y � (x/x0)θ/2 we have

h(x, y) =
e−

ν2τ
2 + π2

2τ√
2π3τ

2x2θ
0 xθ−1yν+2

D (xθ0y2 − xθ)2
e
−

xθ0 xθ(1+y2)

Dθ(xθ0y2−xθ )

×
∫ ∞

0
ds e

−
2 xθ0xθy

Dθ(xθ0y2−xθ )
cosh s

e−
s2
2τ sinh s sin

πs
τ

(38)

and finally, with the further change of variable u = xθ0y2 − xθ, the pdf of X(t) is

f (x, t) =
∫ ∞

0
h(x, y) dy =

e−
ν2τ

2 + π2
2τ√

2π3τ

∫ ∞
(

x
x0

)θ/2
dy

2x2θ
0 xθ−1yν+2

D (xθ0y2 − xθ)2

×
∫ ∞

0
ds e

−
xθ0 xθ (1+2y cosh z+y2)

Dθ(xθ0y2−xθ) e−
s2
2τ sinh s sin

πs
τ

=
x

(1−ν)θ
2

0 e−
ν2τ

2 + π2
2τ

D
√

2π3τ
xθ−1

∫ ∞

0
du

(u + xθ)
ν+1

2

u2

×
∫ ∞

0
ds e−

xθ
D θu

(
xθ0+2xθ/2

0

√
u+xθ cosh s+u+xθ

)
e−

s2
2τ sinh s sin

πs
τ

(39)

15



J. Phys. A: Math. Theor. 53 (2020) 445005 N Cufaro Petroni et al

In particular, in the case of a simple logistic (θ = 1) we have

f (x, t) =
x

1−ν
2

0 e−
ν2τ

2 + π2
2τ

D
√

2π3τ

∫ ∞

0
du

(u + x)
ν+1

2

u2

×
∫ ∞

0
ds e−

x
D u

(
x0+2

√
x0(u+x) cosh s+u+x

)
e−

s2
2τ sinh s sin

πs
τ

(40)

3.2.4. Moments of X(t). The moments of X(t) can now be calculated either directly form (33)
and (34) as

E
[
Xk(t)

]
=

∫ ∞

0
da

∫ ∞

−∞
db

(
Dθ xθ0 e 2b

Dθ + 2xθ0a

) k
θ

g(a, b)

=

∫ ∞

0
da

∫ ∞

−∞
db

(
Dθ xθ0 e 2b

Dθ + 2xθ0a

) k
θ e−

ν2τ
2 + π2

2τ e (ν+1) b − 1+e2b
2a

a2
√

2π3τ

×
∫ ∞

0
e−

eb
a cosh s e−

s2
2τ sinh s sin

πs
τ

ds (41)

or from the marginal pdf (39) of X(t) as

E
[
Xk(t)

]
=

∫ ∞

0
xk f (x, t) dx

=
x

(1−ν)θ
2

0 e−
ν2τ

2 + π2
2τ

D
√

2π3τ

∫ ∞

0
dx xθ+k−1

∫ ∞

0
du

(u + xθ)
ν+1

2

u2

×
∫ ∞

0
ds e−

xθ
D θu

(
xθ0+2x

θ/2
0

√
u+xθ cosh s+u+xθ

)
e−

s2
2τ sinh s sin

πs
τ

(42)

In particular the first moment (expectation) of the simple logistic (θ = 1) in the two formula-
tions is

E [X(t)] =
∫ ∞

0
da
∫ ∞

−∞
db

D x0 e 2b

D + 2x0a
e−

ν2τ
2 + π2

2τ e (ν+1) b − 1+e2b
2a

a2
√

2π3τ

×
∫ ∞

0
e−

eb
a cosh s e−

s2
2τ sinh s sin

πs
τ

ds (43)

=
x

1−ν
2

0 e−
ν2τ

2 + π2
2τ

D
√

2π3τ

∫ ∞

0
dx x

∫ ∞

0
du

(u + x)
ν+1

2

u2

×
∫ ∞

0
ds e−

x
D u

(
x0+2

√
x0(u+x) cosh s+u+x

)
e−

s2
2τ sinh s sin

πs
τ

(44)

The multiple integrals listed in the present section cannot apparently be performed analytically
and should therefore be computed numerically. This integration is rather tricky due to the pres-
ence of the inner oscillating integral (35). Even with spartan computational tools however it is
possible to check that a number of available preliminary results are fully consistent with the
previous theoretical forecasts. Taking for instance the non-stationary simple logistic process
(27) with θ = 1, D = 1/2 and degenerate initial condition x0 = 0.1, a numerical evaluation of

16



J. Phys. A: Math. Theor. 53 (2020) 445005 N Cufaro Petroni et al

Figure 8. Time-dependent behavior of the expectation (magenta) and variance (orange)
of a non stationary, simple logistic process with D = 1/2 and degenerate initial condition
x0 = 0.1 as computed from (41). The two moments ergodically tend to their asymptotic
stationary values (dashed lines respectively at 0.50 and 0.25) and are here compared to
the noiseless growth x(t) with the same initial condition.

the first two moments in a time interval from 0.8 to 8.0 leads to the time depending behavior of
expectation and variance displayed in the figure 8. By ideally extrapolating the plots to t = 0 it
is easy to see then that E [X(t)] and V[X(t)] steadily and monotonically grow from their initial
values (respectively 0.1 and 0.0) toward their asymptotic, stationary values 0.50 and 0.25, so
that in particular the asymptotic average level of the process stays well below the deterministic
curve x(t) of (11) as already anticipated in the section 3.1. The consistency of these simple
result hints therefore to the fact that the exact, closed formulas presented in the present section
can be now confidently adopted for every calculation regarding the non stationary logistic and
θ logistic processes if one can master a few routine difficulties in the integration procedure.

3.2.5. The logistic transition pdf. Also the computation of the logistic transition pdf’s is a
demanding task that stimulated numerical investigations too [22, 41]. By exploiting a further
general formula known in the literature [44] we will provide here another closed expressions for
the transition pdf’s of the SDE (22) whose finalization however again requires the calculation
of some particular expectation: for more details about the derivation procedure see [42]. For
the simple logistic and the θ-logistic processes we indeed respectively have

f (x, t|y, s) = g(x, t; y, s) E [G(x, t; y, s)] (45)

fθ(x, t|y, s) = gθ(x, t; y, s) E [Gθ(x, t; y, s)] (46)

where, by taking advantage of the following Brownian bridge between Wst(0) = 0 and
Wst(1) = 0

Wst(r) = W(s + (t − s)r) − [rW(t) + (1 − r)W(s)] 0 � r � 1 (47)

we have defined

g(x, t; y, s) =
e−

x−y
2D − 1

4D(t−s)

[
(1−D)(t−s)−ln x

y

]2

x
√

4πD(t − s)
(48)

gθ(x, t; y, s) =
e−

xθ−yθ

2Dθ − 1
4D(t−s)

[
(1−D)(t−s)−ln x

y

]2

x
√

4πD(t − s)
(49)
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G(x, t; y, s) = e−
t−s
4D H(x,t;y,s) Gθ(x, t; y, s) = e−

t−s
4D Hθ (x,t;y,s) (50)

H(x, t; y, s) = y2
∫ 1

0
dr

(
x
y

)2r

e2Wst(r) − 2y
∫ 1

0
dr

(
x
y

)r

eWst(r) (51)

Hθ(x, t; y, s) = y2θ
∫ 1

0
dr

(
x
y

)2θr

e2θWst(r)

− 2 [1 + (θ − 1)D] yθ
∫ 1

0
dr

(
x
y

)θr

eθWst(r) (52)

The expected values contained in the above formulas can again be computed exactly by follow-
ing the same steps presented in the previous sections because apparently they are once more
expressed in terms of particular EFBM’s and their distributions can therefore be traced back
to the pdf (34). We will neglect however an explicit calculation for the sake of brevity.

4. Conclusions and outlook

In the present paper we presented several exact results referring to the stochastic logistic and
θ-logistic models. Before dealing with these random instances, however, we preliminarily
performed a careful analysis of the deterministic, noiseless logistic and θ-logistic growths,
showing that they can be discussed in an unified context where the dynamics emerges from the
proportionality between the relative increment of the number of elementary individuals and
the percentage of resources exceeding the needs for the simple subsistence. The parameter θ
is moreover interpreted as characterizing the level of correlation (classical coherence) among
the individuals present in a system: in particular the correlation increases as θ decreases. In
this framework, the Gompertz model—retrieved when θ goes to zero in a suitable sense—is
placed by an anomalous scaling at the top of the hierarchy as the more coherent one.

Looking at the outlooks of the previous scheme, the most ambitious goal to consider (as it
also happens in several different scientific fields) would be to assume the suggestions provided
in our simplified formulation as the starting point of more sophisticated developments and
of more detailed models, with the introduction of different forms of interaction leading to
different levels of coherence in order to induce the different θ-dependencies. On the other
hand, if suitably refined, this explicit formulation in terms of energies, besides clarifying the
exchange mechanism between the system and the surrounding environment, can offer new
perspectives also in more applicative contexts. One of such potential fields could be an inquiry
about the theoretical bases of the effectiveness of the electromagnetic radiation (in particular
of the ELF magnetic fields) in curtailing the growth of the biological systems. In fact, a simple
modification of the equation (13) would show that the external devices which cause a partial
wasting of the total energy available for the system (as it is the case for an electromagnetic
source) can automatically reduce its carrying capacity, that is, its maximum size.

In the second part of the article, we went on to deal with stochastic logistic and θ-logistic
models. After introducing the random fluctuations in agreement with our previous principles,
we summarized the known results about the stochastic logistic and θ-logistic SDE’s, i.e. their
stationary distributions and their path-wise solutions. We performed next a few trajectories
simulations whose inspection turns out to be instrumental to show that—whereas at a reason-
ably low level of noise the random paths fluctuate close to the deterministic curve, and then
asymptotically stabilize around their ergodic expectation—a sensible increase of the noise
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intensity effectively destabilizes the process, making its behavior on the one hand more and
more unpredictable, and on the other asymptotically vanishing in average as predicted in the
stationary solutions.

We provided next our main results, i.e. the exact expressions (in an integral closed form) of
the probability distributions and moments of the stochastic logistic and θ-logistic processes,
deducing—with a suitable change of variable and a marginalization—their pdf from the joint
distribution of a Brownian process and its associated EFBM already known in the literature
[30–32]. In the simple logistic case (θ = 1) a numerical computation of the time-behavior of
expectation and variance was performed for a given noise intensity, showing that their val-
ues monotonically grow in time, and that they ergodically tend to their asymptotic, stationary
values. In addition, we also provided a semi-explicit closed form for the transition pdf of
the logistic SDE’s, from which a fully explicit expression can be obtained by taking advan-
tage of the same distributions previously exploited. We preferred however to postpone this
computation to a possible forthcoming publication for the sake of brevity: we look forward
indeed to extend these methods to obtain further exact or approximate results for other com-
plex stochastic models describing more specific systems, and to deal with several unanswered
questions.

Among the open problems, in particular, that of finding a suitable coarse-grained version
of the logistic SDE’s certainly is outstanding. We have shown in the previous sections that for
D → 0 the trajectories and the moments of a θ-logistic process apparently inch closer and closer
to the deterministic behavior of a noiseless growth. This is a feature that the logistic models
share with the Gompertz one, and of course it is what we were looking for in a stochastic
model correctly generalizing a deterministic one. At least in the Gompertz case, however, it
was proved in a previous paper [29] that there is something more: it is possible indeed to
coarse-grain the model SDE’s by finding a global quantity obeying a deterministic equation
of the same type as the noiseless ODE’s (ordinary differential equations) of the model. For
stochastic systems that are either outright Gaussians (as for instance an Ornstein–Uhlenbeck
process), or that can be traced back to some other Gaussian process (as a geometric Wiener
process), this is simple enough to accomplish because of both the linearity of the involved
SDE’s and the symmetry of the distributions.

Take for instance the Gompertz stochastic model (for details see in particular [42]) satisfying
the non-linear SDE

dX(t) = [X(t) − αX(t) ln X(t)] dt + X(t)dW(t) (53)

It is easy to see then that the transformed process Y(t) = ln X(t) satisfies the new, linear SDE

dY(t) = (1 − D − αY(t)) + dW(t) (54)

namely a modified Ornstein–Uhlenbeck equation with Gaussian solutions: therefore the orig-
inal process X(t) has a log–normal distribution. By taking the expectation of the linear SDE
(54) it is easy to see moreover that the averaged quantity E [Y(t)] satisfies the ODE

dE [Y(t)]
dt

= (1 − D − αE [Y(t)]) (55)

Remark that it would not be expedient to directly take the expectation of the SDE (53) because
of its non linearity. If instead we now consider the median M[X(t)] of our process it is possible
to show that, because of the symmetry of the Gaussian distribution of Y(t), from the properties
of the medians we have

M [X(t)] = M
[
eY(t)

]
= eM[Y(t)] = eE[Y(t)]
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and hence from (55) it is easy to check that the median satisfies the ODE

dM[X(t)]
dt

= M[X(t)] (1 − D − α ln M[X(t)]) (56)

that plays here the role of a coarse-grained ODE coinciding with a slightly generalized
Gomperts ODE

ẋ(t) = x(t) [β − α ln x(t)] β = 1 − D

and going back to its standard form (4) for D → 0. This of course also explains why the
Gomperts process X(t) (its trajectories, distributions and moments) tends to its deterministic
behavior x(t) when the noise is switched off.

Not so, instead, for the stochastic logistic instance because—as we have shown in the pre-
vious sections—the distributions of the solutions are much more tangled. We know indeed that
its trajectories, distributions and moments rightly show the bent to converge toward their deter-
ministic behavior for vanishing noise, but in this case we are unable to recover a coarse-grained
form of the SDE by proceeding along the same way trod in the case the Gompertz process. As
a matter of fact the θ-logistic SDE (22) can be reduced to linear coefficients (see [42]): with
the transformation Y(t) = X−θ(t) we would in fact find

dY(t) = θ [1 + ((1 + θ)D − 1)Y(t)] dt − θY(t)dW(t) (57)

but, albeit possible, it would be useless to take its expectation E [Y(t)]. We know indeed that
the path-wise solution of the SDE (57) is

Y(t) = e−θZ(t)

[
Y0 + θ

∫ t

0
eθZ(u)du

]

where Z(t) is defined in (25), and that its distributions discussed in the section 3.2 are especially
intricate, confined on the positive half-axis and far from symmetric. As a consequence, even
if we can easily find an equation for E [Y(t)], it would not be easy to manage a way to find a
coarse grained quantity of the process X(t) obeying some form of its noiseless equation as we
did with the median in the Gompertz case, and we plan to tackle this problem in our future
inquiries.

Looking finally to possible further developments within the stochastic framework, the link,
here pointed out, between the logistic or θ-logistic processes, and the EFBM could lead to
additional exact results in different or modified evolution stochastic models, and to a fruitful
connection between very different fields as the growth processes and the mathematical finance.
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