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ABSTRACT
We investigate the distributional properties of two Lévy-driven Orn-
stein–Uhlenbeck (OU) processes whose stationary distributions are
the gamma law and the bilateral gamma law, respectively. The said
distributions turn out to be related to the self-decomposable gamma
andbilateral gamma laws, and their densities and characteristic func-
tions are here given in closed form. Algorithms for the exact gener-
ation of such processes are accordingly derived with the advantage
of being significantly faster than those available in the literature and
therefore suitable for real-time simulations.
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1. Introduction andmotivation

In the present paper, we study the distributional properties of the Gamma–Ornstein–
Uhlenbeck process (�-OU) and the Bilateral Gamma–Ornstein–Uhlenbeck process (bi�-
OU). Our contribution consists in the derivation of the closed form of both the density
and the characteristic function of such processes. In its turn, this main result enables us to
obtain fast algorithms for their exact simulation, along with an unbiased transition density
that can be used for parameter estimation.

As observed in Barndorff–Nielsen and Shephard [1], the �-OU process is a very
tractable model that can be adopted in many potential applications. For instance, in the
energy and in the commodity field, many authors (using sometimes different naming con-
ventions) coupled a �-OU process or a combination of �-OU processes to a standard
Gaussian-driven OU process to model day-ahead spot prices. Among others, Kluge [2]
and Kjaer [3] apply such a combination to price swing options and gas storages whereas
Benth and Pircalabu [4] apply a �-OU process to evaluate wind derivatives. The use of �-
OUor bi�-OU in the energymarket is justified by the fact that gas and power prices exhibit
strong mean-reversion and spikes. Other applications of the �-OU and bi�-OU processes
in finance can be found, among others, in Barndorff–Nielsen and Shephard [1] for the
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modelling of stochastic volatility, or in Schoutens andCariboni [5] andBianchi and Fabozzi
[6] for the modelling of credit default risk and for the pricing of credit default swaps.

It is worthwhile noticing that the Variance Gamma distribution, that is widely used in
financial applications since the introduction of the Variance Gamma processes by Madan
and Seneta [7], is a special case of the bilateral gamma distribution. Finally, some appli-
cations of the �-OU processes beyond finance, can also be found in Brown et al. [8] and
Gaver and Lewis [9] for the modelling of wind speed or computer failures, respectively.

Following Barndorff–Nielsen and Shephard [1], we consider a Lévy process Z(t) and
the generalized OU process defined by the SDE

dX(t) = −kX(t) dt + dZ(t) X(0) = X0, P − a.s. k > 0, (1)

whose strong solution is

X(t) = X0e−kt +
∫ t

0
e−k(t−s)dZ(s). (2)

Up to indistinguishability the solution is unique (see Sato [10], Section 17). Here Z(t) is
called the BackwardDriving Lévy Process (BDLP), andwewill say thatX(t) is aD-OUpro-
cess ifD is the stationary law of X(t). Now a well-known result (see, for instance, Cont and
Tankov [11] or Sato [10]) is that, a given one-dimensional distribution D always is the
stationary law of a suitable Lévy-driven OU process if and only if D is self-decomposable.

We recall that a law with probability density (pdf ) f (x) and characteristic function
(chf ) ϕ(u) is said to be self-decomposable (see Sato [10] or Cufaro Petroni [12]) when for
every 0<a<1, we can find another law with pdf ga(x) and chf χa(u) such that

ϕ(u) = ϕ(au)χa(u) (3)

We will accordingly say that a random variable (rv) X with pdf f (x) and chf ϕ(u) is self-
decomposable when its law is self-decomposable. This means that for every 0<a<1 we
can always find two independent rv’s, Y with the same law of X and Za, here called a-
remainder, with pdf ga(x) and chf χa(u) such that

X d= aY + Za. (4)

It can be easily derived (see, for instance, Schoutens [13], page 68) that the BDLP Z(t) of
the �-OU process X(t) is a compound Poisson with exponential jumps.

In this study, we also investigate the case where the stationary law is a bilateral gamma
distribution that can be seen as the law of the difference of two independent gamma
rv’s with different parameters. We show that in this case the BDLP Z(t) is related to the
difference of compound Poisson processes with exponentially distributed jumps.

We will prove that the laws of the �-OU process and of the bi�-OU process at time
t coincide with those of the a-remainder Za of a gamma and of a bilateral gamma dis-
tribution, respectively. This result allows to find the pdf and the chf of X(t) in closed
form because the a-remainder’s of a gamma and a bilateral gamma distribution turn out
to be manageable mixtures of other elementary distributions. As a consequence, we can
design efficient and fast algorithms to exactly simulate �-OU and bi�-OU processes, out-
performing in so doing every other existing alternative (see Cont and Tankov [11] and Qu
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et al. [14]). The numerical experiments we have conducted clearly show that the computa-
tional times of our approach are very small therefore, our solution is suitable for real-time
simulations.

The paper is structured as follows: in Section 2, we study the distributional properties
of a �-OU process showing that its transition law can be represented as a mixture of Polya
or binomial mixtures and therefore, it can be seen as a compound sum of independent
exponential rv’s or as an Erlang rv with a random index. These findings are instrumental
to design the simulation algorithms illustrated in Subsection 2.3. Section 3 analyses the
distributional properties of a bi�-OU process and focuses on the case where the bilateral
gamma law can be seen as the law of the difference of two independent gamma rv’s with
equal parameters.

These results are then used in Subsection 3.2 to conceive the relative simulation algo-
rithms. Section 4 illustrates the numerical experiments that we have conducted to compare
the convergence and computational performance of our solutions to the approaches in
Cont and Tankov [11] and in Qu at al. [14]. Finally, Section 5 concludes the paper with an
overview of future inquiries and possible further applications.

Before proceeding, we introduce some notation relative to the various distributions that
we consider in the paper. We write �(α,β) to denote the gamma distribution with shape
parameter α > 0 and rate parameter β > 0. In case α = n ∈ N∗, the gamma law coincides
with Erlang law and is hereafter written En(β), of course, E1(β) represents the exponential
law with rate β . We write b�(α1,β1,α2,β2) ,α1 > 0,α2 > 0,β1 > 0,β2 > 0, to denote the
bilateral gamma law, for sake of brevity ifα1 = α2 = α andβ1 = β2 = β wewrite b�(α,β)

and we call such a law symmetric bilateral gamma. In general, when we add the superscript
++ to the symbol relative to a self-decomposable law we denote the law of the associated
a-remainder; for instance �++a (α,β) denotes the law of the a-remainder of a �(α,β) law,
and so on. We write B(n, p) , n ∈ N∗, 0 < p < 1 to denote the binomial distribution and
B(α, p) , α > 0, 0 < p < 1 to denote the Polya distribution. Finally, we write U([0, 1]) to
denote a uniform distribution in [0, 1] and P(λ) to denote the Poisson distribution with
mean λ > 0.

2. Distributional properties of the �-OU process

Because, by definition, the stationary law of a�-OU processX(t)with parameters (k, λ,β),
hereafter denoted�-OU(k, λ,β), is a gamma law, it is natural to investigate how it is related
to the law of the process at time t. We recall that the gamma distribution �(α,β) has the
following pdf and chf

fα,β(x) = β

�(α)
(βx)α−1e−βx x > 0 (5)

ϕα,β(u) =
(

β

β − iu

)α

(6)

The �(α,β) law is famously self-decomposable (see Grigelionis [15]), so that from (3) the
law of its a-remainder �++a (α,β) has the chf

χa(u;α,β) = ϕα,β(u)
ϕα,β(au)

=
(

β − iau
β − iu

)α

(7)
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On the other hand, according to an aforementioned result, a �-OU(k, λ,β) process, is the
solution of (1) where the BDLP Z(t) is a compound Poisson process

Z(t) =
N(t)∑
n=1

Jn

where from now on we use the convention that an empty sum equals 0 and

• N(t) is a Poisson process with intensity λ;
• (Jn)n∈N∗ is a sequence of independent and identically distributed (iid) jump sizes inde-

pendent of N(t), each of which follows an exponential law with rate parameter β , i.e.
Jn ∼ E1(β),∀n ∈ N∗.

It turns out that Z(t) is a subordinator, and that the solution (2) can be written as (see,
for instance, Qu et al. [14])

X(t) = x0e−kt +
N(t)∑
n=1

e−k(t−τn)Jn (8)

where (τn)n∈N∗ is the sequence of the jump times of the Poisson processN(t) independent
of (Jn)n∈N∗ . Applying Lemma 15.1 in Cont and Tankov [11], after some calculations, one
can find that the chf of X(t), with X(0) = 0 P − a.s., is (see also Example 3.4.3 in Kluge
[2] page 37)

ϕ(u, t) =
(

β − iue−kt

β − iu

) λ
k

(9)

This coincides with the chf of the e−kt-remainder of the gamma law �(λ/k , β) whereas
its stationary distribution

ϕs(u) =
(

β

β − iu

) λ
k

is instead recovered for t→+∞ and it coincides with the chf of the previous gamma law
(see also Barndorff–Nielsen and Shephard [1], Grigelionis [15]). The above result can be
also summarized by the following theorem whose proof is a straightforward application of
the homogeneity of the Poisson process.

Theorem 2.1: The chf of X(t + s) conditional on X(s) is given by

E
[
eiuX(t+s)|X(s)

]
= eiuX(s)e−kt ×

(
β − iue−kt

β − iu

) λ
k

(10)

An alternative version of Theorem 2.1 can be found in Qu et al [14].
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Theorem 2.2: The chf of X(t + s) conditional on X(s) is given by

E
[
eiuX(t+s)|X(s)

]
= eiuX(s)e−kt × eλt

(
ϕJ̃(u)−1

)
(11)

where

ϕJ̃(u) =
∫ 1

0

βektv

βektv − iu
dv, (12)

Theorem 2.2 implies then that

X(t + s) d= X(s)e−kt +
N∑
i=1

J̃i (13)

where N is distributed according to a Poisson distribution with mean λt and J̃i, i > 0 are
iid rv’s, all independent of N, distributed according to a uniform mixture of exponential
laws with random parameter βektU and U ∼ U([0, 1]).

It is apparent now that the chf of a �-OU(k, λ,β) process at time t is that of the a-
remainder of a �(α,β) law plus a constant when we take a = e−kt and α = λ/k. Based on
these observations we can then write

X(t + s) d= aX(s)+ Za, a = e−kt (14)

that provides an alternative representation to Equation (13).
The moments of Za, as well as those of a �-OU process X(t), can be obtained simply

deriving the chf (10) that is much more treatable than that in (11); however, it is easier
to work with the cumulants of Za that can be calculated with a straightforward applica-
tion of the properties of the cumulant generating function (the logarithm of the moment
generating function).

κn(Za) = (1− an)κn(X) (15)

where κn(Za) and κn(X) represent the n-th cumulant of the a-remainder and a gamma
distributed rv X, respectively. We remark that (15) is applicable to the cumulants of the
a-remainder of any self-decomposable distribution. After some algebra, it results that the
expected value, the variance, the skewness and the kurtosis of Za are

E [Za] = (1− a)
α

β
, (16)

V [Za] = (1− a2)
α

β2 , (17)

Skew [Za] = 1− a3

(1− a2)3/2
× 2√

α
, (18)

Kurt [Za] = 1+ a2

1− a2
× 6

α
+ 3. (19)

Of course, from Equation (14) E [X(t + s)|X(s)] = aX(s)+ E [Za] while the variance, the
skewness and kurtosis of X(t + s) given X(s) and Za coincide because these quantities are
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translation invariant. It is interesting to note that the laws�(α,β) and�++a (α,β) share the
same summation and scaling properties.

Proposition 2.3: (1) If Za ∼ �++a (α,β) then for any c>0,

c Za ∼ �++a

(
α,

β

c

)
.

(2) If Za,i ∼ �++a (αi,β), i = 1, . . . ,N and independent then

N∑
i=1

Za,i ∼ �++a

( N∑
i=1

αi,β

)
.

Proof: The chf of cZa is

χa(cu) =
(

β − iacu
β − icu

)α

=
(

β
c − iau
β
c − iu

)α

,

which is the chf a �++a (α, β
c ) distributed rv.

The chf χ̄a(u) of
∑N

i=1 Za,i is

χ̄a(u) = E
[
eiu

∑N
i=1 Za,i

]
=

N∏
i=1

(
β − iau
β − iu

)αi

=
(

β − iau
β − iu

)∑N
i=1 αi

,

that coincides with the chf of a �++a (
∑N

i=1 αi,β) law and that concludes the proof. �

2.1. Polyamixtures of gamma laws�(α,β)

In order to further investigate the distributional properties of the law of the a-
remainder and of the law of a �-OU process, we now consider a rv S distributed according
to a negative binomial, or Polya distribution, namely such that

P {S = k} =
(

α + k− 1
k

)
(1− p)αpk k = 0, 1, . . .

where (
α

k

)
= α(α − 1) . . . (α − k+ 1)

k!

(
α

0

)
= 1

denotes the generalized binomial coefficient. Note that, when α = n = 1, 2, . . . is a natural
number, the Polya distributionB(n, p) coincides with the so-called Pascal distribution, and
in particular B(1, p) is nothing else than the usual geometric distribution (1− p)pk.

From the generalized binomial formula, it is possible to see now that its chf is

ϕS(u) =
∞∑
k=0

(
α + k− 1

k

)
(1− p)αpkeiuk =

(
1− p

1− p eiu

)α

where the series certainly converges because |p eiu| = p < 1.
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In addition, we remind that, given a countable set of pdf ’s p1, p2(x), . . . with corre-
sponding cdf ’s P1(x),P2(x), . . . and chf ’s cdf ’s φ1(x),φ2(x), . . . and given a countable
set of weights w1,w2, . . . such that wi ≥ 0, i ∈ N∗ with

∑∞
i=1 wi = 1, a countable mixture

distribution P is a law with pdf p(x), cdf P(x) and chf φ(x) that can be written as a convex
combination as follows

p(x) =
∞∑
i=1

wipi(x), P(x) =
∞∑
i=1

wiPi(x) φ(x) =
∞∑
i=1

wiφi(x).

Therefore each wi can be seen as the probability P {V = i} = wi of a certain discrete rv V.
The distribution P is accordingly called a V-weighted distribution of laws pn, n ≥ 1.

As observed for instance in Panjer and Wilmott [16], by taking the rv

Z =
S∑

j=1
Xj

sum of a random number S ∼ B(α, p) of iid rv’s Xj, j ≥ 1 independent of S with the
common chf ϕX(u) we have indeed

ϕZ(u) = E
[
eiuZ

]
= E

[
E
[
eiuZ

∣∣∣ S]]

=
∞∑
k=0

(
α + k− 1

k

)
(1− p)αpk E

[
eiu

∑k
j=0 Xj

]

= (1− p)α
∞∑
k=0

(
α + k− 1

k

)
pkϕX(u)k =

(
1− p

1− pϕX(u)

)α

(20)

where again the series converges because |pϕX(u)| ≤ p < 1. This shows that the law of Z is
an infinite Polya B(α, p)-weighted mixture of laws ϕX(u)k: if these laws also have a known
pdf , then the law of Z too has an explicit representation as a mixture of pdf ’s.

If on the other hand, Xj ∼ E1(β), the distribution of Z above can also be considered as
an Erlang law ES(β) with a Polya B(α, p)-distributed random index S,

Z =
S∑

j=1
Xj S ∼ B(α, p) Xj ∼ E1(β) X0 = 0, P − a.s.

Based on these observations, we prove the following theorem that characterizes the law of
the a-remainder of a �(α,β) distribution.

Theorem 2.4: The law of the a-remainder �++a (α,β) is an infinite Polya B(α, 1− a)-
weighted mixture of Erlang laws Ek(β/a) with the following chf χa(u,α,β) and density
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ga(x,α,β)

χa(u,α,β) =
∞∑
k=0

(
α + k− 1

k

)
aα(1− a)k

(
β

β − iau

)k
(21)

ga(x,α,β) = aαδ(x)1x=0 +
∞∑
k=1

(
α + k− 1

k

)
aα(1− a)kfk,β/a(x)1x>0 (22)

where δ(x) is the Dirac delta function (a distribution or a generalized function) representing
the probability density concentrated at 0.

Proof: By taking now p = 1−a and X ∼ E1(β/a) with chf

ϕX(u) = β

β − iau

It is easy to see from (7) and (20) that

(
β − iau
β − iu

)α

=
(

a(β − iau)
β − iau− (1− a)β

)α

=
(

a
1− (1− a) β

β−iau

)α

=
∞∑
k=0

(
α + k− 1

k

)
aα(1− a)k

(
β

β − iau

)k

that is the chf of an infinite Polya B(α, 1− a)-weighted mixture of Erlang laws Ek(β/a).
Since on the other hand from (5) the pdf ’s of the Erlang laws Ek(β/a) are known, also

the pdf of the �++a (α,β) law is the following explicit mixture plus a degenerate in x = 0

ga(x,α,β) = aαδ(x)1x=0 +
∞∑
k=1

(
α + k− 1

k

)
aα(1− a)kfk,β/a(x)1x>0

that concludes the proof. �

The above results give a closed-form representation of the transition density of a �-
OU process.

Corollary 2.5: The transition density p(x, t + s|y, s)of the �-OU(k, λ,β) is

p(x, t + s|y, s) = ga
(
x− ay,

λ

k
,β
)
, a = e−kt . (23)

where ga(·, λ/k,β) is defined in (22).

Although the parameters estimation is not the focus of our study, knowing the transition
density in closed form gives a remarkable advantage compared to the results in Qu et al.
[14] because one can write the log-likelihood and maximize it explicitly. Of course, in any
practical applications, some series truncation rule must be adopted but it can, however, be
easily fine tuned.
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To this end, in discrete time, a �-OU process is equivalent to a GAR(1) auto-regressive
process introduced by Gaver and Lewis [9] whose parameter estimation based on the EM
algorithm has been discussed in Popovici and M. Dumitrescu [17] (for λ/k integer only,
see next section). In the alternative, one could adopt the generalized method of moments
using Equation (19) and obtain the associated Yule–Walker equations.

In addition, we remark that the corollary 2.1 in Zhang et al. [18] provides an alternative
representation of the transition density of a �-OU in terms of a Poisson P(αkt)-weighted
mixture of laws hn(x), n ≥ 1 where

h(x) = h1(x) = e−βx − e−βx/a

ktx

hn(x) =
∫ x

0
h(y)hn−1(x− y) dy.

Finally, it is also worthwhile noticing that an additional approach to find the desired tran-
sition density is based on the saddlepoint approximation detailed in Gatto [19] that also
provides precise conditions under which the approximation holds. The main advantage of
our representation is that the mixture is obtained in terms of Erlang laws so that, in con-
trast to the solution in corollary 2.1 in Zhang et al [18] and the results in Gatto [19], no
numerical approximation or numerical integration is required neither for the parameters
estimation nor for the path generation as shown in the next sections.

2.2. Binomial mixtures

It follows from the previous subsection that for α = n = 1, 2, . . . the a-remainder of the
Erlang laws �(n,β) = En(β) is an infinite mixture of Erlang Ek(β/a) with Pascal weights
B(n, 1− a), while for n = 1 the a-remainder of the exponential law �(1,β) = E1(β) is an
infinite mixture of Erlang Ek(β) with geometric weights B(1, 1− a).

In these two cases, however, the following theorem shows that there is an alternative
decomposition of the law of the a-remainder into a finite, binomial mixture of Erlang or
in other words into an Erlang law ES(β) with a binomial B(n, 1− a)-distributed random
index S, that is a sum

Za
d=

S∑
j=1

Xj S ∼ B(n, 1− a)

of S iid exponentials Xj ∼ E1(β), j ≥ 1 independent of S.

Theorem2.6: The law of the a-remainder of theEn(β) law is a finitemixture of ErlangEk(β)

with binomial weights B(n, 1− a) with the following chf χa(u,α,β) and density ga(x,α,β)

χa(u, n,β) =
n∑

k=0

(
n
k

)
an−k(1− a)k

(
β

β − iu

)k
(24)

ga(x, n,β) = aαδ(x)1x=0 +
n∑

k=1

(
n
k

)
an−k(1− a)kfk,β(x)1x>0 (25)
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Proof: α = n we have indeed from (7)

(
β − iau
β − iu

)n
=
(
a+ (1− a)

β

β − iu

)n
=

n∑
k=0

(
n
k

)
an−k(1− a)k

(
β

β − iu

)k
(26)

namely a finite mixture of Erlang Ek(β) with binomial weights B(n, 1− a). Once again,
the pdf ’s of the Erlang laws are known therefore the density is simply given by (25) that
concludes the proof. �

When λ/k = n ∈ N∗ the above results lead to a closed form representation of the tran-
sition density of a �-OU process (or better Erlang-OU process) in terms of a finite sum of
Erlang densities plus a degenerate term.

The ambiguity in the mixture representation above with respect to that of Theorem 2.4
is apparently allowed because, in general, a mixture decomposition is not unique.

Corollary 2.7: The transition density p(x, t + s|y, s) of the�-OU(k, λ,β)with λ/k = n and
n ∈ N∗ is

p(x, t + s|y, s) = ga(x− ay, n,β), a = e−kt . (27)

where ga(·, n,β) is defined in (25).

The said binomial decomposition, however, while legitimate for α = n, cannot be
extended to the general case of α > 0. From the generalized binomial formula, the
following infinite decomposition of χa(u,α,β) in (7)

(
β − iau
β − iu

)α

=
(
a+ (1− a)

β

β − iu

)α

= aα

(
1+ 1− a

a
β

β − iu

)α

= aα

∞∑
k=0

(
α

k

)(
1− a
a

β

β − iu

)k
=
∞∑
k=0

ωk(a,α)

(
β

β − iu

)k
(1)

ωk(a,α) =
(

α

k

)
aα−k(1− a)k (28)

looks again as another infinite mixture of Erlang laws Ek(β), we must remark that first this
expansion definitely converges exclusively when it is

∣∣∣∣1− a
a

β

β − iu

∣∣∣∣ ≤ 1− a
a

< 1

which, for 0<a<1, only happens if 1
2 ≤ a < 1; and second, andmainly, that although the

infinite sequence of the ωk(a,α) sums up to one, the generalized binomial coefficients
(
α
k
)

take also negative values for k > α + 1, and hence the ωk(a,α) do not always constitute
a legitimate probability distribution. As a consequence, the decomposition (28) is not in
general a true mixture, even if it holds mathematically whenever it converges. In other
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words (as an alternative to (22)), the pdf of the a-remainder Za can always be represented
also as the following combination – let us call it a pseudo-mixture – of Erlang pdf ’s

ga(x) = aαδ(x)1x=0 +
∞∑
k≥1

ωk(a,α)fk,β(x)1x>0,
1
2
≤ a < 1. (29)

When α is an integer, we fall back into the hypothesis of Theorem 2.6 and Equation (29)
becomes a true mixture of a finite number of terms.

2.3. Simulation algorithms

The results of the previous sections show that the chf (9) of an �-OU(k, λ,β) coincides
with that of the a-remainder Za of a gamma law �(α,β) by simply taking a = e−k
t and
α = λ/k. Algorithm 1 summarizes then the procedure to generate the skeleton of a �-
OU(k, λ,β) process over a time grid t0, t1, . . . , tM , 
tm = tm − tm−1 , m = 1, . . . ,M.

Algorithm 1
1: X0 = X(0) = 0
2: for m = 1, . . . ,M do
3: α← λ/k, a← e−k
tm

4: b← B ∼ B(α, 1− a) � Generate a Polya (α, 1− a) rv
5: zma ← Z(m)

a ∼ Eb
(
β/a

)
; � Generate an Erlang rv with rate β/a

6: X(tm)← aX(tm−1)+ z(m)
a .

7: end for

The simulation of Za is very simple and it is applicable with no parameter constraints. It
is worthwhile noticing that although Algorithm 1 resembles to that proposed inMcKenzie
[20], it has the advantage of simulating Erlang rv’s only. When in particular λ/k = α is an
integer n, the steps four and five in Algorithm 1 can be replaced with those in Algorithm 2

Algorithm 2
4: b← B ∼ B(n, 1− a) � Generate a Binomial rv
5: zma ← Z(m)

a ∼ Eb (β); � Generate an Erlang rv with rate β

This last assumption could be considered even when λ/k is not an integer namely, when
λ
 k, one could take the integer part �λ/k�. This approximation would be valid for an
�-OU with either a low mean-reversion rate k or a high number of expected jumps per
unit of time λ.

The simulation of the Z(m)
a , could also be implemented starting from the representa-

tion (29) of their density. Over the usual time grid, the constraint 1
2 ≤ a < 1 implies that

k < log 2/
tm. For instance, in energy markets and financial applications it is common to
assume
tm = 1/365 or
tm = 1/252 that correspond to k<253 or k<175, respectively,
values that virtually cover all the realistic market conditions.
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Under this parameter constraint, we can conceive an acceptance–rejection proce-
dure based on the method of Bignami and de Matteis [21] for pseudo-mixtures with
non-positive terms (see also Devroye [22] page 74). Denoting indeed ωk(a,α)+ =
max{ωk(a,α), 0} and ωk(a,α)− = min{ωk(a,α), 0}, so that ωk(a,α) = ωk(a,α)+ +
ωk(a,α)−, the approach of Bignami and deMatteis [21] relies on the remark that from (29)
we have

ga(x) ≤
∞∑
k≥0

ωk(a,α)+fk,β(x) = g(x) = cg(x) (30)

where

1 < c =
∞∑
k≥0

ωk(a,α)+ <∞ pk = ωk(a,α)+

c
g(x) =

∞∑
k≥0

pkfk,β(x) (31)

so that g(x) turns out to be a true mixture of Erlang laws, namely the pdf of

V =
S∑

i=0
Xi ∼ ES(β) Xi ∼ E1(β) P {S = k} = pk,

The generation of Za in the steps four and five in Algorithm 1 can then be replaced by the
acceptance–rejection solution in Algorithm 3.

Algorithm 3 1
2 ≤ (a < 1)

1: Generate S with law P {S = k} = pk, k = 0, . . . ,N
2: while u ≤ ga(z̄)

ḡ(z̄) do
3: u← U ∼ U([0, 1]) � Generate a uniform
4: z̄← Z̄ ∼ ES(1) � Generate a standard Erlang
5: end while
6: return βz

The computational performance of this algorithm can be assessed by observing that for
relatively small values of α the probability P {S} = 0 is high, hence V and Za turn out to
be approximately degenerate, so that Za can be set to 0 as well because the acceptance con-
dition is always satisfied. On the other hand, an efficient acceptance–rejection algorithm
should have c of Equation (31) as close to 1 as possible because c roughly represents the
expected number of iterations that are needed.

Note that for 0 < α ≤ 1 and 1/2 ≤ a < 1 we always have ω0(a,α)+ = aα ≥ 0.5 with
theminimumvalue 0.5 attained for a = 0.5, α = 1, which coincides with the simulation of
Z ∼ EB(1,1−a)(1) (see Cufaro Petroni and Sabino [23]). This means that the concentration
of the weights ωk(a,α) is mainly around ω0(a,α) (which is a positive number) because in
the said range of a,α the negative coefficients ωk(a,α)− are rather negligible.

We benchmark the performance of our algorithms to two alternatives available in
the literature. For instance, the exact sequential simulation of a �-OU process can be
achieved using the simulation procedure introduced in Lawrence [24] that coincides with
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Algorithm 4
1: X0 = X(0) = 0
2: for m = 1, . . . ,M do
3: Generate n ∼ P(λ
tm), � Poisson rv with intensity λ
tm
4: Generate n iid uniform rv’s u1, . . . , un, ui ∼ U([0, 1]).
5: Sort u[1] < · · · < u[n],
6: τi← 
tmu[i], i = 1, . . . n,
7: Generate n iid Jn ∼ E1(β), � Exponential rv’s with scale β

8: X(tm)← X(tm−1)e−k
tm +∑n
i=1 e−k(
tm−τi)Ji.

9: end for

the modifying Algorithm 6.2 page 174 in Cont and Tankov [11] as detailed in Algorithm 4

Of course, the sorting can be avoided and step 5 can be implemented using by exponen-
tial spacing as explained in Devroye [22] page 213. Algorithm 4 does not directly rely on
the statistical properties described by the chf (9), but it is rather based on the definition of
the process (8). In contrast to Algorithm 4, our approach has the obvious advantage of not
requiring to draw the complete skeletons of the jump times between two time steps.

The second alternative, summarized in Algorithm 5, is the exact simulation approach
recently illustrated in Qu et al. [14] that is based on Theorem 2.2.

Algorithm 5
1: X0 = X(0) = 0
2: for m = 1, . . . ,M do
3: Generate n ∼ P(λ
tm), � Poisson rv with intensity λ
tm
4: Generate n iid uniform rv’s u1, . . . , un, ui ∼ U([0, 1]).
5: βi← βek
tmui , i = 1, . . . , n.
6: Generate n iid J̃i ∼ E1(βi), i = 1, . . . , n, � Exponential rv’s with random rate βi
7: X(tm)← X(tm−1)e−k
tm +∑n

i=1 J̃i.
8: end for

Algorithm 5 avoids simulating the jump times of the Poisson process as well but still
requires additional steps compared to Algorithm 1 which, as we will show in Section 4, is
by far the best performing alternative.

3. Distributional properties of the bi�-OU process

The b� distribution with parameters α1,β1,α2,β2 has been explored by Küchler and
Tappe [25] in the context of financial mathematics. It is worthwhile noticing that the Vari-
ance Gamma distribution, that is extensively used in financial applications, belongs to
the set of bilateral gamma laws. A bilateral gamma distribution can be seen as the law
of the difference X(u) − X(d) of two independent rv’s X(u), X(d) with X(u) ∼ �(α1,β1) and
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X(u) ∼ �(α2,β2). Therefore the chf of the b�(α1,β1,α2,β2) distribution is

ϕ(v) =
(

β1

β1 − iv

)α1 ( β2

β2 + iv

)α2

= (ϕu(v))α1 (ϕd(v))α2 (32)

Küchler and S. Tappe [25] have shown that such distribution is self-decomposable therefore
it is a suitable stationary law of a Lévy-driven OU process. Based of the definition of self-
decomposable distributions, the chf of the a-remainder of such a b� law is

χa(v) =
(

β1 − iav
β1 − iv

)α1 (β2 + iav
β2 + iv

)α2

, 0 < a < 1. (33)

It means that the a-remainder of a b�(α1,β1,α2,β2) can be seen as the difference Z(u)
a −

Z(d)
a of two independent rv’s where Z(u)

a and Z(d)
a are distributed according to the laws

�++a (α1,β1) and �++a (α2,β2), respectively (with the same a).
Now consider a BDLP being the difference of two independent compound Poisson pro-

cesses with exponential jumps namely, Z(t) =∑N1(t)
n=1 Un −

∑N2(t)
m=1 Dn. N1(t) and N2(t)

are two independent Poisson processes with intensities λ1 and λ2, respectively, whereas,
(Un)n∈N∗ and (Dm)m∈N∗ are independent sequences, both independent of N1(t) and of
N2(t), of iid exponential rv’s with parameters β1 and β2, respectively. It is easy to ver-
ify that the chf of a process X(t) solution of (1) is simply the product of the chf ’s of
two independent �-OU processes with parameters (k, λ1,β1) and (k, λ2,β2), respectively.
The stationary law is simply recovered for t→+∞ and coincides with a b� law. Once
again, as in the case of a �-OU process, the chf of a bi�-OU process with parameters
k, λ1,β1, λ2,β2, denoted bi�-OU(k, λ1,β1, λ2,β2) at time t is that of the a-remainder of
a b�(λ1/k,β1, λ2/k,β2) law, namely, a b�++a (λ1/k,β1, λ2/k,β2) law plus a constant ax0
when we take a = e−kt .

Knowing that the nth cumulant κn(X) of the difference X of two independent rv’s X(u)

and X(d) is κn(X(u))+ (−1)nκn(X(d)), after some algebra we find

E [Za] = (1− a)
(

α1

β1
− α2

β2

)
(34)

V [Za] = (1− a2)
(

α1

β2
1
+ α2

β2
2

)
(35)

Skew [Za] = 1− a3

(1− a2)3/2
× 2(α1β

3
2 − α2β

3
1 )

(α1β
2
2 − α2β

2
1 )

3/2 (36)

Kurt [Za] = 1+ a2

1− a2
× 6(α1β

4
2 + α2β

4
1 )

(α1β
2
2 + α2β

2
1 )

2 + 3. (37)

The distributional properties of a b�++a law are summarized by the following theorem.
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Theorem 3.1: The chf χa(u,α1,β1,α2,β2) and the pdf ga(x,α1,β1,α2,β2) of the
b�++a (α1,β1,α2,β2) law are

χa(v,α1,β1,α2,β2) =
∞∑

n,m=0
bn(a,α1)bm(a,α2)ϕ

n
u(v)ϕ

m
d (v) (38)

ga(x,α1,β1,α2,β2) = aα1+α2δ(x)1x=0 +
(
aα1(1− a)fn,β1/a(x)+ aα2(1− a)fm,β2/a(−x)

+
∞∑

n,m=1
bn(a,α1)bm(a,α2)fn,m,β1/a,β2/a(x)

)
1x �=0, (39)

with

bn(a,α) =
(

α + n− 1
n

)
aα(1− a)n

and

fn,m,β1,β2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2eβ2x

(n− 1)!

(
β1

β1 + β2

)n m−1∑
i=0

(n+m− i− 2)!
i!(m− i− 1)!

×
(

β2

β1 + β2

)m−i−1
(−β2x)i x < 0,

β1e−β1x

(m− 1)!

(
β2

β1 + β2

)m n−1∑
j=0

(n+m− j− 2)!
�!(n− j− 1)!

×
(

β1

β1 + β2

)n−j−1
(β1x)j x ≥ 0

, (40)

where fn,m,β1,β2(x) represents the pdf of the difference Eu − Ed of two independent Erlang
distributed rv’s Eu ∼ En(β1) and Ed ∼ Ed(β2), respectively.

Proof: As already observed, the law b�++a (α1,β1,α2,β2) is the law of the differenceZ(u)
a −

Z(d)
a of two independent rv’s Z(u)

a and Z(d)
a distributed according to the �++a (α1,β1) and

�++a (α2,β2), respectively. Hence, the chf in (38) is a simple consequence of Theorem 2.4.
On the other hand, the distributions of Z(u)

a and Z(d)
a can also be considered as two inde-

pendent Erlang laws ESu(β1) and ESd(β2) with two independent Polya B(α1, 1− a) and
B(α2, 1− a) distributed random indexes Su and Sd, respectively. Hence, given Su = n and
Sd = m the distribution can be seen as the law of the difference of two independent Erlang
rv’s whose pdf (40) is known in closed form (see also Simon [26] page 28). Combining all
these observation leads to the conclusion that the pdf of Za is given by (39). �

Corollary 3.2: The transition density p(x, t + s|y, s)of a bi�-OU law with parameters α1 =
λ1/k, β1, α2 = λ2/k and β2 is

p(x, t + s|y, s) = ga
(
x− ay,

λ1

k
,β1,

λ2

k
,β2

)
, a = e−kt . (41)

where ga(x− ay, λ1
k ,β1, λ2

k ,β2) is defined in (39).
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We now study the case where the BDLP Z(t) is a compound Poisson whose jumps
are now distributed according to a double exponential law that is mixture of a positive
exponential rv U ∼ E1(β1) and a negative exponential rv −D ∼ E1(β2) with mixture
parameters p and q = 1−p with the following pdf and chf

fβ1,β2,p(x) = pβ1e−β1x1x≥0 + (1− p)β2eβ2x1x<0 (42)

ϕβ1,β2,p(v) = p
β1

β1 − iv
+ (1− p)

β2

β2 + iv
= pϕu(v)+ (1− p)ϕd(v). (43)

Theorem 3.3: Let X(t) be the solution of (1) where the BDLP is a compound Poisson whose
jumps are distributed according to the law with pdf and chf in (43) and (42), respectively, then
the chf of X(t + s) conditional on X(s) is given by

E
[
eivX(t+s)|X(s)

]
= eivX(s)e−kt ×

(
β1 − ive−kt

β1 − iv

) pλ
k

×
(

β2 + ive−kt

β2 + iv

) (1−p)λ
k

(44)

Proof: Based on the results of Dassios and Jang [27] and Kluge [2], the logarithm of chf
of X(t + s) conditional on X(s) is given by

logE
[
eivX(t+s)|X(s)

]
= ivX(s)e−kt + λ

∫ t

0

(
ϕJ(ve−kw)− 1

)
dw,

where ϕJ(v) is the chf of the double exponential in (43), therefore we have

logE
[
eivX(t+s)|X(s)

]
= ivX(s)e−kt + pλ

∫ t

0

(
ϕu(ve−kw)− 1

)
dw

+ (1− p)λ
∫ t

0

(
ϕd(ve−kw)− 1

)
dw,

hence solving the integrals in the second and third terms we have

E
[
eivX(t+s)|X(s)

]
= eiuX(s)e−kt ×

(
β1 − ive−kt

β1 − iv

) pλ
k
(

β2 + ive−kt

β2 + iv

) (1−p)λ
k

, (45)

that concludes the proof. �

The stationary law is simply recovered for t→+∞ and coincides with a b� law as
summarized by the following corollary.

Corollary 3.4: The stationary law of X(t) is a b� law with parameters α1 = pλ/k, β1, α2 =
(1− p)λ/k and β2 with 0<p<1.

Once again, the chf of a bi�-OU process at time t is that of the a-remainder of a
b�(pλ/k,β1, (1− p)λ/k,β2) law plus a constant ax0 when we take a = e−kt .
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3.1. Symmetric bi�-OU process

The results of the previous subsection simplify when the stationary law of the bi�-OU pro-
cess is the law of the difference of two independent gamma rv’s with α = α1 = α2 and
β = β1 = β2. For such a stationary law the BDLP coincides with a compound Poisson
whose jumps are distributed according to a centred Laplace law. A simple consequence of
Theorem 3.1 is given in the following corollary

Corollary 3.5: The chf and the pdf of the a-remainder of a symmetric b�(α,β) are

χa(u) =
∞∑
k=0

(
α + k− 1

k

)
a2α

(
1− a2

)k ( β2

β2 + a2u2

)k

ga(x,α,β) = a2αδ(x)1x=0 +
∞∑
k=1

(
α + k− 1

k

)
a2α

(
1− a2

)k f̄n,β/a(x)1x �=0

where

f̄n,β(x) = β

2n(n− 1)!
(β|x|)n−1 e−β|x|

n−1∑
k=1

(n− 1+ k)!
k!(n− 1− k)!(2β)k|x|k (46)

represents the pdf of a symmetric bilateral Erlang law, namely the law of the difference Eu − Ed
of two independent Erlang distributed rv’s having the same parameters n and β.

Once again the law of the a-remainder is an infinite Polya B(α, 1− a2)-weighted mix-
ture of bilateral Erlang laws with parameter β/a. Hence, taking a = e−kt and α = λ

2k , the
law of a symmetric bi�-OU at time t coincides with the chf of the a-remainder law of a
gamma difference whose transition density p(x, t + s|y, s) = ga(x− ay, λ

2k ,β). In addition,

E [Za] = 0 (47)

V [Za] = (1− a2)× 2α
β

(48)

Skew [Za] = 0 (49)

Kurt [Za] = 1+ a2

1− a2
× 3

α
+ 3, (50)

E [X(t)] = ax0 while the variance, the skewness and kurtosis of X(t) and Za coincide
because these quantities are translation invariant. Finally, we remark that for α = n ∈ N∗
it is straightforward to extend Theorem 2.6 and to represent the law of the a-remainder of
a symmetric b� law as a binomial mixture of bilateral Erlang distributions. It suffices to
replace β/(β − iu) in (24) with β2/(β2 + u2) and fn,β(x) in (25) with f̄n,β(x). Finally, the
representation based on the generalized binomial theorem at the end of subsection 2.2 can
also be extended to the case of symmetric b� laws replacing ωk(a,α) with ωk(a2,α) under
the constrain 1√

2
≤ a < 1 due to the fact that the parameters of the Polya distribution in

Corollary 3.5 are α and now 1− a2.
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3.2. Simulation algorithms

We have seen that the law of the a-remainder b�++a (β1,α1,β2,α2) coincides with that
of the difference of the independent a-remainder’s �++a (β1,α1) and �++a (β2,α2), respec-
tively.We have also observed that such a distribution coincides with the law at time t of the
bi�-OU(k, λ1,β1, λ2,β2) process if one sets α1 = λ1/k α2 = λ2/k and a = e−kt . Based on
Theorems 2.1 and 2.2 then, the simulation of the increment of such a process consists of
nothing less than implementing the algorithms detailed in Section 2.3 two times. To this
end, for sake of brevity, the detailed steps are not repeated here.

Instead, we here detail some simulation algorithms tailored to the symmetric case. For
instance, because of Corollary 3.5, the implementation steps ofAlgorithm1 can be replaced
by those in Algorithm 6.

Algorithm 6
1: X0 = X(0) = 0
2: for m = 1, . . . ,M do
3: α← λ/2k, a← e−k
tm

4: b← B ∼ B(α, 1− a2) � Generate a Polya (α, 1− a2) rv
5: z(r)

a ← Z(r)
a ∼ Eb

(
β/a

)
, r ∈ {u, d}; � Generate two independent Erlang rv’s with

rate β/a
6: zma = z(u)a − z(d)a

7: X(tm)← aX(tm−1)+ z(m)
a .

8: end for

In addition, one can adapt Algorithm 3 to the case of a symmetric bi�-OU observing
that

ga(x) ≤
∞∑
k≥0

ωk(a2,α)+ f̄k,β(x) = g(x) = cg(x) (51)

where

1 < c =
∞∑
k≥0

ωk(a2,α)+ <∞ pk = ωk(a2,α)+

c
g(x) =

∞∑
k≥0

pkf̄k,β(x) (52)

therefore g(x) is the pdf of a true mixture of symmetric bilateral Erlang laws, namely, it is
pdf of the random sum

V =
S∑

i=0

(
X(u)
i − X(d)

i

)
, X(r)

0 = P − a.s., P {S = k} = pk, r ∈ {u, d},

where (X(u)
i )i∈N and (X(d)

i )i∈N are independent sequences, independent of S, of iid expo-
nentially distributed jumps sizes with rate β . The adaptation simply consists of replacing
the forth step with Algorithm 7 and using the pdf ’s in (51) and (52).

In addition, Algorithm 4 can also be extended simply replacing the seventh step by those
shown in Algorithm 8.
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Algorithm 7 ( 1√
2
≤ a < 1)

5: z̄(r)← Z̄(r) ∼ E(S, 1), r ∈ {u, d} � Generate two independent standard Erlang rv’s.
6: z̄← z̄(u) − z̄(d)

Algorithm 8

7: Generate n iid J(r)i ∼ E1(β), i = 1, . . . , n, r ∈ {u, d}, � Generate two sets of
independent exponential rv’s with random rate β

8: Ji← J(u)i − J(d)i

Finally, the following theorem extends the approach in Qu et al. [14] to the case of a
symmetric bi�-OU process and avoids having to run Algorithm 5 twice.

Theorem 3.6:

E
[
eiuX(t+s)|X(s)

]
= eiuX(s)e−kt × eλt(ϕL̃(u)−1) (53)

where

ϕL̃(u) =
∫ 1

0

β2e2ktv

β2e2ktv + u2
dv (54)

the right-hand side in (54) is then the chf of compound Poisson whose jumps are inde-
pendent copies J̃i distributed according to a uniform mixture of centred Laplace laws with
random parameter βektU with U ∼ U([0, 1]).

Proof: From Theorems 2.1 and 2.2 we know that

e
λt
2

(
ϕJ̃(u)−1

)
=
(

β − iue−kt

β − iu

) λ
2 k

where ϕJ̃(u) is defined in (12) then from Theorems 3.1 and 3.3 with p = 1/2, β1 = β2, we
have

E
[
eiuX(t+s)|X(s)

]
= eiuX(s)e−kt × e

λt
2 t
(
ϕJ̃(u)+ϕJ̃(−u)−2

)
= eiuX(s)e−kt × e

λt
(

ϕJ̃ (u)+ϕJ̃ (−u)
2 −1

)

on the other hand, we observe that

ϕJ̃(u)+ ϕJ̃(−u)
2

= 1
2

∫ 1

0

(
βektv

βetv − iu
+ βektv

βektv + iu

)
dv =

∫ 1

0

β2ektv

β2ektv + u2
dv

that concludes the proof. �

It turns out that a symmetric bi�-OU can be simulated as detailed in Algorithm 9
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Algorithm 9
1: for m = 1, . . . ,M do
2: Generate n ∼ P(λ
tm), � Poisson rv with intensity λ
tm
3: Generate n iid uniform rv’s u1, . . . , un, ui ∼ U([0, 1]).
4: β

(r)
i ← βek
tmui , i = 1, . . . , n, r ∈ {u, d}.

5: Generate n iid J̃(r)i ∼ E1(β(r)
i ), i = 1, . . . , n, � Generate two sets of independent

exponential rv’s with random rate β
(r)
i

6: J̃i← J̃(u)i − J̃(d)i
7: X(tm)← X(tm−1)e−k
tm +∑n

i=1 J̃i.
8: end for

4. Simulation experiments

In this section, we compare the performance of the Algorithms detailed in Subsection 2.3
for the �-OU process and in Subsection 3.2 for the bi�-OU process. The performance is
ranked in terms of convergence and in terms of CPU times. In this comparison, we have
decided to exclude the analysis relative to new Algorithm 2 because its applicability is cov-
ered by Algorithm 1. Their computational cost is also similar because both of them rely
on the simulation of known and simple discrete rv’s and on the generation of Erlang rv’s
although with different parameters.

All the simulation experiments in the present paper have been conducted using MAT-
LAB R2019awith a 64-bit Intel Core i5-6300UCPU, 8GB.1 As an additional validation, the
comparisons of the simulation computational times have also been performed with R and
Python leading to similar conclusions. We first consider a �-OU process with parameters
(k, λ,β , x0) = (36, 10, 3, 0) and we only simulate one time step at
t = 1/365.We observe
that Algorithm 1 is still suitable because 0.5 ≤ a < 1 (a = e−k
t ≈ 0.9061) where we have
truncated the series in (30) and (31) at the 40th term.

In realistic examples, one could estimate the parameters relying on the closed form of
the transition densities of the process, using the generalized method of moments or the
least squares method. The idea of coupling a �-OU process with a Gaussian-OU process
is common in the modelling of energy prices (see among others for instance, Kjaer [3] and
Kluge [2]), indeed, the choice of the parameters above is motivated by the fact that these
numbers look like realistic values that can be adopted for the pricing of energy facilities.
Applications of the �-OU process to portfolio selection or to credit risk can also be found
in Schoutens and Cariboni [5] and Bianchi and Fabozzi [6]. Beyond the financial world,
such processes have been used to model computer failures (see Gaver and Lewis [9]) or
wind speed (see Brown et al. [8]).

Table 1 reports the CPU times in seconds of all the approaches and compares theMonte
Carlo estimated values of the true E [X(t)], V [X(t)], Skew [X(t)] and Kurt [X(t)] at a sin-
gle time point t = 1/365. Varying the number of simulations NS, we can conclude that
all the algorithms are equally convergent, although it seems that a large number of sim-
ulations is required to achieve a good estimate of the kurtosis. On the other hand, their
computational performance is quite different. Figure 1(a,b) clearly show that Algorithm 1
by far outperforms all other approaches. It provides a remarkable improvement in terms
of computational time that is at least 30 times smaller than that of any other alternative
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Figure 1. �-OU with (k, λ,β , x0) = (36, 10, 3, 0), 
t = 1/365. (a) CPU times in seconds and (b) Ratios
CPU times.

available in the literature. With our computer generatingNS = 2, 560, 000 values of X(t) at
time t = 1/365 does not even take a second in contrast to several seconds using the other
alternatives. Note that even the newAlgorithm 3 is faster thanAlgorithms 4 and 5 although
based on a acceptance–rejection method, but unfortunately, it is only applicable under the
constraint 0.5 ≤ e−k
t < 1. To conclude, it seems that Algorithms 4 and 5 exhibit similar
CPU times.

Of course, the superior performances of Algorithm 1 with respect to all the alternatives
becomes evenmore remarkable when the entire trajectory over a time grid is simulated. To
this end, we generate the skeleton of the process on an equally space time grid t1, . . . , tM
with M = 4 and 
t = 1/4. In order to better highlight the difference in performance
among the approaches, we have here chosen the same parameters set as in Qu et al. [14],
(k, λ,β , x0) = (0.5, 1, 1, 10).

The results inTable 2 confirm that our proposal provides the smallest CPU timesmaking
Algorithm 1 very attractive for real-time calculations. We remark that the CPU times in
Table 2 are relative to the simulation of the entire trajectory with four time steps while
instead, the estimated statistics refer to the process at the last time point t = 1. Refining
the time grid with a smaller time step will increase the overall computational times almost
linearly making all alternatives to Algorithm 1 not competitive for real-time applications.
It is also worthwhile noticing that our implementation, although based on a less powerful
computer, returns smaller CPU times than those reported in Qu et al. [14] relative these
authors’ approach. Finally, as described in Section 3, the simulation of a bi�-OU process
can be obtained by repeating the algorithms above two times therefore, we can extrapolate
the same conclusions with regards to the bi�-OU case.

We conclude this section illustrating the results of the numerical experiments relative
to a symmetric bi�-OU process where we have chosen the same set of parameters selected
for the �-OU process. E [X(t)] = x0e−kt and the skewness is zero therefore in Table 3 we
show the CPU times in seconds and the Monte Carlo estimated values of the trueV [X(t)]
andKurt [X(t)] at time t = 1/365 only. We also remark that Algorithm 7 is also applicable
because

√
2/2 ≤ a < 1 using both parameter sets. The conclusions are very much in line
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Table 1. CPU times in seconds and comparison among the true E [X(t)], V [X(t)], Skew [X(t)] and
Kurt [X(t)] of a �-OU process at time t = 1/365 with (k, λ,β , x0) = (36, 10, 3, 0) and their relative
estimated values with NS MC scenarios using Algorithms 1, 3, 4 and 5.

E [X(t)] = 0.0087 V [X(t)] = 0.0055 Skew [X(t)] = 12.83 Kurt [X(t)] = 222.71

Algorithm 1
NS CPU MC error % MC error % MC error % MC error %

10, 000 0.0050 0.0089 2.12 0.0052 6.42 11.25 12.30 157.64 27.25
40, 000 0.0136 0.0091 4.27 0.0060 8.89 12.41 3.24 198.06 8.60
160, 000 0.0524 0.0084 3.76 0.0053 4.92 13.01 1.44 227.59 5.02
640, 000 0.2139 0.0086 1.07 0.0054 1.95 12.83 0.01 220.47 1.74
2, 560, 000 0.8757 0.0088 1.42 0.0056 1.81 12.69 1.09 220.91 1.94

Algorithm 3
10, 000 0.0718 0.0083 4.70 0.0049 12.22 12.04 6.16 189.14 12.72
40, 000 0.1948 0.0093 6.71 0.0062 11.60 12.67 1.25 209.80 3.19
160, 000 0.6349 0.0092 5.53 0.0060 8.49 12.48 2.72 205.54 5.15
640, 000 2.3906 0.0088 0.63 0.0055 0.11 12.69 1.08 216.85 0.07
2, 560, 000 8.9852 0.0087 0.19 0.0055 0.07 12.74 0.71 217.53 0.38

Algorithm 4
10, 000 0.15 0.0077 11.23 0.0044 20.21 13.46 4.93 248.17 14.52
40, 000 0.48 0.0085 2.77 0.0050 9.54 11.92 7.08 182.57 15.75
160, 000 1.81 0.0084 3.18 0.0053 4.46 13.18 2.72 237.77 9.72
640, 000 7.26 0.0087 0.01 0.0055 0.05 12.79 0.30 220.48 1.74
2, 560, 000 29.98 0.0086 0.64 0.0054 1.45 12.83 0.01 222.45 2.65

Algorithm 5
10, 000 0.19 0.0090 3.33 0.0056 0.94 11.45 10.71 160.49 25.94
40, 000 0.59 0.0090 3.93 0.0059 6.70 12.28 4.24 191.69 11.54
160, 000 2.35 0.0085 1.79 0.0053 3.66 12.83 0.02 224.77 3.72
640, 000 9.32 0.0086 0.75 0.0056 0.52 13.23 3.17 220.55 1.77
2, 560, 000 37.32 0.0088 0.65 0.0056 0.73 12.71 0.89 217.25 0.25

withwhat found for a�-OUprocess. As expected, all the approaches are equally convergent
and the CPU times are higher that those for the�-OU case because all the solutions require
additional steps. From Figure 2(a,b), one can observe that Algorithm 6 is by far the fastest
solution and Algorithm 7, even if based on an acceptance–rejection method, is once more
a faster solution than Algorithms 8 and 9. On the other hand, these last two approaches
seem to be equally fast with the former slightly outperforming the approach in Qu et al.
adapted to the symmetric bi�-OU process.

In Table 4, we also report the results of generating the trajectory of a symmetric bi�-
OU with the same parameters and time grid of the �-OU case. The values in Table 4
once more confirm that our newly developed simulation approach, detailed Algorithm 6,
exhibits high accuracy as well as efficiency and in particular, largely outperforms any other
alternative.

5. Conclusions and future inquiries

In this paper, we have studied the distributional properties of the �-OU process and its
bilateral counterpart bi�-OU process. We have shown that the chf ’s and the pdf ’s of such
laws can be represented in closed form as a mixture of known and tractable laws, namely,
a mixture of a Polya or a Binomial distribution.

As a simple consequence, we can design exact and efficient algorithms to generate the
trajectory of a �-OU and a bi�-OU process. Our numerical experiments have illustrated
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Table 2. CPU times in seconds and comparison among the true E [X(t)], V [X(t)], Skew [X(t)] and
Kurt [X(t)] of a�-OUprocess at time t = 1with (k, λ,β , x0) = (0.5, 1, 1, 10) and their relative estimated
values with NS MC scenarios using Algorithms 1, 3, 4 and 5.

E [X(t)] = 6.8522 V [X(t)] = 1.2642 Skew [X(t)] = 2.1861 Kurt [X(t)] = 9.4919

Algorithm 1
NS CPU MC error % MC error % MC error % MC error %

10, 000 0.0203 6.8612 0.13 1.2922 2.17 2.1615 −1.14 9.0429 −4.97
40, 000 0.0262 6.8580 0.08 1.3048 3.11 2.2173 1.41 9.6260 1.39
160, 000 0.1752 6.8476 −0.07 1.2647 0.04 2.2338 2.14 9.9624 4.72
640, 000 0.7359 6.8531 0.01 1.2680 0.30 2.1955 0.43 9.6146 1.28
2, 560, 000 3.1980 6.8520 0.00 1.2625 −0.13 2.1904 0.20 9.5559 0.67

Algorithm 3
10, 000 0.238 6.8358 −0.24 1.1968 −5.63 2.1230 −2.97 8.7994 −7.87
40, 000 0.721 6.8537 0.02 1.2628 −0.11 2.1580 −1.30 9.3910 −1.07
160, 000 2.531 6.8549 0.04 1.2636 −0.05 2.1902 0.19 9.6369 1.50
640, 000 14.451 6.8526 0.01 1.2655 0.10 2.1828 −0.15 9.4517 −0.43
2, 560, 000 60.933 6.8512 −0.01 1.2602 −0.32 2.1903 0.19 9.5654 0.77

Algorithm 4
10, 000 0.41 6.8664 0.21 1.2755 0.89 2.1181 −3.21 8.9754 −5.76
40, 000 1.37 6.8423 −0.14 1.2279 −2.96 2.1568 −1.36 9.2733 −2.36
160, 000 5.53 6.8578 0.08 1.2830 1.47 2.1674 −0.86 9.1683 −3.53
640, 000 22.09 6.8518 −0.01 1.2673 0.25 2.1968 0.49 9.5983 1.11
2, 560, 000 96.19 6.8523 0.00 1.2637 −0.04 2.1847 −0.07 9.5011 0.10

Algorithm 5
10, 000 0.44 6.8499 −0.03 1.2870 1.77 2.3304 6.19 10.879 12.75
40, 000 1.63 6.8431 −0.13 1.2270 −3.03 2.1825 −0.16 9.5881 1.00
160, 000 6.54 6.8515 −0.01 1.2620 −0.18 2.1988 0.58 9.6740 1.88
640, 000 29.53 6.8535 0.02 1.2688 0.36 2.1898 0.17 9.5400 0.50
2, 560, 000 100.99 6.8525 0.00 1.2655 0.10 2.1871 0.05 9.4898 −0.02

Figure 2. Symmetric bi�-OU with (k, λ,β , x0) = (36, 10, 3, 0), 
t = 1/365. (a) CPU times in seconds
and (b) Ratios CPU times.

that our strategy has a remarkable computational advantage and cuts the simulation time
down by a factor larger than 30 compared to the existing alternatives available in the lit-
erature. In particular, due to the very small computational times, they are well suitable for
real-time applications.
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Table 3. CPU times in seconds and comparison among the trueV [X(t)] andKurt [X(t)] of a symmetric
bi�-OU process at time t = 1/365 with (k, λ,β , x0) = (36, 10, 3, 0) and their relative estimated values
with NS MC scenarios using Algorithms 6, 7, 8 and 9.

V [X(t)] = 0.0055 Kurt [X(t)] = 222.71 V [X(t)] = 0.0055 Kurt [X(t)] = 222.71

Algorithm 6 Algorithm 7

NS CPU MC error % MC error % CPU MC error % MC error %

10, 000 0.0034 0.0062 12.9 141.39 34.8 0.0837 0.0066 20.1 218.45 0.8
40, 000 0.0121 0.0055 0.97 202.53 6.54 0.1634 0.0057 2.96 176.28 18.66
160, 000 0.0559 0.0054 2.83 207.09 4.44 0.6415 0.0059 6.20 227.93 5.18
640, 000 0.2284 0.0054 2.35 228.70 5.53 2.3321 0.0057 2.79 217.46 0.34
2, 560, 000 0.9188 0.0055 1.15 211.83 2.25 9.2060 0.0055 0.39 218.86 0.99

Algorithm 8 Algorithm 9

10, 000 0.15 0.0063 13.2 266.74 23.1 0.1915 0.0052 6.4 190.45 12.1
40, 000 0.56 0.0052 5.14 203.09 6.28 0.7769 0.0059 6.94 212.10 2.13
160, 000 2.24 0.0055 0.26 246.67 13.82 3.0793 0.0060 8.11 223.25 3.02
640, 000 8.98 0.0054 1.48 216.01 0.32 12.3615 0.0056 0.58 224.35 3.06
2, 560, 000 36.16 0.0055 0.54 223.38 0.52 49.8659 0.0055 0.31 217.83 0.52

Table 4. CPU times in seconds and comparison among the trueV [X(t)] andKurt [X(t)] of a symmetric
bi�-OU process at time t = 1 with (k, λ,β , x0) = (0.5, 1, 1, 10) and their relative estimated values with
NS MC scenarios using Algorithms 6, 7, 8 and 9.

V [X(t)] = 1.2642 Kurt [X(t)] = 9.4919 V [X(t)] = 1.2642 Kurt [X(t)] = 9.4919

Algorithm 6 Algorithm 7

NS CPU MC error % MC error % CPU MC error % MC error %

10, 000 0.0157 1.2539 −0.82 9.306 −1.99 0.2502 1.2920 2.15 8.966 −5.87
40, 000 0.0193 1.2148 −4.07 9.370 −1.31 0.9680 1.2478 −1.32 9.249 −2.62
160, 000 0.1098 1.2598 −0.35 9.498 0.06 3.4811 1.2619 −0.19 9.450 −0.44
640, 000 0.4614 1.2617 −0.20 9.509 0.18 14.713 1.2576 −0.53 9.536 0.47
2, 560, 000 3.1008 1.2650 0.06 9.537 0.47 61.448 1.2648 0.05 9.509 0.18

Algorithm 8 Algorithm 9

10, 000 0.6143 1.2844 1.6 10.60 10.5 0.7889 1.2325 −2.57 8.222 −15.4
40, 000 2.2989 1.2950 2.38 9.668 1.83 3.1908 1.2771 1.01 9.168 −3.54
160, 000 9.2519 1.2578 −0.51 9.510 0.19 12.327 1.2564 −0.63 9.582 0.94
640, 000 36.601 1.2617 −0.20 9.579 0.91 48.689 1.2622 −0.16 9.422 −0.74
2, 560, 000 147.79 1.2628 −0.12 9.455 −0.39 199.71 1.2651 0.06 9.498 0.06

Moreover, although not the focus of our study, knowing the density in closed form
and having simple formulas for the cumulants of the distribution, one could conceive
a parameter estimation procedure based on likelihood methods and on the generalized
method of moments using the analogy with the GAR(1) auto-regressive processes intro-
duced in Gaver and Lewis [9] and discussed in Lawrence [28]. Of course, in any practical
applications, some series truncation rule must be adopted as well as the generalization
to time-dependent parameters is still open. These investigations will then be the focus of
future inquires.

From the mathematical point of view, Sabino [29] has observed that the law of a
Lévy-driven Ornstein–Uhlenbeck process at time t is always related to the law of the a-
remainder of its relative self-decomposable stationary law: for any OU process X(t) d=
aX0 + Za, a = e−kt where Za is the a-remainder of the stationary law of the process. It
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would then be interesting to investigate the consequence of this observation and under
which conditions one could extend for instance, the results in Zhang and Zhang [30],
Zhang [31], Kawai and Masuda [32], Bianchi et al. [33] and the results recently pub-
lished in Grabchak [34] relative to Tempered Stable Ornstein–Uhlenbeck processes to
other Lévy-driven Ornstein–Uhlenbeck processes.

In addition, future studies could cover the extension to a multidimensional framework
with correlated Poisson processes as those introduced for instance in Lindskog andMcNeil
[35] or in Cufaro Petroni and Sabino [23,36]. A last topic deserving further investigation is
the time-reversal simulation of the �-OU and bi�-OU processes generalizing the results
of Pellegrino and Sabino [37] and Sabino [38] to the case of �-OU and bi�-OU processes.

Note

1. The relative codes are available at https://github.com/piergiacomo75/GammaOUBiGammaOU
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