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ABSTRACT� In this paper a preliminary analysis is performed about the ability of backpropaga�

tion neural networks to estimate regression functions from statistical data� In particular the stability

under random initial conditions and the optimal choices of learning parameters are investigated�

Finally a few examples of regression estimate are shown

�� INTRODUCTION

Neural networks can be used to solve problems in an adaptive way� in fact they learn the solution

through examples� Recently the ability of neural networks to perform statistical tasks has been

extensively examinated ��� even if the theoretical basis of this approach still is on shaky grounds�

Generally� a learning problem can be viewed as a problem of minimization of a risk functional�

whose general expression for a wide class of tasks is�

R��	 
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dF �x� y	 ��	

where � is a vector of parameters� and q�x� �	 represents the function that the learning machine

must retrieve and which depends continuously on �� Of course the functional L
�
y� q�x� �	

�
depends

on the particular task that must be performed� In particular the problems that can be approached

in the statistical learning theory are ����

� Pattern recognition

� Regression estimate

� Density estimate

and the functionals associated are respectively
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�
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L�y� q�x� �		 

�
y � q�x� �	

��
L�q�x� �		 
 � ln q�x� �	

In this paper we will analyze the ability of a neural network to solve a problem of regression

estimate� a problem important in several respects �from forecasting trends in industrial ouputs�

to extracting relations among random variables in production process ���	� The neural networks
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used in this paper are back propagation networks with three layers of neurons� the �rst layer is

an input layer with just one neuron which has only a link role
 the second is a hidden layer of k

neurons� with sigmoidal transfer function
 and �nally� the output layer is composed of one neuron

with linear transfer function� The input and output of the network are real �for details about

neural networks and neurocomputing an extensive literature is today avaliable ��� �� ��	�

If we consider a set of training examples f�x�� y�	� �x�� y�	� � � � � �xn� yn	g� our neural network
will� in the training phase� minimize the functional

H�w	 
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i��

�
yi � h�xi� w	

��
��	

where h are the transfer functions implemented by the network� they are parametrized by the

weight matrix w of the network and can be written as�

h�x
w	 


kX
j��

�j��ujx� �j	 ��	

where w 
 ��� u� �	 and

��x	 

�

� � e�x
�

In the training phase� the network �nd the optimal weight matrix� which minimizes H�w	� using

the generalized delta rule� The generalize delta rule� also called gradient descent method� consists

of two phases� In the �rst an initial weight matrix is randomly taken
 in the second phase the

learning mechanism starts� this consist in the updating of the w matrix following the prescription

w�n � �	 
 w��	 � �rH�w�n		

where � is a parameter called learning rate� This updating is iterated many times� until a good

approximation is achived� If N is the number of iterations� we have

w�N	 
 w��	 � �
NX
i��

rH�w�i		

where w��	 is the initial matrix� The learning process �nally stops when one of the following

conditions is satis�ed�

�� The number of iteration reaches a �xed value


�� The quantity rH�w	 is zero� namely the functional H keeps a steady value�

This algorithm determines a minimum of H�w	 that however can in general be a local minimum�

a problem that must be taken into account in every application of neural networks where absolute

minima are generally required�

Why the regression problem can be approached by means of a neural network� To address

this question is necessary to recall something about regression� Let X and Y be �a�c� to simplify

�



the notations	 random variables and fY jX�yjx	 the conditional density of Y with respect to X �

The regression function is de�ned as�

gY �x	 
 E�Y jX 
 x� 


Z ��

��

yfY jX�yjx	 dy ��	

If on the other hand g�x	 is an arbitrary function in L� it is well known that

Ejg�X	� Y j� � E
��E�Y jX �� Y

��� 
 E
��gY �X	� Y

���� � g � L� ��	

namely that the random variable gY �X	 
 E�Y jX � minimizes the quantity E
��g�X	 � Y

���� in the

sense that the minimum of the functional E �g� 
 Ejg�X	 � Y j� is realized exactly by gY �x	 


E�Y jX 
 x�� This remark points out that the regression gY �x	 can be determined as the solution

of a suitable variational problem� However� since in general we have only a random sample of

values of X and Y � we will be obliged to estimate the regression function form the sample average

H���	 

�

n

nX
j��

�
��xj	� yj

��
��	

by determining the continuous function ��x	 that minimizes H�� The evident analogy between ��	

and ��	 justi�es now the use of a neural network to estimate the regression� if we consider for our

back propagation neural network a set of training which is a sample from X and Y� the network

will learn to implement a function ��x	 which is an estimate of the regression function gY �x	�

In other words� since the general task of a neural network is to minimize the functional H�w	 in

��	� it implements a mean square estimation metod to �nd an approximation to the regression

function� Moreover� since the backpropagation neural networks are able to approximate a wide

class of functions ���� they are also a suitable tool for the determination of non�linear regression�

Since it is not easy to prove theoretical results about the neural network performances� in

this paper we will limit ourselves to the analysis of a few empyrical results� We will extract a set

of sample by two simulated RV�s and we will teach them to the network
 then we will assess the

results by means of a few suitable parameters by comparing the network performance with an a

priori given regression function� In particular X will be uniformly distribuited in ��� �� and

fY jX�yjx	 

�p
�	


e�g�x��y�
����� ��	

so that E�Y jX 
 x� 
 g�x	� where g�x	 is an a priori given function� As a consequence the sample

of the RVs X and Y to be used to test the network performance will be generated by an appropriate

computer program� for given regression function g�x	� number of sample�s elements and variance


��

The quantities used in the assessment of the performances will be the following�

�	 energy of network�

H�w	 


nX
i��

�
yj � h�xj � w	

��

 ��	
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it is the square deviation of the output h�x
w	 of the network from the requited answers yi� As

we have already said� this is the quantity that the generalized delta rule algorithm minimizes

in the learning phase


�	 mean Square Error�

��w	 

�

n

nX
i��

�
h�xi� w	� g�xi	

��

 ��	

it measures the mean square deviation from the required regression g�x	 of the function h�x
w	

eventually implemented by the network�

�	 maximum deviation�

��w	 
 max
i

��h�xi� w	 � g�xi	
�� 
 ���	

it evaluates the maximum deviation between the required values g�xi	 of the regression and

the outputs h�x
w	 of the network�

It is clear from the de�nitions that� while the learning algorithm works to minimize H � nothing

guarantees that � and � too will be minimized� Moreover the two performance parameter �� and �	

de�ned form the a priori knowledge of the regression g�x	 can be minimal under di�erent conditions�

so that in some performances we could have large � and small �� or vice�versa� In this paper we will

consider in particular three preliminary problems� �	 indipendence of the performance form the

initial conditions
 �	 relation between � and N to obtain an optimal performance
 �	 dependence of

the performance on the number of neurons in the hidden layer� An investigation of these questions is

indeed necessary as a preparation to the subsequent extensive simulations needed to comparatively

assess the network performances with respect to other standard methods of regression estimate�

�� INDEPENDENCE OF LEARNING FROM THE INITIAL CONDITIONS

The initial conditions of the simulations are expressed by a matrix of weights w 
 ��� �� u	

where� as in ��	 � represents the weights of the single sigmoidal trasformation in the linear com�

bination of output neuron
 � represents the thresholds of hidden neurons
 u represents the values

of the sigmoid function derivatives in the hidden neurons� However� since

��ux� �	 

�

� � e��ux���



�

� � e�u�x�c�

with c 
 �
u centre of the sigmoid� we can also consider as weights of the network the vetor

w 
 ��� u� c	� This will be useful in the light of the following remarks� As already stated� the

generalized delta rule consists of two phases� in the �rst an initial weight matrix is randomly

taken
 in the second phase the learning mechanism starts� consisting in the following updating of

the w matrix�

w�n� �	 
 w��	 � �rH�w�n	� �
This updating is iterated many times� until a good approximation is achived and� if N is the

number of iterations� we will have

w�N	 
 w��	 � �

NX
i��

rH�w�i	�
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where w��	 is the initial matrix� The learning process stops if one of the following conditions is

satis�ed�

�� the number of iterations reaches an a priori �xed value


�� the quantity rH�w	 is zero�

However� even if the condition � can be satis�ed in many points in the space of weights w� just

a few of these points will be acceptable �absolute minima of H	� Hence� to guarantee that the

system will eventually reach an acceptable solution� the values of the initial weight matrix could

be very relevant� For our kind of problem it is realistic to think that a good initial condition is

obtained when c �the centre of the sigmoid �nctions	 is in ����� while u and � must be empyrically

determined� To test these ideas we have �xed the network architecture� � neuron of input layer� �

neurons of hidden layer� � neuron of output layer� We �xed also N 
 ���� and � 
 ���� and we

have taken a sample set of �� elements with g�x	 
 �x��� x	 and 
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Fig� � Network performance as measured by h�i in function of Ejuj

With these �xed data we have tested the performance stability in di�erent regions of the weight

space� in each region we have generated ��� initial weight matrices and we have used it to run the

training of the network� If w�k� is the k�th initial weight matrix� we calculate the corresponding

�k and �k and then we consider the averages

h�i 
 �

���

���X
k��

�k � h�i 
 �

���

���X
k��

�k

and the standard deviations

S� 


vuut �

��

���X
k��

�
�k � h�i�� � S� 


vuut �

��

���X
k��

�
�k � h�i�� �

In the �rst test we have generate the initial matrices with weights �� c and u all uniformly dis�

tributed in ������� In the second test the initial matrices have weights uniformly distributed in the

following intervals� c in ��� ��� u in ���� ��� and � in ���� ��� We then obtained the following results�

�



in the �rst test

h�i 
 ���� � S� 
 ����� 
 h�i 
 ���� � S� 
 ����� 


in the second test

h�i 
 ���� � S� 
 ����� 
 h�i 
 ���� � S� 
 ����� �

As can be seen� the performance is rather stable in this situation even if greater stability �smaller

standard deviations	 and better performances are exhibited in the second simulation� pointing to a

slight preference for the second choice in the distribution of initial data� Moreover� since for larger

values of u the learning is more in�uenced by the sample noise� we have tested the performances

of the network against larger and larger values of juj� We have generated ��� initial matrices with

c uniformly distributed in ��� ��� � in ���� �� and juj uniformly distribuited respectively in ��� ���

��� ��� ���� ���� ���� The results are summarized in Fig� � and ��
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Fig� � Network performance as measured by h�i in function of Ejuj

and they constitute an empyrical con�rmation of the fact that the values of juj must be kept in
intervals small enough to make the performance not too sensitive to the sample noise�

�� RELATION BETWEEN � AND N IN OPTIMAL PERFORMANCES

Since the weight updating equations are

w�N	 
 w��	 � �

NX
i��

rH�w�i	� �

the following parameters are of relevance along the training� the learning rate �� the number of

iterations N � the initial weight matrix and the number of the sample elements� In the updating

�



equation the initial matrix� the learning rate and the number of iterations are present in an explicit

way� In an implicit way there is also the number of the sample elements which appears in the

rH�w�i	��

� � �
�

���

���

���

���

� �����	

�

Fig� � Dependence of the maximal deviation � on the learning rate ��
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Fig� � Dependence of the mean square deviation � on the learning rate ��
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H�N	

Fig� � Final value of the energy H as a function of the learning rate�

We will analyze here only the relation betwen � and N � with particular interest for the so� called

�



overtraining� or over�tting ��� ��� Let us initially suppose that the random variables X and Y are

in a very simple functional dependence� so that X is uniformly distributed in ��� ��� and Y 
 g�X	�

A sample of X and Y � will represent a sample of the function g�x	� In this case� for a large enough

sample� the neural network should realize a good approximation of the function g�x	�
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Fig� 	 Dependence of the minimal mean square error � on the number N of presentations
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Fig� 
 Dependence of the optimal �w�r�t� the mean square error	 learning rate � on the number

N of presentations�

If now we keep �xed the initial weight matrix� the network architecture� the amplitude of the

sample and the regression function exactly as in section �� but we allow the learning rate to vary

from ������ to ���� �with a step ������	� we obtain the results summarized in Fig� � and �� the

�rst shows how � changes with �
 the second shows how � changes with �� It is important to

remark here that the network errors are monotonically decreasing vith the values of the learning

�



rate� Moreover Fig� � shows how the �nal �just before the updating algorithm stops	 value H�N	

of the energy changes with ��
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Fig� � Dependence of the minimal maximum deviation � on the number N of presentations
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Fig� �� Dependence of the optimal �w�r�t� the minimal deviation	 learning rate �� on the number

N of presentations�

As a consequence these diagrams describe how the network performances variate variates with

the value of the learning rate and it individuates two regions of the � values� for � � ����� the

learning rate is too small to make the network properly converge �this region is characterized by

non zero values of the H derivative	
 on the other hand for � � ����� the last values of the energy

derivative is zero indicating that now the network converged to a stable state� Of course this type

�



of problems can be viewed as a particular �and simpler	 case of regression determination� that

characterized by a deterministic relation between the two variables with no noise on the sample�

However in general there is no functional relation between X and Y � but only a statistical relation

which makes meaningful a regression analysis� Hence we have analyzed the performances of the

neural network for a sample of two random variables in the same statistical relation described in

the Section �� To determine the relation between the optimal values of � and N we must analyze

the global behaviour of the two functions ����N	 and ����N	� the other parameter being kept

�xed� In order to do that we have de�ned some auxiliary functions� �rst of all we de�ne

��N	 
 min
�

����N	 ���	

which is plotted in Fig� �� It is remarkable that this function is monotonically decreasing� Now

let us call ��N	 the particular value of the variable � such that� for an arbitrary given N � we get

�
�
��N	� N

�

 ��N	 � ���	

The previous relation implicitely de�nes the function ��N	 plotted in Fig� � which represents the

optimal value of the learning rate for a given number N of presentations� In other words the

function ��N	 summarizes the couples of values of � and N that these parametrs must assume to

have an optimal performance in terms of �� The same analysis can be carried out for the second

error parameter �� we de�ne

��N	 
 min
�

����N	 ���	

a function plotted in Fig� �� and then we call ���N	 the particular value of the variable � such

that� for an arbitrary given N � we get

�
�
���N	� N

�

 ��N	 � ���	

This implicitely de�nes the function ���N	 plotted in Fig� ��� It is remarkable that the curves

��N	 and ���N	 are far from coincident and respect the general rule ��N	 � ���N	� This witnesses

the fact that the two performance parameters � and � are in fact rather di�erent so that same sort

of compromise must be hammered in the practical cases between the two con�icting requirements

of � and � minimization�

�� DEPENDENCE OF THE PERFORMANCE

ON THE NUMBER OF NEURONS IN THE HIDDEN LAYER

The last test tries to determine how the performance of the network variates with the number

of neurons in the hidden layer� It is known ��� that there are methods to calculate the number of

hidden neurons in order to achieve good performances� This is often calculated from the number

of extremal points of the function to approximate plus �� If this function is �x��� x	� as happens

in our simulations� the number is �� If the number of neurons increses� the performance of network

��



improves up to a point� after that it worsens� This has two reasons� �rst of all the computational

complexity of the network increases and the system converge more slowly� Moreover a large number

of neurons make the network too prone to be in�uenced by the noise� To quantitatively test these

behaviours�
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Fig� �� Mean square error as a function of th number of hidden neurons�
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Fig� �� Maximum deviation as a function of the number of hidden neurons�

We have now �xed a network architecture in this way� � neuron of input layer
 � neuron of output

layer
 N 
 ����
 � 
 ����� �an evident compromise between the values ������	 	 ����� and

�������	 	 ����	� On the other hand the number � of neurons in the hidden layer is alloved to

run from � to �� by steps of � neurons� Moreover the sample consists of �� elements and as usual

g�x	 
 �x�� � x	 and 
 
 ���� As both Fig� �� and �� show� the performance clearly worsens

��



�both in terms of � and �	 when the number � of hidden neurons increases beyond a few units�

This con�rms the well known fact that too clever neural networks can have a stupid behaviour in

the sense that they learn too much� including the noise�

� ��� ���� ���� ����
���

���

���

���

���

���

���

H

n

� 
 �

Fig� �� Fast fall of the energy H for a network with � hidden neurons�
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Fig� �� Slow drop of the energy H for a network with �� hidden neurons�

This is the very analog of a problem of �ltering in the sense that if the �lter has a too wide

bandwidth it will inevitably accept signal and noise and it will reproduce the actual signal in a

way too faithful with no cleaning of the signal from the noise� On the other hand a �lter with a

��



too narrow bandwidth �the analog of a neural network with only a few hidden neurons	 will much

more e�ectively eliminate the noise� but it will also impaire the signal that we would like to extract

from the noise with an unacceptable level of distortion� As always in these situations the di�cult

task is to assess the values of the parameters �number of hidden neurons� �lter bandwidth	 which

optimize the performance of the system� As another indication of this situation we analyzed the

behaviour of the energy H�N	 both in the case of � and �� hidden neurons� Fig� �� then shows

that in a learning process with � hidden neurons the function H�N	 decreases much more quickly

than in the case of �� neurons �Fig� ��	�

�� CONCLUSIONS

We will conclude this paper by showing an example of regression estimate by means of a

backpropagation neural network in one of the typical con�gurations discussed in the previous

sections� The results are summarized in Fig� ���
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Fig� �� Regression function �dashed line	 and network answer �solid line	 from a �� elements

sample �dots	�

The �� points sample has been generated by supposing a regression theoretical function g�x	 


�x�� � x	 �shown as a dashed line in Fig� ��	� with a superimposed gaussian noise with 
 
 ����

��



The backpropagation neural network had just one neuron in the output and in the input layers

and six neurons in the hidden layer� The learning rate was chosen as � 
 ���� and the maximum

number of iterations was N 
 ����� The initial values of the network parameters were uniformily

distributed in suitable intervals� the centers c of the sigmoidal functions are in ��� ��� the derivatives

u of sigmoids in ���� �� and the weights � of the sigmoidal transformations in ���� ��� In this

con�guration the network will learn to approximate the regression function in � or � minutes �with

a ��� PC at ��� MHz	� Unfortunately these timings grow very quickly with the number N of

iterations so that the training phase would be considerably longer �of the order of ��� minutes	 for

N 
 ����� iterations� However with faster PC�s and a suitable design of the simulation it would

be surely possible to cut these times at a reasonable size�
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