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Nonexponential decay of Feshbach molecules
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We analyze the temporal behavior of the survival probability of an unstable 6Li Feshbach molecule close to
the BCS-BEC crossover. We find different instances of nonexponential decay as the magnetic field approaches
the resonance value, at which the molecule becomes stable. We observe a transition from an exponential decay
towards a regime dominated by a stretched-exponential law.
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I. INTRODUCTION

The decay of an unstable system is commonly associated
with an exponential law. However, the quantum evolution
of an unstable state, governed by the Schrödinger equation,
features deviations from such a law [1–4]. On one hand, at
short times the survival probability is quadratic [5–7]. On the
other hand, the exponential regime cannot last indefinitely
[8–11], and a slower (typically, power-law) decay takes over at
long times (see, however, [12]). In atomic and nuclear physics
decays, the aforementioned deviations are usually so small to
be practically unobservable, the exponential law having been
verified with a high degree of accuracy (see, e.g., [13,14]).
The initial quadratic regime of decay, however, has been
experimentally confirmed on a number of carefully controlled
physical systems [15–22], while the (more elusive) power-law
decay at long times has been experimentally confirmed only
very recently [23,24].

Strong-coupling effects and/or the presence of a structured
spectrum can induce peculiar deviations from the expected
exponential law. We will consider here the decay of a weakly
bound Feshbach molecule. A Feshbach resonance occurs
whenever the energy of the scattering state (two atoms in a
given internal configuration, an open channel) is close to the
energy of a molecular bound state (a closed channel) [25]. In
this situation, the s-wave scattering length diverges, with the
molecular state being energetically favored with respect to the
unbound atomic state on the side of positive divergence. We
will be interested in particular in magnetic resonances, whose
control parameter is an external magnetic field. Feshbach
resonances give rise to a variety of physical phenomena, in-
cluding the crossover, at thermal equilibrium, between a BCS
state of atomic (fermionic) Cooper pairs and a Bose-Einstein
condensation of weakly bound bosonic molecules [26–29],
and represents a powerful tool to investigate the atomic
structure and interaction potentials [30,31]. The possibility to
obtain a stable molecular state by adiabatically varying the
magnetic field in the presence of a resonance [32–34], as well
as the effects of atom-molecule coherence in the evolution of
the system [35,36], has been extensively investigated.

In this article we will consider deviations from exponential
decay laws in systems close to Feshbach resonances. For the
sake of concreteness, we will focus on the time evolution of
an unstable 6Li molecular state [37,38], associated with the
resonance at a 543.25 G magnetic field [25,37]. This choice is
motivated by the fact that such a resonance is closed-channel
dominated, in the sense that, outside the small range of
0.1 G from the resonance, the molecular state has negligible
hybridization with the atomic sector. In characterizing the
molecule decay, we will unveil the emergence of a stretched-
exponential regime [39], which becomes dominant as the
resonance is approached.

Dynamics yielding the appearance of stretched exponen-
tials are typical of a number of different phenomena, in both
statistical phenomena [39] and glassy dynamics [40], and
in the context of one-dimensional Bose gas, when the low-
energy physics is well described by a Tomonaga-Luttinger
liquid [41]. Interestingly, in the latter case the single-particle
correlation function also displays a power-law behavior. Al-
though the coefficients characterizing the stretched exponen-
tial can be different, the underlying phenomenon involves the
presence of different competing dynamics and lifetimes. We
will see that the time evolutions to be discussed in this article
have a quantum-mechanical origin and are not amenable to a
classical statistical description, being the consequence of the
interference of quantum amplitudes.

This article is organized as follows. In Sec. II we introduce
the model Hamiltonian and characterize the initial state. In
Sec. III we discuss the relation between the Hamiltonian,
the molecular state, and the form factors of atom-molecule
interactions. In Sec. IV the interatomic potential in the molec-
ular state is approximated by a Morse potential, providing
semianalytic results. In Sec. V we introduce the resolvent
formalism to characterize the time evolution of the molecule.
In Sec. VI we characterize the decay rate of the molecule,
in connection with the analytic structure of the propagator of
the initial state. In Sec. VII we discuss the different relevant
regimes in the time evolution of the molecule. Finally, in
Sec. VIII we summarize our results and comment on possible
perspectives.
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II. HAMILTONIAN AND INITIAL STATE

We will consider the boson-fermion Hamiltonian [42–44]

Ĥ = Ĥ0 + ĤAM + ĤF, (1)

with

Ĥ0 =
∑

p

∑
σ=↑,↓

p2

2m
ĉ†

p,σ ĉp,σ +
∑

q

(
q2

4m
+ EB

)
b̂†

qb̂q (2)

describing the dynamics of free fermionic atoms of mass m
and bosonic molecules of mass 2m. Here EB is the molecular
binding energy, which is the difference between the energy
of the static resonant molecular state (closed channel) and
the continuum threshold for the free-atom pair, which is
an approximately linear function of the magnetic field [25].
The field operators b̂q and ĉp,σ , which satisfy the canonical
(anti)commutation relations

[b̂q, b̂q′] = 0, [b̂q, b̂†
q′ ] = δq,q′ , (3)

{ĉp,σ , ĉp′,σ ′ } = 0, {ĉp,σ , ĉ†
p′,σ ′ } = δpp′δσσ ′ , (4)

act on the Fock space of the atom-molecule system. The
atoms are characterized by two possible internal states (pseu-
dospins), denoted by ↑ and ↓.

The interaction Hamiltonian ĤAM describes the transitions
between a pair of atoms with opposite pseudospin and a
molecule, preserving the total momentum:

ĤAM =
∑
K,p

[G(p)b̂†
K ĉ−p+K/2,↓ĉp+K/2,↑ + H.c.]. (5)

The coupling G(p) between the molecule and the atom pair
is assumed to be independent of the total momentum K
by Galilean invariance and reads, according to the second-
quantization prescription [45],

G(p) = 〈ψM,0|Hint|p ↑,−p ↓〉, (6)

where

|ψM,0〉 = b̂†
0|0〉, (7)

|p ↑,−p ↓〉 = ĉ†
p,↑ĉ†

−p,↓|0〉, (8)

with |0〉 the vacuum of the Fock space and Hint the (first-
quantization) Hamiltonian that couples the atomic and molec-
ular sectors. We will later characterize the function G(p) for
our case study.

The last term in (1) describes the two-body interactions
between atoms in different internal states, through an inter-
atomic potential that depends only on their relative position:

ĤF =
∑
p,p′,q

U (p − p′)ĉ†
p+q/2,↑ĉ†

−p+q/2,↓ĉ−p′+q/2,↓ĉp′+q/2,↑.

(9)

Since, at low energy, the s-wave contribution dominates the
two-body scattering, we will neglect the interactions between
atoms in the same internal state, which appear for higher-order
partial waves.

Our goal is to characterize the evolution of the initial
one-molecule state (7) through its survival probability at

time t ,

P(t ) = |〈ψM,0|e−i(t/h̄)Ĥ |ψM,0〉|2. (10)

Note that in experiments with ultracold gases, a molecular
condensate can be prepared, represented by a many-body state
|�0〉 with

〈�0|b̂†
0b̂0|�0〉 = N, (11)

where typical values of the particle number are N � 104–
107 [46]. The fraction of molecules out of the condensate is
suppressed like (abgnmol)1/2, where abg is the background (i.e.,
far-from-resonance) scattering length and nmol the molecular
density. We will assume that, at least in the initial part of the
evolution, which is of interest for this article, the effects of
intermolecular scattering, mediated by the atom pairs emitted
by different molecules, are suppressed. Thus, to a good ap-
proximation, the evolved condensate fraction

N (t ) = 〈�0|ei(t/h̄)Ĥ b̂†
0b̂0e−i(t/h̄)Ĥ |�0〉 (12)

will be proportional to the survival probability P(t ). In the
following, after characterizing the molecular survival proba-
bility, we will comment on the range of validity of such an
assumption.

III. FORM FACTOR OF THE ATOM-MOLECULE
INTERACTION

The atom-molecule form factor is determined by the first-
quantization interaction Hamiltonian Ĥint and the details of
the molecular state |ψM,0〉. In order to properly analyze these
aspects, we will consider the s-wave Feshbach resonance of
6Li (m � 10−26 kg) at B = Bres = 543.25 G [25,37]. Since it
is an exceptionally narrow (closed-channel-dominated) res-
onance for a fermionic species, it enables one to create,
through an adiabatic sweep of the magnetic field, a system
of almost bare molecules, very weakly hybridized with the
atomic sectors. The resonance appears in the scattering of
atoms in the internal states labeled as the a and b channels,
which, in the high-field regime [25], safely applicable at Bres,
coincide with

|↑〉 ≡ |iz = 1, sz = −1/2〉, (13)

|↓〉 ≡ |iz = 0, sz = −1/2〉, (14)

where iz and sz are the components along the magnetic field
of the atomic nuclear and electronic spin, respectively, in units
of h̄. Henceforth, we will adopt the notation

S = s1 + s2, I = i1 + i2 (15)

for the total spins.
The atom-pair state |p + K/2 ↑,−p + K/2 ↓〉 can be de-

composed into the product of the center-of-mass state |Kc.m.〉
and an antisymmetric relative-motion state |p ↑,−p ↓〉, de-
fined in (8), which reads, in terms of the orbital and internal
states,

|p ↑,−p ↓〉 = 1√
2

(|p,−p〉− ⊗ |ψ+
ab〉 + |p,−p〉+ ⊗ |ψ−

ab〉),

(16)
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where

|ψ±
ab〉 = 1√

2
(|↑〉 ⊗ |↓〉 ± |↓〉 ⊗ |↑〉),

|p,−p〉± = 1√
2

(|p〉 ⊗ |−p〉 ± |−p〉 ⊗ |p〉).

(17)

Notice that, while the pseudospin state can be either symmet-
ric or antisymmetric, the atom pair is always an electronic spin
triplet state, corresponding to Sz = −1. The resonant bound
state is an s-wave electronic spin singlet state, whose nuclear
spin is a quasidegenerate mixture of I = 0 and I = 2 [25]. The
state |ψM,K〉 of the molecule can thus be factorized into

|ψM,K〉 = |Kc.m.〉 ⊗ |φM〉 ⊗ |�I〉 ⊗ |S = 0, Sz = 0〉, (18)

where |φM〉 is the spherically symmetric orbital wave function
and |�I〉 the superposition of the I = 0, 2 states coupled to
the atom-pair state by Hint. The open and closed channels are
connected by the hyperfine coupling [35] between the nuclear
and electronic spins of each atom

Hint ≡ Hhf = Ahf (i1 · s1 + i2 · s2), (19)

where the constant Ahf can be deduced from the hyperfine
splitting between the states with total spin f = 3/2 and f =
1/2 at zero magnetic field. In the case of 6Li, the hyperfine
splitting reads δEhf/h̄ = 228 MHz and its relation to the
coupling constant is Ahf = (2/3)δEhf .

Since the hyperfine Hamiltonian does not act on the relative
motion degrees of freedom, only the term involving |p,−p〉+
in the pair wave function is coupled to the s-wave bound state
and contributes to G(p) in (6). The action of the hyperfine
Hamiltonian on the related pseudospin state |ψ−

ab〉 reads

1

Ahf
Hhf |ψ−

ab〉 = −1

2
|ψ−

ab〉 + 1

2
|I = 1, Iz = 0〉 ⊗ |τ 〉

+
√

3

6
(|I = 2, Iz = 0〉 − 2

√
2|I = 0, Iz = 0〉)

⊗|σ 〉, (20)

with |τ 〉 ≡ |S = 1, Sz = 0〉 and |σ 〉 ≡ |S = 0, Sz = 0〉. As-
suming that the initial molecule condensate is obtained from
free atoms by adiabatically sweeping the magnetic field across
the resonance, the bound nuclear state in (18) can be identified
by the normalized state

|�I〉 = 1

3
|I = 2, Iz = 0〉 − 2

√
2

3
|I = 0, Iz = 0〉 (21)

associated with the electronic spin singlet |σ 〉 in (20). Based
on these considerations, the form factor of the atom-molecule
interaction in (5) reads

G(p) = 1√
2
〈φM|p,−p〉+(〈σ | ⊗ 〈�I |)Hhf |ψ−

ab〉

=
√

3

2
Ahf

φ̃M(p)√
V

, (22)

with V the quantization volume, φM(r) = 〈r|φM〉, and

φ̃M(p) =
∫

dr φM(r)eip·r/h̄. (23)

To determine an explicit expression for the Fourier-
transformed molecular orbital wave function φ̃M, we will
consider in the following section an approximated interatomic
potential.

IV. MORSE POTENTIAL APPROXIMATION

The resonant molecular state is the last excited vibrational
state, with vibrational quantum number v = 38, of the inter-
atomic potential in the electronic spin singlet state. Since its
wave function is spherically symmetric, a radial wave function
χ (r), with r = |r|, can be used,

φM(r) = χ (r)

r
. (24)

The radial equation can be solved if the interatomic potential,
characterized by a repulsive core and an attractive tail, is
approximated by a Morse potential

V (r) = D(e−2α(r−r0 ) − 2e−α(r−r0 ) ), (25)

which depends on three parameters: the absolute value of the
minimum D, the radial distance r0 of the minimum, and the
inverse length constant α. The discrete negative energy levels
are characterized by an integer vibrational quantum number v,
ranging from zero to �λ�, with

λ =
√

2μD

h̄α
, (26)

where μ is the reduced mass, and read

ε(v) = − (h̄α)2

2μ

(
λ − v − 1

2

)2

. (27)

The independent parameters λ, α, and r0 can be fixed by
fitting the relevant features of the physical state, namely, the
potential depth Vmin/h̄ = 250 THz, the dissociation energy
E38/h̄ � 1.6 GHz, the potential minimum position r0 � 5a0,
with a0 = 5.29 × 10−11 m the Bohr radius, and the classical
turning points amin � 3a0 and amax � 43a0. We choose the
three parameters of the Morse potential by preserving the
following features of the measured potential: the ratio of the
binding energy to the potential depth, the extension of the
classical motion for v = 38, and the position of the inner
turning point. This ensures an accurate reproduction of the
spatial distribution of the state. The ratio E38/Vmin fixes the
parameter λ by imposing

|ε(38)|
D

= 1

λ2

(
λ − 38 − 1

2

)2

= E38

Vmin
⇒ λ � 38.6, (28)

while α is determined in terms of E38 and δr = amax − amin

through

α = 1

δr
ln

(
1 + √

1 − E38/Vmin

1 − √
1 − E38/Vmin

)
� 1

3a0
. (29)

The minimum of the approximate potential is placed at

r0 = rmin + 1

α
ln

(
1 +

√
1 − E38

Vmin

)
� 5.08a0, (30)
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FIG. 1. Morse approximation of the radial probability density
4π |χ (r)|2. The red tick represents the outer turning point of the
classical motion at energy E38.

remarkably close to the measured value. Since �λ� = 38, the
resonant state considered here is the most excited discrete
level in the Morse potential, as in the real case.

We can determine the wave function ψ38, depending on the
dimensionless variable x = αr, as

ψ38(x) = Nλ,38(y(x))λ−77/2e−y(x)/2L2λ−77
38 (y(x)),

Nλ,38 =
√

38!(2λ − 77)

�(2λ − 38)
,

y(x) = 2λe−(x−αr0 ), (31)

where �(β ) is the Euler Gamma function and Lδ
γ (z) is a

generalized Laguerre polynomial, satisfying∫ ∞

0
dx|ψ38(x)|2 = 1. (32)

To obtain the correct normalization of the molecular wave
function φM(r), the radial function χ (r) must be related to
(31) by

χ (r) =
√

α

4π
ψ38(y(αr)). (33)

The radial wave function, plotted in Fig. 1, is evidently
concentrated around the outer classical turning point and is
significantly extended beyond it. The Fourier transform (23)
of the molecular wave function, once the spherical symmetry
of φM(r) is exploited and the V → ∞ limit is taken, can be
conveniently expressed in terms of an integral involving the
adimensional wave function (31),

φ̃M(p) = 4π h̄

p

∫ ∞

0
dr χ (r) sin

( pr

h̄

)
=

√
4π

α

h̄

p
F

( p

h̄α

)
,

(34)

with

F (P) ≡
∫ ∞

0
dx ψ38(z(x)) sin(Px). (35)

The behavior of the form factor G(p), which is proportional to
φ̃M(p), is determined by the adimensional function F (P)/P.

At low momenta, the form factor approaches a constant, since

F (P)

P
→ I1 ≡

∫ ∞

0
dx ψ38(z(x))x � 94. (36)

The square of F (P)/P falls off rapidly with P and is fit-
ted to a very good approximation by a Gaussian function
I1 exp[−(αbP)2], where b � 46.7a0 can be interpreted as a
cutoff length.

V. SELF-ENERGY AND DYNAMICS

The survival probability amplitude of the initial one-
molecule state (7), |ψM,0〉 = b̂†

0|0〉, reads, for t > 0,

A(t ) = 〈ψM,0|e−iHt/h̄|ψM,0〉 = i

2π

∫
B

dE G(E )e−iEt/h̄,

(37)

where the propagator

G(E ) = 〈ψM,0| 1

E − H
|ψM,0〉 (38)

is the expectation value of the resolvent (E − H )−1 in the
initial state |ψM,0〉, and the integration (Bromwich) path B
is a horizontal line in the complex energy upper half plane,
Im E > 0, with a constant imaginary part, in accord with the
convergence of the Fourier transform (37). The propagator can
be expressed as

G(E ) = 1

E − EB − �(E )
, (39)

with EB the binding energy of the bare molecule and �(E ) the
self-energy, representing all possible transitions generated by
the interaction Hamiltonian Hhf and connecting |ψM,0〉 with
itself, without involving |ψM,0〉 as an intermediate state.

The self-energy can always be expressed as an integral
involving a spectral function κ (E ) as

�(E ) =
∫ ∞

E0

dE ′ κ (E ′)
E − E ′ (40)

for E ∈ C \ [E0,+∞), with E0 the ground energy of H . If
one neglects, as a first approximation, the scattering between
free atoms [namely, U (p) = 0 in Eq. (9)], the spectral function
[47] can be computed exactly and reads

κ0(E ) =
∑

p

|〈p ↑,−p ↓|ĤAM|ψM,0〉|2δ(E − Ep), (41)

with Ep = p2/m the energy of a pair of atoms with mass m
and opposite momenta p and −p and where the superscript 0
will henceforth label the zeroth-order approximation (in U ).
After a straightforward manipulation, one obtains

κ0(E ) =
∑

p

|G(p)|2δ(E − Ep)

= 3A2
hf

4π h̄α

√
m

E
F 2

(√
mE

h̄α

)
θ (E ), (42)

with F defined in Eq. (35). It is evident that κ0(E ) = 0
if E does not belong to the continuous spectrum of the
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Σ = + + ( 2)

FIG. 2. Feynman diagrams of the contributions to the self-energy �(E ) of the molecular state up to second order in U . Each pair of lines
represents a free-atom-pair propagator E − p2/m, while the functions G and U must be computed taking into account the momenta of the
propagators connected to the specific vertex.

free-fermion Hamiltonian. Based on the expression (35), the
spectral function also reads

κ0(E ) =
√

E f (E )θ (E ), (43)

where f (E ) is a single-valued function, analytic on the whole
complex plane. Thus, at low energy, the functional form of
the spectral function is determined only by the density of
states. Let us recall that the spectral function is related to
the (approximate) inverse lifetime of the molecular state with
binding energy EB by the Fermi golden rule

γGR(EB) = 2π

h̄
κ0(EB), (44)

which is nonzero only when EB is positive. The integral (40),
providing the self-energy �0, is well defined on the whole
complex plane except for the positive real axis, on which a
branch cut is present [47].

Interatomic scattering renormalizes the two-atom prop-
agator appearing in the self-energy of the molecule [42],
introducing new processes that change the momenta of the
emitted atom pair before recombination. Let us analyze how
these processes, diagrammatically represented in Fig. 2, affect
the self-energy. Consider, for simplicity, the case in which the
coupling between the atom pair and the molecule is constant

G ≡ G(0) =
√

3

2
√

V
Ahf φ̃M(0) =

√
3π

V
I1

Ahf

α3/2
, (45)

as well as the interatomic coupling U ≡ U (0), physically re-
lated to the background scattering length abg � 60a0 (namely,
the scattering length far from the Feshbach resonance) by [48]

U = Uc

V

(
1 −

√
πb

abg

)−1

with Uc ≡ −4π3/2 h̄2b

m
. (46)

In the last equality, V is the normalization volume and b
the characteristic length of a Gaussian cutoff function, which
has been used to regularize O(a2

bg) terms, the first-order

term being the usual result 4π h̄2abg/m. We will effectively
assume that the form factor of interatomic scattering has the
same cutoff length as the atom-molecule transition (see, e.g.,
Ref. [48]). Incidentally, we observe that, since U > 0, no BCS
transition is expected at low temperature.

The self-energy in the absence of scattering reads

�(0)(E ) = �0(E ) =
∑

p

G2

E − Ep
, (47)

while the first-order term in U is

�(1)(E ) =
∑

p

G

E − Ep
U

∑
p′

G

E − Ep′
= U

G2
[�0(E )]2.

(48)

Notice that, since G ∝ V −1/2 and U ∝ V −1, the ratio U/G2

is independent of the normalization volume V . Since the nth-
order term in U reads

�(n)(E ) = �0(E )

(
U

G2
�0(E )

)n

, (49)

it is possible to sum all the contributions to the self-energy and
get

�(E ) =
∞∑

n=0

�(n)(E ) = �0(E )

1 − U
G2 �0(E )

. (50)

This result represents a special case, in vacuum and for
a short-range potential, of the scattering t-matrix compu-
tation [45,49]. The divergent �0(E ) is regularized by the
replacement G → G(p). The complete spectral function can
be obtained by making use of the identity Im �(E + i0+) =
−πκ (E ), which yields

κ (E ) = κ0(E )[
1 − U

G2 P
∫ ∞

0 dE ′ κ0(E ′ )
E−E ′

]2 + [
U
G2 πκ0(E )

]2 , (51)

with P
∫

denoting principal value integration. The new func-
tion κ (E ) inherits the square-root singularity of κ0(E ).

To determine the decay rate, one performs the analytic
continuation of the self-energy from the upper to the lower
complex half plane, through the branch cut. The continuation
results in the expression for the self-energy on the second
Riemann sheet

�II(E ) = �(E ) − 2π iκ (E ), Im E < 0, (52)

with κ (E ) the analytic continuation of the spectral function
from the positive real axis. The decay rate and wave-function
renormalization are determined by the pole of the propagator
(38) in the lower half plane of the second Riemann sheet,
which satisfies

Epole = EB + �II(Epole ), (53)

and can be considered as a function of the binding energy that,
close to the resonance, is approximately linear in the magnetic
field

EB(B) = 2μBohr (B − B0), (54)

with μBohr = 9.27 × 10−24 J/T the Bohr magneton and B0

the value at which the bare binding energy is equal to the
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continuum threshold of the atom pair. The linear dependence
is due to the Zeeman splitting between the bound state, which
is an electronic singlet, and the free state, characterized by
Sz = −1 [see Eqs. (13) and (14)]. Once the pole has been
determined, the survival amplitude in the initial state can be
split as

A(t ) = Ze−i(EB+�E )t/h̄e−γ t/2 + Ã(t ), (55)

where the first term, giving an exponential decay, is related
to the integration around the pole, while the second term Ã
contains residual contributions from branch cut integrations
and is responsible for all deviations from the exponential law
[4,47]. The energy shift �E and the decay rate γ of the bound
state are related to the real and imaginary parts of the pole by

�E = Re Epole, γ = −2

h̄
Im Epole. (56)

The amplitude factor Z , also known as the wave-function
renormalization, is the residue at the pole, related to the first
derivative of the self-energy by

Z =
[

dG−1

dE
(Epole )

]−1

= 1

1 − �′
II(Epole )

= dEpole(EB)

dEB
,

(57)

where the last equality follows from the pole definition (53)
and the prime denotes derivative.

VI. POLES OF THE PROPAGATOR

The analytic properties of the propagator (38), discussed
in the preceding section, provide the basis to characterize the
stability properties of the molecular state with varying binding
energy EB. If the binding energy is significantly smaller than
zero, we expect the molecular state to be stable and very
well approximated by |ψM,0〉, while hybridization with the
atomic sector will increase as the magnetic field approaches
the resonance. When the molecule is stable, a real pole,
representing the energy of the dressed molecular state, can be
found on the first Riemann sheet, at an energy smaller than the
branching point at E = 0. Actually, real negative solutions of
the equation

Epole = EB(B) + �(Epole ) (58)

are found up to the value Bres of magnetic field such that

EB(Bres) + �(0) = 0 ⇒ Bres − B0 = 0.208 G. (59)

As B approaches Bres from below, the derivative �′(Epole )
diverges due to the singularity of the spectral function in E0.
Thus the quantity Z (EB), defined as in (57) on the second Rie-
mann sheet, vanishes. Therefore, approaching the resonance
from below, Epole admits the quadratic approximation

Epole(EB) ∼ 2μ2
Bη(B − Bres)2, (60)

as B ↑ Bres, with (the prime and double primes denote deriva-
tives)

η ≡ dZ (EB)

dEB

∣∣∣∣
B↑Bres

= lim
ε↑0

�′′(ε)

[1 − �′(ε)]3
, (61)

while it is linear far from the resonance. The very small width
found for the pure quadratic region (�10−6 G) is expected
from the extreme narrowness of the resonance. The value Bres

represents the actual position of the resonance, which is an
experimental parameter and not a prediction of the model.
Close to the resonance, the energy of the bound state is related
to the positively diverging scattering length a(B) by [25]

|Epole| � h̄2

ma2(B)
⇒ a2(B) � h̄2

2μ2
B|η|m(B − Bres)2

. (62)

Comparing this relation with the general expression [25,38]

a(B) = abg

(
1 − �

B − Bres

)
(63)

of the resonant scattering length, one obtains the result � �
0.08 G, which is very close to the measured value [37].

The zeros of

GII(E )−1 = E − EB − �II(E ), (64)

with Im E < 0, are the poles of the propagator on the second
Riemann sheet, which are relevant for the decay dynamics.
The time-reversed process is instead related to the zeros of
GII(E )−1 in the upper half plane, Im E > 0, where one gets

�II(E ) = �(E ) + 2π iκ (E ), (65)

which coincides with the analytical continuation of �(E )
from below the branch cut on the first Riemann sheet. Indeed,
due to the square-root singularity of the spectral function, the
two expressions (52) and (65) of �II coincide on the negative
real axis, since

√
x + i0+ = −√

x − i0+ for x < 0.
On the negative axis of the second Riemann sheet a real

pole with Z > 0, solution of

Epole = EB(B) + �(Epole ) + 2π iκ (Epole + i0+), (66)

exists for all B < Bres and moves towards the origin as B in-
creases. As we have seen before, also the pole on the negative
real axis of the first Riemann sheet (58) moves towards the
origin as B increases. At B = Bres it hits the branch point at the
origin and bounces back on the second Riemann sheet moving
backward on the negative real axis as B increases. The two real
poles on the second Riemann sheet collide at B = B1, with

B1 � Bres + 2.64 × 10−5 G, (67)

bouncing off each other and generating two complex conju-
gate poles, in the lower and upper half planes. The locus of
the poles in the second Riemann sheet is shown in Fig. 3, with
the arrows pointing toward increasing magnetic field. The real
part of the complex poles increases linearly with B − B1 for all
B > B1, while their imaginary parts scale approximately like√

B − B1.
The imaginary part of the complex pole in the lower half

plane yields the decay rate γ of the unstable molecule through
(56), which is plotted in Fig. 4. The lifetime is considerably
shifted with respect to the Fermi golden rule result (44),
obtained from the spectral density at U = 0, since, close to the
crossing (B ∼ B0), the atom-molecule coupling can no longer
be treated as a perturbation.

The squared modulus of the wave-function renormalization
Z in Eq. (55) represents the extrapolation of the exponential
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FIG. 3. Locus of the poles of the propagator of the initial state
|ψM,0〉 in the second Riemann sheet. The poles in the lower half plane
(Im E < 0) are solution of the equation Epole = EB + �(Epole ) +
2π iκ (Epole ), while the poles in the upper half plane (Im E > 0)
satisfy Epole = EB + �(Epole ) − 2π iκ (Epole ). The two equations co-
incide for real negative poles. The second pole on the negative real
axis originates from a negative pole on the first Riemann sheet which
passes through the origin for B = Bres. The two real poles collide
and bounce off into two complex conjugate poles for B = B1 =
Bres + 26.4 μG. The arrows on the red lines show the motion of poles
as the magnetic field increases.

part of the survival probability back to the time origin t = 0,

P(t ) = |A(t )|2 � |Z|2 exp(−γ t ). (68)

The plot in Fig. 5 shows that for B − Bres � 10−2 G, the value
of |Z|2 is significantly larger than one (which is only possible
for unstable states [50]) and diverges as B approaches B1 from
above like (B − B1)−1/2. Incidentally, we notice that wave-
function renormalization effects have been experimentally
observed in [23,24,51].

VII. TIME EVOLUTION

The increasing value of |Z|2 as the system approaches the
resonance is a marker of the strong deviation of the molecular

(1
0
5
Hz

)

(k
Hz

)

− res (G)

− res (10−2G)

1 − res

FIG. 4. Inverse lifetime γ of the unstable molecule for B > Bres.
The inset shows a close-up of the region close to B = Bres, where,
even though the decay rate vanishes for Bres < B < B1, the molecule
is still unstable.

− res (10−2G)

2

− res (G)

2

1 − res

FIG. 5. Square modulus |Z|2 of the wave-function renormaliza-
tion Z in (55). Here |Z|2 coincides with the extrapolated value at
t = 0 of the exponential part of the molecule survival probability and
diverges like (B − B1)−1/2 at B = B1 > Bres.

survival probability P(t ) from an exponential law. Generally,
in the absence of bound states, the survival probability can be
written as

P(t ) = |A(t )|2 =
∣∣∣∣
∫ ∞

0
dE ω(E )e−iEt/h̄

∣∣∣∣
2

, (69)

with

ω(E ) = κ (E )(
E − EB − P

∫ ∞
0 dE ′ κ (E ′ )

E−E ′
)2 + π2κ (E )2

� 0,

(70)

where the energy density ω(E ) = − Im G(E + i0+)/π is ob-
tained from (37), (39), and (40) (we set E0 = 0) by deforming
the Bromwich path B around the branch cut on the positive
real axis. The positive denominator of ω(E ) is smaller when
the energy E gets closer to a pole in the second Riemann sheet.

In the perturbative regime, deviations from the exponen-
tial law are usually expected for very short times (Zeno
region), where the behavior of the survival probability must
be quadratic, and for very long times, where a power-law
tail supersedes the vanishing exponential part. In our system,
a peculiar structure of the decay law emerges close to the
resonance, which is mainly due to the form of the spectral
function, scaling like

√
E for practically the whole relevant

energy range.
In order to analyze the effects we discussed close to

resonance and quantify the nonexponentiality of decay, let us
compare the plots in Fig. 6. In Fig. 6(a), corresponding to
the case B − Bres = 12 mG, the computed survival probability
is characterized by |Z|2 � 1.002 and γ � 4 × 104 s−1 and
approaches the asymptotic curve |Z|2e−γ t after a time �
1/3γ . Figure 6(b) represents the case B − Bres = 0.92 mG,
a situation in which the complex pole is very close to the real
axis, with |Z|2 � 1.03 and γ � 1 × 104 s−1. In the latter case,
the survival probability intersects the asymptotic exponential
at a time very close to 1/γ , where the survival probability
is already reduced by more than 1/2. As the magnetic field
approaches B1 from above, the first intersection between P(t )
and |Z|2e−γ t tends to infinity. Thus, in the limit B ↓ B1, the
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FIG. 6. Nonexponential decay at short times for B > B1 in the
cases (a) B − Bres = 12 mG and (b) B − Bres = 0.92 mG. In case
(a), γ = 3.96 × 104 s−1 and |Z|2 − 1 = 2 × 10−3; in case (b), γ =
1.11 × 104 s−1 and |Z|2 − 1 = 2.8 × 10−2. The blue solid lines rep-
resent the exact survival probability P(t ) of the molecule, approach-
ing the asymptotic red dashed curves |Z|2 exp(−γ t ) after a transient.
If the magnetic field is very close to resonance, nonexponentiality is
enhanced and the intersection point between the survival probability
and the asymptotic exponential moves towards t → ∞. In the insets,
the difference between the survival probability and a pure exponen-
tial curve with lifetime 1/γ is plotted.

exponential regime is never reached and a new decay law
emerges. Note that this law does not correspond to the initial
quadratic regime, which is practically unresolved in the plots,
since the curvature of P(t ) at the origin is given by the Zeno
time τZ = h̄/〈ψM,0|H2

AM|ψM,0〉1/2 � 10 ns, while the validity
of the quadratic approximation holds for t � 2mb2/h̄ � 1 ns.

An analysis of the time evolution of molecules in the
intermediate range Bres < B < B1 enables one to characterize
the emergent decay law. Indeed, the square-logarithmic plot
in Fig. 7 shows that, in this intermediate magnetic field
range, decay is characterized by an approximate stretched-
exponential law

P(t ) � e−atβ

, (71)

with β very close to 1/2. The physical origin of such behavior
can be ascribed to the fact that, for Bres < B < B1 and times
much larger than the inverse frequency cutoff 2mb2/h̄, the

( s)

(l
n

)2

FIG. 7. Squared logarithm of the molecular survival probability
for B − Bres = 18 μG. In the intermediate region Bres < B < B1,
in which the molecule is unstable but the decay rate is vanishing,
the survival probability P(t ) follows to a very good approximation
a stretched-exponential law P(t ) = exp(−a

√
t ). Forerunners of the

stretched-exponential decay can be observed in the transient parts of
decays with γ �= 0, when B approaches B1.

survival probability (69) is determined by the form of the
energy density close to the origin

P(t ) �
∣∣∣∣∣
∫ ∞

0
dE

√
E

(E + E1)(E + E2)
e−iEt/h̄

∣∣∣∣∣
2

� exp

(
−

√
8t

π h̄
(
√

E1 + √
E2)

)[
1 + O

(
tE2

h̄

)]
, (72)

where E1 and E2, with E1 < E2, are the absolute values of
the (real and negative) poles of the analytic continuation of
the propagator. Close to resonance, where E1 → 0, the decay
constant and the range of validity of the stretched-exponential
approximation are determined by the largest pole, which is
more stable with respect to variations of the magnetic field.
Moreover, it is worth observing that, even when the molecular
state becomes stable, the stretched exponential survives at the
beginning of the time evolution, before the system relaxes to-
wards the stable state. On the other hand, as already outlined,
a stretched-exponential behavior precedes the exponential
decay also for B > B1. Therefore, although the observation of
this peculiar regime is limited, in a strict sense, to a range of
magnetic field of order 10 μG, a finer tuning of the magnetic
field is not required to observe it.

Finally, it is worth recalling that a stretched-exponential
law also appears in classical statistical mechanics as an aver-
age effect over many exponential decays with different rates
[39]. Here, however, the effect is quantum mechanical and is
the result of an interference of amplitudes, as shown in (72).

A final comment is in order, concerning the relation be-
tween our results, obtained by considering the evolution of
a single molecule in vacuum, with the many-body physics
of gas clouds, in which the phenomenology of Feshbach
resonances is usually observed. Actually, even under the
hypothesis of an initially dilute molecular gas, the fermionic
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decay products can saturate the density of states

ρ(E ) = m3/2
√

2E

2π2h̄2 , (73)

giving rise to statistical effects. A strong condition for the
validity of the single-molecule approximation at a time t∗ con-
sists in requiring that the density of products, estimated from
the survival probability, the initial density of the molecule
nmol, and the energy density, satisfies

2nmol[1 − P(t )]ω(E ) � ρ

(
E

2

)
for t � t∗, E > 0. (74)

However, in the most interesting case of stretched-exponential
decay, with the magnetic field very close to the resonance,
such a strong condition can be too limiting, since the en-
ergy density tends to become very large close to the origin.
Nonetheless, the weaker condition that (74) be valid for
E � E2 and t � t∗ � h̄/E2 ensures that the single-molecule
approximation is justified in the times of interest for the ob-
servation of the stretched exponential, in which the emission
of particles with E � E2/2 is suppressed.

VIII. CONCLUSION AND OUTLOOK

We have analyzed the time evolution of an unstable Fes-
hbach molecule decaying into a pair of fermionic atoms
with opposite momenta. We have shown that, while the de-
cay is exponential for magnetic fields far from resonance,
when the magnetic field approaches the resonance value, the
decay is dominated by a stretched-exponential law P(t ) �
exp(−a

√
t ).

Stretched exponentials appear in the phenomenological
description of a variety of physical phenomena, in classical
statistical physics, glassy dynamics, and low-energy one-

dimensional Bose gases [39–41]. They are often used to
describe relaxation in disordered or complex systems, when
different local dynamics give rise to superpositions of simple
exponential decays, whose average effect yields stretched-
exponential behavior. However, the stretched-exponential law
unearthed in this article has a purely quantum-mechanical
origin, being the consequence of interfering quantum ampli-
tudes. The appearance of a stretched-exponential relaxation
in the context described in the present article is therefore of
interest, in that it bridges the gap between complexity and
typical quantum relaxation phenomena in a cold gas.

We leave for future work the study of the time evolution
of cold atomic systems in the presence of collective effects,
such as macroscopic quantum tunneling in mixtures of Bose-
Einstein condensates [52], confined in arbitrary potentials
[53,54]. It would be interesting to understand whether curious
time evolutions like the one analyzed in this work are present
in different quantum situations.
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