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We iteratively apply a recently formulated adiabatic theorem for the strong-coupling limit in finite-dimensional
closed and open quantum systems. This allows us to improve approximations to a perturbed dynamics, beyond
the standard approximation based on quantum Zeno dynamics and adiabatic elimination. The effective generators
describing the approximate evolutions are endowed with the same block structure as the unperturbed part of
the generator, and exhibit adiabatic evolutions. This iterative adiabatic theorem reveals that adiabaticity holds
eternally, that is, the system evolves within each eigenspace of the unperturbed part of the generator, with an
error bounded by O(1/γ ) uniformly in time, where γ is the strength of the unperturbed part of the generator.
We prove that the iterative adiabatic theorem reproduces Bloch’s perturbation theory in the unitary case, and is
therefore a full generalization to open systems. We furthermore prove the equivalence of the Schrieffer-Wolff
and des Cloizeaux approaches in the unitary case and generalize both to arbitrary open systems, showing that
they share the eternal adiabaticity, and providing explicit error bounds. Finally we discuss the physical structure
of the effective adiabatic generators and show that ideal effective generators for open systems do not exist in
general.
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I. INTRODUCTION

Modeling physical systems is important in physics and
science. Identifying a good effective generator of a system is
crucial in the analysis of the physical dynamics of the system.
A separation of timescales is most often a key in doing that.
It allows us to focus on a subset of relevant energy levels of
the system. High-frequency components can be “adiabatically
eliminated,” and the evolution of the system is well described
by an effective generator acting only on the relevant subspace.

Such effective modeling can be justified by an adiabatic
theorem [1,2]. Consider first a closed quantum system with a
dynamics dominated by a strong part of its Hamiltonian, and
the leakage out of the eigenspaces of the strong Hamiltonian
is suppressed due to the separation of timescales. This ensures
that the evolution of the system is well approximated by the
adiabatic evolution within the eigenspaces. In the limit of an
infinitely strong separation of timescales, the leakage is com-
pletely suppressed and the system is perfectly confined within
each eigenspace. It is known as a version of the quantum Zeno
effect [3–6]. The adiabatic evolution within the eigenspaces
(quantum Zeno dynamics [6,7]) is described by a Hamiltonian
projected on the individual eigenspaces (Zeno Hamiltonian).
If on the other hand the separation of timescales is strong but
finite, the system can slowly transit between eigenspaces. An
effective Hamiltonian including such processes can be sys-
tematically constructed via the technique known as adiabatic
elimination [8,9], and refines the approximation by the Zeno
Hamiltonian.

In practice, many quantum systems are noisy, and it is
important to extend the theory to Lindbladian generators. It
is difficult to give the vast literature on this area the deserved
attention, and we only provide some exemplary references
for such generalizations of the adiabatic theorem [10–15], of
strong coupling limits [16–21], of quantum Zeno dynamics
[22–25], and of adiabatic elimination [26–34].

All the above theories for effective generators are, however,
usually valid for finite time ranges only. Known error bounds
on adiabatic approximations, i.e., bounds on the distance be-
tween the true evolution and an adiabatic evolution within the
eigenspaces, grow in time [2,21,35,36], and the adiabaticity of
the evolution is not guaranteed by the standard adiabatic theo-
rems in the long term. Accordingly we would need a stronger
separation of timescales to realize the adiabatic evolution for
a longer time.

In this paper we show that adiabaticity actually holds
eternally. The system remains within each eigenspace of the
strong part of its generator with an error remaining O(1/γ )
for arbitrarily long times and arbitrary perturbations, where
γ characterizes the strength of the strong Hamiltonian relative
to the perturbation. The reason why the standard adiabatic
theorems appear to assure the adiabaticity only for finite
times is because the adiabatic generators used in the adiabatic
theorems to approximate the true evolutions, e.g., by Zeno
Hamiltonians, are not fine enough. One can find an adiabatic
generator that adapts better to the evolution of the system
while provoking no leakage out of the eigenspaces. It well
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approximates the true evolution with an error bounded by
O(1/γ ) uniformly in time.

Let us summarize the main results of the present work.
We consider an evolution et (γ B+C) of a finite-dimensional
quantum system with a “strong” generator B and a “weak”
generator C. These generators can be Hamiltonians or Lind-
bladians. In this work we focus on static systems with
time-independent generators. In Ref. [21] we have developed
an adiabatic theorem for the strong-coupling limit γ → +∞
for open systems. Here we intend to improve the adiabatic
approximation by applying the adiabatic theorem iteratively
(Sec. II). This leads us to a good choice of adiabatic generator
γ B + D, with D = D(γ ) endowed with the same block struc-
ture as B, thus provoking no leakage out of the eigenspaces of
B, and at the same time allowing us to bound the distance

et (γ B+C) − et[γ B+D(γ )] = O(1/γ ) (1.1)

uniformly in time (Sec. III).
An immediate consequence of (1.1) is that for large γ and

for an arbitrary perturbation C the evolution of the system
clings forever to each eigenspace of the strong generator B
with an overall leakage O(1/γ ), namely,

sup
t�0

‖(1 − P�)et (γ B+C)P�‖ = O(1/γ ), (1.2)

for all �, where P� is the spectral projection onto the �th
eigenspace of B. This follows from the block structure of D,
which yields (1 − P�)et (γ B+D)P� = 0.

The �th block D� of the adiabatic generator D in (1.1)
acting on the �th eigenspace of the strong generator B is
given by D� = P���P�, where �� is a solution of the quadratic
operator equation

1

γ
S��

2
� −

(
1 + 1

γ
CS�

)
�� + S���N� + CP� = 0, (1.3)

with �� = ��P�, and N� is the spectral nilpotent of the �th
eigenspace of B, while S� is the reduced resolvent of B at its
�th eigenvalue [37] (their details are provided in the following
section). This implies that U� = P� − S���/γ satisfies another
quadratic equation

U� − S�U�N� + 1

γ
S�(CU� − U�CU�) − P� = 0, (1.4)

with U�P� = U� (Appendix C), and in the absence of the
nilpotent N� in the unitary case this equation is nothing but
the well-known Bloch equation [38,39]. The iterated adiabatic
theorem thus reproduces Bloch’s perturbation theory devel-
oped for closed systems [38–42], and it is here generalized
to open systems. Although we also provide perturbative ex-
pansions (Sec. IV), our key focus is the adiabatic generator
D = ∑

� D�, whose components D�(γ ) are a resummation of
a full-order perturbative series. We show the nonperturbative
solvability of the Bloch equation and the region where the
relevant solution exists and is unique (Appendix D) using
the Newton-Kantorovich theorem [43]. This allows us to
explicitly bound the eternal adiabaticity (1.1) (Sec. VI and
Appendix E).

Next we turn our attention to the structure of the effective
generator. Behind eternal adiabaticity, we have similarity

γ B + C = U (γ B + D)U −1 (1.5)

between the adiabatic generator γ B + D and the original gen-
erator γ B + C, with U = ∑

� U� = 1 + O(1/γ ) (see Sec. V).
It is known, however, that even in the unitary case there is a lot
of gauge freedom in the choice of good adiabatic generators.
This fact encourages us to take an axiomatic approach to
define an ideal effective adiabatic generator, as initiated for
the unitary case in Ref. [44]:

(1) An effective adiabatic generator Ceff should be en-
dowed with the same block structure as B, i.e., [Ceff, P�] = 0,
provoking no leakage out of the eigenspaces of B.

(2) The effective adiabatic generator γ B + Ceff should be
similar to the original generator γ B + C, sharing the same
spectrum.

(3) The similarity transformation U should be small, i.e.,
close to the identity U = 1 + O(1/γ ).

(4) The effective adiabatic generator γ B + Ceff should be
physical, i.e., Hermiticity-preserving (HP), trace-preserving
(TP), and conditionally completely positive (CP) (with a
positive-semidefinite Kossakowski matrix) [45], generating a
completely positive evolution [46,47].

While the first three axioms suffice to show eternal adi-
abaticity, the fourth is desirable to get a direct physical
interpretation of the generator. It is known in the literature
that, due to an asymmetry in the construction, the adiabatic
generator D from Bloch’s perturbation theory is not skew-
Hermitian (or not anti-Hermitian) in general even in the
unitary case with skew-Hermitian B and C [38–42,48,49]. In
the unitary case, on the other hand, des Cloizeaux showed that
one can turn the non-skew-Hermitian γ B + D into a skew-
Hermitian γ B + K by an additional similarity transformation
keeping the block structure [40,41]. This is an example of an
ideal effective generator.

A skew-Hermitian effective generator on a particular
eigenspace (without caring about the block structure of the
other eigenspaces) can also be obtained from the original
γ B + C via the Schrieffer-Wolff transformation in the unitary
case [48–50]. The connection between Schrieffer-Wolff’s,
adiabatic elimination, and des Cloizeaux’s perturbative ap-
proaches has been noted before [51], and another higher-order
adiabatic elimination based on a Lippmann-Schwinger-type
equation was derived [52,53].

The generalization of Schrieffer-Wolff transformations to
open systems was investigated in Ref. [54], where the author
focused on the stationary subspace, i.e., the eigenspace of B
belonging to the eigenvalue 0, and assumed that the generator
B is diagonalizable, with no nilpotent. Physicality was ana-
lyzed up to the third order for some specific settings.

Here, based on our generalization of Bloch’s equation, we
provide a nonperturbative generalization of the Schrieffer-
Wolff and des Cloizeaux approaches to the open-system case
(Secs. VII and VIII). We construct a very natural and sym-
metric similarity transformation from the solutions of Bloch’s
equation which fulfills the first three axioms of an ideal ef-
fective generator and reduces to the des Cloizeaux approach
in the unitary case. Our formalism can be applied to general
generators, which are not necessarily diagonalizable and can
admit nilpotents, and deals with all the eigenspaces, including
the nonstationary ones, respecting the block structure. We
prove that the adiabatic generators are both HP and TP for
general open systems (Sec. IX).
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After providing a general framework, we will look at a
few examples in Sec. X: a dissipative � system, for which
an analytical expression for the nonperturbative (full-order)
adiabatic generator is available (Sec. X A), and a system ad-
mitting a nilpotent in the strong part B (Sec. X B). We find that
our effective generator is not always completely positive (that
is, the fourth axiom is not always fulfilled).

Could there be another approach (choice of gauge) which
fulfills all axioms? Surprisingly we show that this is gen-
erally impossible by providing a counterexample (Sec. X C)
in which axioms one and two imply breaking axiom four. If
one wishes to require that an effective generator for an open
system should have the complete physical structure (HP, TP,
and CP), as a trade-off axioms one and/or two in the above list
should be abandoned. There are attempts to develop a general
perturbation theory along those lines [31–34].

We will conclude the paper in Sec. XI and provide some
details in Appendices A–E.

Here we take the view that the eternal adiabaticity is the
most striking feature, as it highlights a certain robustness
of quantum evolutions against perturbations. This aspect is
further elaborated in Ref. [55], where we explore connections
to KAM stability.

II. ITERATED ADIABATIC THEOREM

We iteratively apply the adiabatic theorem developed in
Ref. [21] to improve the adiabatic approximation. The goal
is to find a good approximation of et (γ B+C) by et (γ B+D) with
an operator D endowed with the same block structure as B,
causing no leakage from each eigenspace of B. We will show
that there exists such a generator D that ensures that the error
of et (γ B+D) to et (γ B+C) remains O(1/γ ) for arbitrarily long
times t . Essentially, one can think of this approach as a type
of perturbation theory within the exponential function.

Although we ultimately have physical operators (Hamilto-
nians and Lindbladians) in mind, most of the results of this
paper are valid for arbitrary square matrices B and C, without
requiring any structural assumptions on them.

Let

B =
∑

�

(b�P� + N�) (2.1)

be the canonical form or the spectral representation of B
(recall the Jordan normal form) [37]. Here {b�} is the spectrum
of B, which is the set of distinct eigenvalues of B (labeled such
that bk �= b� for k �= �), {P�} are the corresponding eigenpro-
jections, called the spectral projections of B, satisfying

PkP� = δk�Pk,
∑

�

P� = 1, (2.2)

for all k and �, and {N�} are the corresponding nilpotents of B,
satisfying

PkN� = N�Pk = δk�Nk, Nn�

� = 0, (2.3)

for all k and �, and for some integers 1 � n� � rank P�. Notice
that the spectral projections, which determine the partition
of the space through the resolution of identity (2.2), are not
Hermitian in general, P� �= P†

� . We set

B� = BP� = b�P� + N�. (2.4)

First, we focus on a particular eigenspace of B belonging
to eigenvalue b�, and find a suitable D� that describes the
adiabatic evolution of the system in the eigenspace for large γ .
The following iteration works for any choice of D� satisfying

D� = P�D�P�, (2.5)

and hence having the same block structure as B. However,
later we will find out that there are particularly good choices
of D�.

We wish to estimate the difference between et (γ B+C)P� and
et (γ B+D� )P�. It can be estimated by writing it as an integral:

(et (γ B+C) − et (γ B+D� ) )P�

= −
∫ t

0
ds

∂

∂s
(e(t−s)(γ B+C)es(γ B+D� ) )P�

=
∫ t

0
ds e(t−s)(γ B+C)(C − D�)P�es(γ B+D� ). (2.6)

The key quantity from Ref. [21] is the reduced resolvent S�,
defined by

S� =
∑
k �=�

(bk − b� + Nk )−1Pk (2.7)

(see Refs. [2,37] for the unitary case). Notice that the inverse
(bk − b� + Nk )−1 always exists, because bk �= b� for k �= �

in the spectral decomposition (2.1). Notice also that in the
nonunitary case we need to include the nilpotents Nk in the
definition of the reduced resolvent S�, while they are absent in
the unitary case. The reduced resolvent S� satisfies

P�S� = S�P� = 0, (2.8)

(B − b�)S� = S�(B − b�) = 1 − P�. (2.9)

In addition, the key formula for the adiabatic theorem is given
by ∫ t

0
ds e(t−s)(γ B+C)AP�es(γ B+D� )

=
∫ t

0
ds e(t−s)(γ B+C)P�AP�es(γ B+D� )

+ 1

γ
et (γ B+C)S�AP� − 1

γ
S�AP�et (γ B+D� )

− 1

γ

∫ t

0
ds e(t−s)(γ B+C)K�(A)P�es(γ B+D� ), (2.10)

where

K�(A) = CS�A − S�AD� − γ S�AN�, (2.11)

for an arbitrary operator A. See Appendix A for the deriva-
tion of this key formula. Then the difference (2.6) can
be immediately estimated by applying the key formula
(2.10) for A = C − D� ≡ A(0)

� . In particular, if D� is cho-
sen to be D� = P�CP�, then P�A(0)

� P� = P�(C − D�)P� = 0
and the first integral on the right-hand side of (2.10) iden-
tically vanishes. Moreover, if there is no nilpotent N� = 0
in the relevant eigenspace, then K� is independent of γ ,
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and we get

(et (γ B+C) − et (γ B+P�CP� ) )P�

= 1

γ
(et (γ B+C)S�CP� − S�CP�et (γ B+P�CP� ) )

− 1

γ

∫ t

0
ds e(t−s)(γ B+C)[C, S�CP�]P�es(γ B+P�CP� ).

(2.12)

This provides an adiabatic theorem [21]: when B is Lind-
bladian or Hamiltonian, so that the semigroup it generates
is uniformly bounded in time, then the evolution is confined
within the eigenspace specified by its spectral projection P�,
with an error O(1/γ ) for any finite t . The adiabatic evo-
lution within the eigenspace is described by the generator
D� = P�CP�. However, the error would accumulate by the last
integral as time t goes on, and the above adiabatic theorem
(2.12) does not ensure the adiabaticity of the evolution for
long times of O(γ ). See, e.g., Fig. 2 in Sec. X.

Still, with a careful choice of the generator D�, one can
ensure the adiabaticity to hold eternally, for arbitrarily long
times. We are going to show this by iteratively refining the
generator D�, and so pushing the validity of the adiabatic
approximation to times of higher and higher order of γ .

To improve the approximation, we iteratively apply the key
formula (2.10), to the last integral on its right-hand side. After
n iterations we get

(et (γ B+C) − et (γ B+D� ) )P�

=
∫ t

0
ds e(t−s)(γ B+C)

(
n∑

j=0

(−1) j

γ j
P�A( j)

� P�

)
es(γ B+D� )

+ 1

γ
et (γ B+C)

(
n−1∑
j=0

(−1) j

γ j
S�A( j)

� P�

)

− 1

γ

(
n−1∑
j=0

(−1) j

γ j
S�A( j)

� P�

)
et (γ B+D� )

+ (−1)n

γ n

∫ t

0
ds e(t−s)(γ B+C)A(n)

� P�es(γ B+D� ), (2.13)

where

A(0)
� = C − D�, A(n)

� = K�(A(n−1)
� ) = Kn

� (A(0)
� ). (2.14)

As proved in Appendix B, if

γ > max{1, [‖S�‖(‖C‖ + ‖D�‖ + ‖N�‖)]n�}, (2.15)

then the last contribution in (2.13) decays out exponentially as
n → +∞ and the series

G� =
∞∑
j=0

(−1) j

γ j
A( j)

� =
∞∑
j=0

(−1) j

γ j
K j

� (C − D�) (2.16)

converges. Here and in the following, we will consider only
unitary invariant norms. Thus, in the limit n → +∞ one gets

(et (γ B+C) − et (γ B+D� ) )P�

=
∫ t

0
ds e(t−s)(γ B+C)P�G�P�es(γ B+D� )

+ 1

γ
(et (γ B+C)S�G�P� − S�G�P�et (γ B+D� ) ). (2.17)

This equation holds for any choice of D� with the same block
structure as B as in (2.5), and for any sufficiently large γ . We
now seek a D� such that

P�G�P� = 0, (2.18)

so that the integral in (2.17), which would grow in time and
make the error bound larger and larger, vanishes, giving

(et (γ B+C) − et (γ B+D� ) )P�

= 1

γ
(et (γ B+C)S�G�P� − S�G�P�et (γ B+D� ) ). (2.19)

Such a D� actually exists, as proved in the next section.

III. ADIABATIC BLOCH EQUATION

The adiabatic generator D� fulfilling the condition (2.18)
and thus giving (2.19) is given by

D� = P��� = P���P�, (3.1)

where �� is a solution of the quadratic equation

1

γ
S��

2
� −

(
1 + 1

γ
CS�

)
�� + S���N� + CP� = 0, (3.2)

with

��(1 − P�) = 0. (3.3)

Because this equation is derived from the iterated adiabatic
theorem, and because it generalizes the well-known Bloch
wave operator equation [38,39] as shown in Appendix C,
we call the quadratic equation (3.2) with (3.3) for �� the
adiabatic Bloch equation.

With such a particular choice of D�, we have that S�G�P� =
S��� = S���P�, and Eq. (2.19) reduces to

(et (γ B+C) − et (γ B+D� ) )P�

= 1

γ
(et (γ B+C)S���P� − S���P�et (γ B+D� ) ). (3.4)

This is valid for arbitrary operators B and C, not necessarily
Hamiltonians or Lindbladians.

A. Derivation of the adiabatic Bloch equation

Let us start by looking at the condition (2.18). For large
enough γ , the series (2.16) converges, the inverse (1 +
γ −1K�)−1 exists, and we get

G� = (1 + γ −1K�)−1(C − D�). (3.5)

By the block structure of D� in (2.5) and by using S�P� = 0,
one gets K�(D�) = 0, where

G� = (1 + γ −1K�)−1(C) − D�. (3.6)

Since K�(A)P� = K�(AP�) and D� = P�D�P�, the condition
P�G�P� = 0 is equivalent to

P�G�P� = P�(1 + γ −1K�)−1(CP�) − D� = 0, (3.7)

which in turn implies

(1 + γ −1K�)−1(CP�) − D� = R�, (3.8)
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with R� = (1 − P�)R�P�. Then, by setting �� = D� + R� =
��P�, it reads

(1 + γ −1K�)−1(CP�) = ��. (3.9)

By inverting,

CP� = �� + 1

γ
K�(��), (3.10)

that is, by the definition (2.11) of K�,

CP� = �� + 1

γ
CS��� − 1

γ
S���D� − S���N�. (3.11)

Since ��R� = 0, we can write ��D� = �2
� . Therefore, we get

the quadratic equation (3.2) for �� with (3.3).
It follows from the Newton-Kantorovich theorem [43] that

for large enough γ the adiabatic Bloch equation (3.2) with
(3.3) has a unique solution within a certain range. See Ap-
pendix D. From such a solution ��, we obtain the wanted D�

by (3.1).

B. Simplifying G�

The solution of the adiabatic Bloch equation (3.2) with
(3.3) allows us to simplify the expression for G�. To this end,
let us look at the components of G� other than P�G�P�, which
vanishes by (2.18). From (3.6) and (3.9), we get

(1 − P�)G�P� = (1 − P�)(1 + γ −1K�)−1(CP�)

= (1 − P�)��P�, (3.12)

where we have used (1 − P�)D� = 0 and K�(A)P� = K�(AP�).
Therefore, we get S�G�P� = S���P� and Eq. (2.19) reduces to
(3.4).

In summary, our key equation is the adiabatic Bloch equa-
tion (3.2) with (3.3). It admits a unique solution �� within
a certain range for large enough γ (Appendix D). A good
choice of D� describing the adiabatic evolution within the
relevant eigenspace is given by (3.1), with which the differ-
ence between the adiabatic evolution and the true evolution is
estimated as (3.4).

IV. PERTURBATIVE SOLUTION OF THE ADIABATIC
BLOCH EQUATION

Let us look for a perturbative solution of the adiabatic
Bloch equation (3.2) with (3.3) in the form

�� = �
(0)
� + 1

γ
�

(1)
� + 1

γ 2
�

(2)
� + · · · =

∞∑
j=0

1

γ j
�

( j)
� . (4.1)

Substituting it into the adiabatic Bloch equation (3.2) and
comparing order by order, we obtain

�
(0)
� − S��

(0)
� N� = CP�, (4.2)

�
( j)
� − S��

( j)
� N� = −CS��

( j−1)
� + S�

j−1∑
i=0

�
( j−i−1)
� �

(i)
� .

(4.3)

By solving this iterative equation, we get that �
( j)
� = �

( j)
� P�

and the perturbative expressions for D( j)
� = P��

( j)
� read

D(0)
� = P�CP�, (4.4)

D(1)
� = −P�CS�〈C〉P�, (4.5)

D(2)
� = P�CS�〈CS�〈C〉〉P� − P�CS2

� 〈〈C〉P�C〉P�, (4.6)

D(3)
� = −P�CS�〈CS�〈CS�〈C〉〉〉P� + P�CS�〈CS2

� 〈〈C〉P�C〉〉P�

+ P�CS2
� 〈〈C〉P�CS�〈C〉〉P� + P�CS2

� 〈〈CS�〈C〉〉P�C〉P�

− P�CS3
� 〈〈〈C〉P�C〉P�C〉P�, (4.7)

where we set

〈A〉 =
n�−1∑
n=0

Sn
�ANn

� , (4.8)

for an arbitrary operator A. If there is no nilpotent N� (i.e.,
n� = 1) in the relevant eigenspace, we simply have 〈A〉 = A,
and these expressions reproduce the perturbative series ob-
tained in Refs. [38,40], but are here generalized to nonunitary
evolution.

Notice that the zeroth-order term D(0)
� in (4.4) is nothing but

the “Zeno generator” [4,6,7,21], while the first-order term D(1)
�

yields the “adiabatic elimination” [8,9,26,30]. The higher-
order terms refine the approximation beyond the adiabatic
elimination.

V. SIMILARITY OF THE GENERATORS

Let us gather the adiabatic generators D� = P���P� and
define

D =
∑

�

D�. (5.1)

The total generator γ B + D describing the adiabatic evolution
of the system within the eigenspaces is similar to the original
generator γ B + C. That is, the intertwining relations

(γ B + C)U� = U�(γ B + D�) (5.2)

hold for all the operators

U� = P� − 1

γ
S���P�, (5.3)

and this implies the similarity relation

γ B + D = U −1(γ B + C)U, (5.4)
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for sufficiently large γ , where

U =
∑

�

U� = 1 − 1

γ

∑
�

S���P�. (5.5)

Let us prove these facts in this section. We will use the prop-
erties

U�P� = U�, P�U� = P�. (5.6)

A. Intertwining relations

By using the definition of U� in (5.3), we have

(γ B + C − γ b�)U�

= γ N� + CP� − 1

γ
(γ B + C − γ b�)S���. (5.7)

Recalling that (B − b�)S� = 1 − P� in (2.9),

= γ N� + CP� − (1 − P�)�� − 1

γ
CS���. (5.8)

Using the adiabatic Bloch equation (3.2),

= γ N� + P��� − 1

γ
S��

2
� − S���N�

=
(

P� − 1

γ
S���

)
(P��� + γ N�)

= U�(D� + γ N�). (5.9)

Finally, since U� = U�P� and P�B = P�(b� + N�), this gives
(5.2).

B. Similarity of the generators

Summing the intertwining relations in (5.2) over � and
noting U� = U�P�,

(γ B + C)U =
∑

�

(γ B + C)U�

=
∑

�

U�(γ B + D�)

=
∑

�

U�(γ B + D)

= U (γ B + D). (5.10)

This proves the similarity relation (5.4).
The operator U� reduces to Bloch’s wave operator [38,39]

in the unitary case, as shown in Appendix C. Here it is gener-
alized to open systems, where B can have nilpotents. One can
prove that U� is a solution of the equation

U� − S�U�N� + 1

γ
S�(CU� − U�CU�) − P� = 0, (5.11)

with

U�(1 − P�) = 0. (5.12)

See Appendix C for the derivation. Compared with the orig-
inal Bloch equation [38], the equation (5.11) contains an
additional term that takes care of the nilpotent N�.

We are mainly interested in the evolutions of physical
systems, but the similarity and the generalized Bloch equation
discussed here are valid for arbitrary operators B and C, not
necessarily Hamiltonians or Lindbladians.

VI. ETERNAL ADIABATICITY

The similarity (5.4) proved in the previous section allows
us to reproduce the relation (3.4) immediately. Indeed, the
similarity (5.4) of the generators implies the similarity of the
evolutions,

et (γ B+C)U = Uet (γ B+D). (6.1)

By inserting the definition of U in (5.5), we get

et (γ B+C) − et (γ B+D)

= 1

γ

∑
�

(et (γ B+C)S���P� − S���P�et (γ B+D) ). (6.2)

This is equivalent to (3.4).
Now, if B and C are physical generators, the spectrum

of γ B + C is confined in the left half-plane (the real parts
of the eigenvalues are nonpositive), and purely imaginary
eigenvalues are semisimple (the corresponding eigenspaces
are diagonalizable and have no nilpotents). Due to the sim-
ilarity (5.4), the adiabatic generator γ B + D has the same
spectrum as γ B + C. Therefore, et (γ B+D), as well as et (γ B+C),
are bounded semigroups, i.e.,

‖et (γ B+C)‖ � M, ‖et (γ B+D)‖ � M, (6.3)

for some M � 1 for all t � 0 and γ � 0. This ensures that the
distance between the true evolution et (γ B+C) and the adiabatic
approximation et (γ B+D), namely the norm of (6.2), is bounded
by

‖et (γ B+C) − et (γ B+D)‖ � 2M

γ

∑
�

‖S���P�‖, (6.4)

for all t � 0. This means that the adiabatic evolution et (γ B+D)

is a good approximation to the true evolution et (γ B+C) with
the error remaining O(1/γ ) for all times t � 0. This proves
the eternal adiabaticity of the evolution, and this is the central
result of this paper.

In the operator norm [56]

‖A‖ = sup
‖σ‖1=1

‖A(σ )‖1, (6.5)

we have ‖et (γ B+C)‖ = 1 for a physical evolution [57], and the
distance (6.4) can be explicitly bounded by

‖et (γ B+C) − et (γ B+D)‖ <
1

γ

∑
�

γ�‖P�‖, (6.6)

for γ � 2 max� γ�, where

γ� = 4‖S�‖‖C‖‖P�‖1 − (‖S�‖‖N�‖)n�

1 − ‖S�‖‖N�‖ . (6.7)

See Appendix E for its derivation and its tighter bound valid
also for other norms. In the unitary case ‖P�‖ = 1, ‖N�‖ = 0
and hence γ� = 4‖S�‖‖C‖ � 4‖C‖/η, where η is the spectral
gap of B.

In this way, the eternal bound (6.6) involves ‖S�‖ and
‖N�‖, i.e., the spectral gap and the “nondiagonalizability” of
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B. Note also that the bound does not necessarily grow with
the dimension of the system, but it is rather determined by
the number of distinct eigenvalues of B, that is the number of
terms in the sum in (6.6). Recall the spectral decomposition
of B in (2.1).

VII. CONJUGATE ADIABATIC BLOCH EQUATION

One might have noticed the asymmetry in the perturbative
expressions (4.6) and (4.7) for the second- and higher-order
terms. This asymmetry stems from the asymmetry in the
derivation of the adiabatic theorem. We can think of an alter-
native way of estimating the difference between an adiabatic
evolution and the true evolution. Instead of (2.6), we can
proceed as

P�(et (γ B+C) − et (γ B+D� ) )

= −P�

∫ t

0
ds

∂

∂s
(es(γ B+D� )e(t−s)(γ B+C) )

=
∫ t

0
ds es(γ B+D� )P�(C − D�)e(t−s)(γ B+C). (7.1)

Notice the difference in the order of the operators compared to
(2.6). The components are the same but they are ordered in the
opposite order. We can repeat the same steps followed above,
starting from this reverted expression (7.1). We can derive
an adiabatic theorem, we can iteratively apply the adiabatic
theorem to improve the adiabatic approximation, and we can
prove the eternal adiabaticity. All the formulas originating
from (7.1) are similar to those obtained above, but the orders
of operators are exactly reverted.

Let us collect the main formulas. We get a new set of
adiabatic Bloch equations

1

γ
�̃2

�S� − �̃�

(
1 + 1

γ
S�C

)
+ N��̃�S� + P�C = 0, (7.2)

with

(1 − P�)�̃� = 0, (7.3)

from the iterated adiabatic theorem based on the reversed
equation (7.1). Compare them with (3.2) and (3.3). Now, by
choosing as eternal adiabatic generator

D̃� = �̃�P� = P��̃�P�, (7.4)

we get

et (γ B+C) − et (γ B+D̃)

= 1

γ

∑
�

(P��̃�S�et (γ B+C) − et (γ B+D̃)P��̃�S�), (7.5)

where

D̃ =
∑

�

D̃�. (7.6)

This is the counterpart of (6.2). The similarity between γ B +
D̃ and γ B + C also holds. We have the intertwining relations

Ũ�(γ B + C) = (γ B + D̃�)Ũ�, (7.7)

for

Ũ� = P� − 1

γ
�̃�S�, (7.8)

and the similarity relation

γ B + D̃ = Ũ (γ B + C)Ũ −1, (7.9)

with

Ũ =
∑

�

Ũ� = 1 − 1

γ

∑
�

�̃�S�. (7.10)

These correspond to (5.2) and (5.4), respectively. Note that Ũ�

satisfies

P�Ũ� = Ũ�, Ũ�P� = P�, (7.11)

similarly to (5.6). The equation for Ũ� is given by

Ũ� − N�Ũ�S� + 1

γ
(Ũ�C − Ũ�CŨ�)S� − P� = 0. (7.12)

Compare it with (5.11).
In the unitary case, C and S� are skew-Hermitian, P� is

Hermitian, and there is no nilpotent N�. Comparing the Bloch
equation for �� in (3.2) and the one for �̃� in (7.2), one
realizes that �̃� = −�

†
�, and hence, Ũ� = U †

� . This alterna-
tive approach is therefore a conjugate version of the original
approach in the unitary case.

VIII. GENERALIZED SCHRIEFFER-WOLFF
TRANSFORMATION FOR OPEN SYSTEMS

In the unitary case, where B and C are both skew-Hermitian
with no nilpotent in B, the asymmetry in the perturbative
expressions (4.6) and (4.7) leads to a non-skew-Hermitian
D, in spite of the skew-Hermiticity of B and C. This fact
is known in the literature [38–41,49,51]. This does not spoil
the validity of the approximation and the eternal adiabaticity,
but it would be nicer if we could have an effective generator
that has the correct structure as a physical generator (i.e.,
skew-Hermitian in the unitary case) and works equally well
as D as an approximation.

In the unitary case, it is known that the perturbative series
(4.4)–(4.7) can be made symmetric and the skew-Hermiticity
of the adiabatic generator D can be amended via an addi-
tional similarity transformation [38,40]. We can generalize
it for open systems. It provides us with a generalization of
the Schrieffer-Wolff transformation [48–50] for open systems
[54].

Let us first show that

P̃� = U�(Ũ�U�)−1Ũ� (8.1)

is the projection onto the direct sum of the eigenspaces of
γ B + C belonging to the eigenvalues perturbed from the un-
perturbed eigenvalue γ b� of γ B. Here (Ũ�U�)−1 is the inverse
of Ũ�U� on P�, defined by

(Ũ�U�)−1 =
(

1 + 1

γ 2
�̃�S2

���

)−1

P�. (8.2)

Note the properties �� = ��P� in (3.3), �̃� = P��̃� in (7.3),
U�P� = U�, P�U� = P� in (5.6), and P�Ũ� = Ũ�, Ũ�P� = P� in
(7.11). Thus

Ũ�U� = P�Ũ�U�P�, (Ũ�U�)−1 = P�(Ũ�U�)−1P� (8.3)
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reside in the subspace P�. Now P̃� is clearly a projection,
satisfying P̃2

� = P̃�. In addition, P̃� commutes with γ B + C.
Indeed,

(γ B + C)P̃� = (γ B + C)U�(Ũ�U�)−1Ũ�

= U�(γ B + D�)(Ũ�U�)−1Ũ�

= U�(Ũ�U�)−1(γ B + D̃�)Ũ�

= U�(Ũ�U�)−1Ũ�(γ B + C)

= P̃�(γ B + C), (8.4)

where we have used the intertwining relations (5.2) and (7.7)
for the second and fourth equalities, respectively, and for the
third equality we have used

(γ B + D�)(Ũ�U�)−1 = (Ũ�U�)−1(γ B + D̃�), (8.5)

which follows from

Ũ�U�(γ B + D�) = Ũ�(γ B + C)U� = (γ B + D̃�)Ũ�U�. (8.6)

Observe also that P̃� → P� as γ → +∞, and the eigenvalues
of P̃�(γ B + C)P̃� are close to γ b� for large γ . These facts
imply that P̃� is the projection onto the direct sum of the
eigenspaces of γ B + C corresponding to the eigenprojection
P� of B.

In Ref. [49] it is pointed out that the Schrieffer-Wolff
transformation for the unitary case is nothing but the “direct
rotation” (P̃�P�)1/2 connecting P� and P̃� [49, Definition 2.2].
A natural generalization of the Schrieffer-Wolff transforma-
tion for open systems, namely, a natural generalization of the
direct rotation, is thus provided by

W� = (P̃�P�)1/2 = U�(Ũ�U�)−1/2, (8.7)

where (Ũ�U�)−1/2 is the square root of (Ũ�U�)−1 de-
fined in (8.2). We use the primary square root such that
(P̃�P�)1/2 → P� and (Ũ�U�)−1/2 → P� in the limit γ →
+∞ (see, e.g., Refs. [58, Chap. 1] and [59, Sec. 6.4]
for primary matrix function). The equivalence of the last
two expressions in (8.7) can be verified by looking at
their squares, U�(Ũ�U�)−1/2U�(Ũ�U�)−1/2 = U�(Ũ�U�)−1 =
U�(Ũ�U�)−1Ũ�P� = P̃�P�, where we have used P�U� = P� and
Ũ�P� = P�. This W� connects P� and P̃� as

W� = W�P� = P̃�W�, (8.8)

which can be verified trivially on the basis of the definitions
of P̃� and W� in (8.1) and (8.7), respectively. Then,

γ B� + K� = W −1
� (γ B + C)W� (8.9)

provides an effective generator which has the same block
structure as B, where W −1

� is a pseudoinverse satisfying

W −1
� W� = P�, W�W

−1
� = P̃�, (8.10)

which is explicitly given by

W −1
� = (P�P̃�)1/2 = (Ũ�U�)−1/2Ũ�. (8.11)

This W −1
� brings P̃� back to P� as

W −1
� P̃� = P�W

−1
� = W −1

� . (8.12)

In the unitary case, P� = P†
� and Ũ� = U †

� (see Sec. VII),
and the polar decomposition of U� reads U� = V�|U�|, where
|U�| = (U †

� U�)1/2 and V� is some unitary. Thus, in the unitary
case, W� in (8.7) and W −1

� in (8.11) are reduced to W� = V�P�

and W −1
� = P�V

†
� , respectively, and (8.9) reads

γ B� + K� = P�V
†
� (γ B + C)V�P�, (8.13)

so that K� is guaranteed to be skew-Hermitian. This repro-
duces the Schrieffer-Wolff formalism [49, Definition 3.1], and
the transformation (8.9) is a generalization of the Schrieffer-
Wolff transformation for open systems.

Recalling the intertwining relations (5.2) and (7.7), we can
rewrite the Schrieffer-Wolff transformation (8.9) as

γ B� + K� = (Ũ�U�)−1/2Ũ�(γ B + C)U�(Ũ�U�)−1/2

= (Ũ�U�)1/2(γ B + D�)(Ũ�U�)−1/2

= (Ũ�U�)−1/2(γ B + D̃�)(Ũ�U�)1/2. (8.14)

It is clear from the first expression of (8.14) that the perturba-
tive series of K� = ∑∞

j=0 K ( j)
� /γ j is symmetric also for open

systems. The first few orders are given by

K (0)
� = P�CP�, (8.15)

K (1)
� = − 1

2 P�CS�

−→〈C〉P� − 1
2 P�

←−〈C〉S�CP�, (8.16)

K (2)
� = 1

2 P�CS�

−−−−−→〈CS�〈C〉〉P� + 1
2 P�

←−−−−−〈〈C〉S�C〉S�CP�

− 1
2 P�CS2

�

−−−−−→〈〈C〉P�C〉P� − 1
2 P�

←−−−−−〈CP�〈C〉〉S2
�CP�, (8.17)

K (3)
� = − 1

2 P�CS�

−−−−−−−−−→〈CS�〈CS�〈C〉〉〉P� − 1
2 P�

←−−−−−−−−−〈〈〈C〉S�C〉S�C〉S�CP�

+ 1
2 P�CS�

−−−−−−−−−→
〈CS2

� 〈〈C〉P�C〉〉P� + 1
2 P�

←−−−−−−−−−
〈〈CP�〈C〉〉S2

�C〉S�CP�

+ 1
2 P�CS2

�

−−−−−−−−−→〈〈C〉P�CS�〈C〉〉P� + 1
2 P�

←−−−−−−−−−〈〈C〉S�CP�〈C〉〉S2
�CP�

+ 1
2 P�CS2

�

−−−−−−−−−→〈〈CS�〈C〉〉P�C〉P� + 1
2 P�

←−−−−−−−−−〈CP�〈〈C〉S�C〉〉S2
�CP�

− 1
2 P�CS3

�

−−−−−−−−−→〈〈〈C〉P�C〉P�C〉P� − 1
2 P�

←−−−−−−−−−〈CP�〈CP�〈C〉〉〉S3
�CP�

− 1
8 N�

←−〈C〉S2
�

−→〈C〉P�

←−〈C〉S2
�

−→〈C〉P� − 1
8 P�

←−〈C〉S2
�

−→〈C〉P�

←−〈C〉S2
�

−→〈C〉N�

+ 1
4 P�

←−〈C〉S2
�

−→〈C〉N�

←−〈C〉S2
�

−→〈C〉P�, (8.18)
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where

−→〈A〉 =
n�−1∑
n=0

Sn
�ANn

� ,
←−〈A〉 =

n�−1∑
n=0

Nn
� ASn

� . (8.19)

The first bracket
−→〈A〉 is the same as the one introduced in (4.8),

but an arrow is put here to stress the order of the operators.

Concatenated brackets like

−−−−−−−−−→
〈CS�

−−−−−→
〈CS�

−→〈C〉〉〉 are simply denoted
with a single arrow like

−−−−−−−−−→〈CS�〈CS�〈C〉〉〉. Concatenation of
brackets with different orientations of arrows does not appear.
In the unitary case, this series reduces to the perturbative
series obtained in Refs. [40,41].

The generators γ B + C, γ B + D, γ B + D̃, and γ B + K
with

K =
∑

�

K� (8.20)

are similar to each other, and they share the same spectrum,

γ B + C = U (γ B + D)U −1

= Ũ −1(γ B + D̃)Ũ

= W (γ B + K )W −1, (8.21)

where U = ∑
� U� and Ũ = ∑

� Ũ� are introduced in (5.5) and
(7.10), respectively, and

W =
∑

�

W�, W −1 =
∑

�

W −1
� . (8.22)

Thanks to the similarity relation and its closeness to the iden-
tity W − 1 = O(1/γ ), the distance between the approximate
adiabatic evolution et (γ B+K ) and the true evolution et (γ B+C)

remains O(1/γ ) eternally. In the norm induced by the operator
trace norm, we have ‖et (γ B+C)‖ = 1 for the physical evolution
[57], and the distance can be bounded in the same way as the
one for et (γ B+D) given in (6.6). That is,

‖et (γ B+C) − et (γ B+K )‖ <
1

γ

∑
�

γ�‖P�‖, (8.23)

for γ � 2 max� γ�, with γ� defined in (6.7). See Appendix E
for its derivation and its tighter bound valid also for other
norms.

IX. PHYSICAL PROPERTIES OF THE ADIABATIC
GENERATORS D, D̃, AND K

As already mentioned, the adiabatic generator D is gen-
erally not skew-Hermitian even for unitary evolution with
skew-Hermitian generators B and C. This is easily anticipated
from the asymmetry in the perturbative series in (4.4)–(4.7).
This asymmetry can be fixed by the transformation discussed
in the previous section. The adiabatic generator K obtained by
the generalized Schrieffer-Wolff transformation is symmetric,
and it is guaranteed to be skew-Hermitian for unitary evolu-
tion.

In the nonunitary case, the structure of a physical gener-
ator is much more subtle than in the unitary case [46,47]. It
should be Hermiticity-preserving (HP), trace-preserving (TP),
and conditionally completely positive (CP) (with a positive-
semidefinite Kossakowski matrix) [45] as a generator acting

on density operators. These impose a delicate structure on
the generator, leading to the Gorini-Kossakowski-Lindbald-
Sudarshan (GKLS) form [46,47].

In this section we are going to show that D, D̃, and K
obtained for physical (i.e., HP, TP, and CP) generators B and C
acting on density operators are both HP and TP in the general
nonunitary case (including the unitary case). On the other
hand, CP is not guaranteed in the nonunitary case, even for
the symmetric K , as we will see in the next section.

A. D, D̃, and K are TP

Note first that the spectrum {b�} of a physical generator
B acting on density operators is contained in the closed left
half-plane Re b� � 0, and B always has b0 = 0 in its spectrum.
In addition, purely imaginary eigenvalues b� ∈ iR including
b0 = 0 are semisimple, that is P�BP� = b�P� are diagonaliz-
able with no nilpotents. See, e.g., Refs. [60,61], in particular
Propositions 6.1–6.3 and Theorem 6.1 of Ref. [60].

Since B is assumed to be a physical generator, it is TP,
i.e., tr[B(σ )] = 0 for any operators σ acting on the Hilbert
space. Since this can be written as tr[B(σ )] = (1|B(σ )) =
(1|B|σ ) = 0, with (
|σ ) = tr(
†σ ) being the Hilbert-Schmidt
inner product of operators 
 and σ acting on the Hilbert space,
the TP of B as a generator is represented by

(1|B = 0. (9.1)

Projecting it by P� from the right, we get

(1|BP� = (1|(b�P� + N�) = 0. (9.2)

This condition is trivial for � = 0, since b0 = 0 and there is no
nilpotent N0 = 0 in this sector. For nonvanishing eigenvalues
b�, let us multiply Nn�−1

� from the right of (9.2). It yields
(1|Nn�−1

� = 0, since Nn�

� = 0, P�N� = N�, and b� �= 0. Then,
by multiplying Nn�−2

� from the right of (9.2) again, we realize
that (1|Nn�−2

� = 0. After n� − 1 such iterations, we reach

(1|N� = 0. (9.3)

This further implies

(1|P� = 0 for b� �= 0. (9.4)

Finally, since
∑

� P� = 1, we need to have

(1|P0 = (1|, (9.5)

namely, P0 too is TP.
Now, let us look at the adiabatic Bloch equation (7.2) for

�̃�. Putting (1| on the left of the adiabatic Bloch equation, we
get

(1|�̃�

(
1 + 1

γ
S�C − 1

γ
�̃�S�

)
= 0, (9.6)

where we have used (9.3)–(9.5) and (1|C = 0. This implies

(1|�̃� = 0 (9.7)

for large enough γ , since 1 + 1
γ

S�C − 1
γ
�̃�S� is invertible.

Therefore we have

(1|Ũ� = (1|
(

P� − 1

γ
�̃�S�

)
= (1|P� (9.8)
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and

(1|(Ũ�U�)α = (1|
(

1 + 1

γ 2
�̃�S2

���

)α

P� = (1|P� (9.9)

for α = −1 and −1/2. Recall the definition of the pseudoin-
verse (Ũ�U�)−1 in (8.2). Then it immediately follows that D,
D̃, and K are TP. For instance, using the similarity in (8.14),
the adiabatic generator D is proved to be TP as

(1|D =
∑

�

(1|[(Ũ�U�)−1Ũ�(γ B + C)U� − γ B�]

= (1|P0CU0 = 0. (9.10)

TP of D̃ and K can be proved in the same way.

B. D, D̃, and K are HP

Let us next prove that D, D̃, and K are HP. To this
end it is convenient to introduce an orthogonal basis of
Hermitian matrices {τ0, τ1, . . . , τd2−1} for a d-dimensional
system. Here τ0 = 1 is the d × d identity matrix, and the
d × d matrices τi (i = 1, . . . , d2 − 1) are Hermitian τi = τ

†
i

and traceless tr τi = 0, which are orthogonal to each other
with respect to the Hilbert-Schmidt inner product (τi|τ j ) =
tr(τ †

i τ j ) = 2δi j (i, j = 1, . . . , d2 − 1). The matrix representa-
tion Bi j = (τi|B|τ j ) = (τi|B(τ j )) (i, j = 0, 1, . . . , d2 − 1) of
B in such a basis is the generator of the evolution of the co-
herence vector ri = (τi|
) (i = 0, 1, . . . , d2 − 1) representing
the density operator 
 of the system. Notice that the coherence
vector (r0, r1, . . . , rd2−1) corresponding to a Hermitian den-
sity operator 
 is a real vector. Therefore, the matrix elements
Bi j of a physical generator B should be all real, since B should
preserve the Hermiticity of density operator 
 and hence the
reality of the coherence vector. In other words, the reality of
Bi j is equivalent to HP of B. Let us call the spectral projections
and nilpotents of the real matrix B in this representation P�

and N�, respectively.
We note that all the nonreal eigenvalues of a real matrix

occur in conjugate pairs. In addition, the spectral projections
and the nilpotents of the real matrix B = B∗ satisfy

P� = P∗̄
�
, N� = N∗̄

�
, (9.11)

where ∗ of a matrix represents the elementwise complex
conjugation and �̄ refers to its complex conjugate eigenvalue
b�̄ = b∗

�. Indeed, the spectral projection P� can be constructed
by

P� =
∫
C�

dz

2π i
(z − B)−1, (9.12)

where C� is a contour running anticlockwise around the
eigenvalue b� on the complex z plane [37]. Since B = B∗
is real and C� is flipped to −C�̄ (running clockwise around
the complex conjugate eigenvalue b∗

� = b�̄) by complex con-
jugation, we get P∗

� = − ∫
−C�̄

dz
2π i (z − B∗)−1 = ∫

C�̄

dz
2π i (z −

B)−1 = P�̄, and N∗
� = [(B − b�)P�]∗ = (B∗ − b∗

� )P∗
� = (B −

b�̄)P�̄ = N�̄. This proves (9.11). This symmetry is inherited
by the reduced resolvents,

S� =
∑
k �=�

(bk − b� + Nk )−1Pk = S∗̄
�
. (9.13)

Now, let us look at the adiabatic Bloch equation (3.2) in this
representation,

1

γ
S�Ω

2
� −

(
I + 1

γ
CS�

)
Ω� + S�Ω�N� + CP� = 0. (9.14)

Note that the matrix representation C of C is also a real
matrix, since C is assumed to be physical. Taking the complex
conjugation of this adiabatic Bloch equation (9.14) yields

1

γ
S�̄Ω

∗
�

2 −
(

I+ 1

γ
CS�̄

)
Ω∗

�+ S�̄Ω
∗
�N�̄+ CP�̄ = 0, (9.15)

which implies

Ω∗
� = Ω�̄. (9.16)

By looking at the conjugate adiabatic Bloch equation (7.2) for
�̃�, we also confirm that Ω̃∗

� = Ω̃�̄. The operators U� and Ũ� are
also endowed with the same symmetry U∗

� = U�̄, Ũ∗
� = Ũ�̄,

and so are the adiabatic generators. For instance,

D∗
� = (Ũ∗

�U∗
� )−1Ũ∗

� (γ B∗ + C∗)U∗
� − γ B∗P∗

�

= (Ũ�̄U�̄)−1Ũ�̄(γ B + C)U�̄ − γ BP�̄

= D�̄. (9.17)

Therefore,

D =
∑

�

D� =
∑

�

D∗
� = D∗. (9.18)

The reality of D̃ and K can be shown in the same way, and
hence, D, D̃, and K are HP.

X. EXAMPLES

Let us look at some examples.

A. Dissipative Lambda system

We consider a five-level system, whose level structure is
depicted in Fig. 1. The Hamiltonian is given by

H� =

⎛
⎜⎜⎜⎜⎜⎝

ω 0 0 0 0
0 −δ/2 0 g∗

1/2 0
0 0 δ/2 g∗

2/2 0
0 g1/2 g2/2 � 0
0 0 0 0 2�

⎞
⎟⎟⎟⎟⎟⎠. (10.1)

Levels |1〉, |2〉, and |3〉 constitute a � configuration, and there
is strong decay from |4〉 to |2〉 with decay rate κ0 and weak
decay from |0〉 to |1〉 and from |0〉 to |2〉 with decay rate κ . We
are interested in the situation where �, κ0 � ω, |δ|, |g1,2|, κ .

For this kind of � system, one often attempts to derive
an effective generator for the subspace {|0〉, |1〉, |2〉}, which is
energetically well separated from the higher energy levels |3〉
and |4〉. The � system is a standard setup to discuss adiabatic
elimination, and approximations beyond the adiabatic elimi-
nation have been studied on these platforms in the literature
[9,51]. Here we can deal with the � system in the presence of
noise, and get an effective generator which well approximates
the evolution of the open system for all times.

Let us normalize the physical parameters �, ω, δ, g1,2, κ ,
and κ0 by some unit of frequency g0, and set γ = �/g0, which
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FIG. 1. A dissipative five-level system. Levels |1〉, |2〉, and |3〉
constitute a � configuration, and there is strong decay from |4〉 to |2〉
with decay rate κ0 and weak decay from |0〉 to |1〉 and from |0〉 to |2〉
with decay rate κ .

is considered to be much greater than ω̃ = ω/g0, δ̃ = δ/g0,
g̃1,2 = g1,2/g0, κ̃ = κ/g0, while κ̃0 = κ0/� = O(1). We ap-
ply our formalism to Markovian generators of the GKLS form

B = −i[H0, • ] − 1

2
κ̃0(L†

0L0 • + • L†
0L0 − 2L0 • L†

0 ),

C = −i[HI , • ] − 1

2
κ̃

∑
i=1,2

(L†
i Li • + • L†

i Li − 2Li • L†
i ),

(10.2)

with

H0 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

⎞
⎟⎟⎟⎠, L0 = |2〉〈4|,

HI =

⎛
⎜⎜⎜⎜⎜⎝

ω̃ 0 0 0 0

0 −δ̃/2 0 g̃∗
1/2 0

0 0 δ̃/2 g̃∗
2/2 0

0 g̃1/2 g̃2/2 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

{
L1 = |1〉〈0|,
L2 = |2〉〈0|.

(10.3)

By abuse of notation, we will omit tildes ω̃ → ω, δ̃ → δ,
g̃1,2 → g1,2, κ̃ → κ , and κ̃0 → κ0 in the following analysis.

According to the perturbative formulas in (8.15)–(8.18),
we get the jth-order term K ( j) = ∑

� K ( j)
� of the adiabatic

generator K = ∑∞
j=0 K ( j)/γ j in the GKLS form [62]

K ( j) = −i[H ( j), • ]

− 1

2

∑
i

�
( j)
i

(
L( j)†

i L( j)
i • + • L( j)†

i L( j)
i − 2L( j)

i • L( j)†
i

)
.

(10.4)

The lowest-order term K (0) is the Zeno generator, given by

H (0) =

⎛
⎜⎜⎜⎝

ω 0 0 0 0
0 −δ/2 0 0 0
0 0 δ/2 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠,

�
(0)
i = κ, L(0)

i = |i〉〈0| (i = 1, 2). (10.5)

The first-order term K (1) provides an approximation usually
discussed in terms of adiabatic elimination, which in the
present case is given by

H (1) = 1

4

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 −|g1|2 −g∗

1g2 0 0
0 −g1g∗

2 −|g2|2 0 0
0 0 0 |g1|2 + |g2|2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

�
(1)
± = ±1

4
|g1g2|, L(1)

± = e−iφ1 |1〉 ∓ ie−iφ2 |2〉√
2

〈4|, (10.6)

where g1,2 = |g1,2|eiφ1,2 . Notice here that these approxima-
tions are valid only for limited time ranges. See Fig. 2. The
Zeno generator K (0)

eff = K (0) is a good approximation only
for times up to t = O(γ ), while the evolution with K (1)

eff =
K (0) + K (1)/γ by adiabatic elimination starts to deviate from
the true evolution for t = O(γ 2). The second- and third-order
approximations K (2) and K (3) are given by

H (2) = 1

8
δ

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 |g1|2 0 0 0
0 0 −|g2|2 0 0
0 0 0 −|g1|2 + |g2|2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�
(2)
± = ±1

4
κ (|g1|2 + |g2|2),

L(2)
+ = |3〉〈0|, L(2)

− = g∗
1|1〉 + g∗

2|2〉√
|g1|2 + |g2|2

〈0|, (10.7)

and

H (3) = 1

16
(δ2 − |g1|2 − |g2|2)

×

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 −|g1|2 −g∗

1g2 0 0
0 −g1g∗

2 −|g2|2 0 0
0 0 0 |g1|2 + |g2|2 0
0 0 0 0 0

⎞
⎟⎟⎟⎠,

�
(3)
1 = +1

4
κδ|g1|2, L(3)

1 = |1〉〈0|,

L(3)
2 = −1

4
κδ|g2|2, L(3)

2 = |2〉〈0|,

L(3)
3 = −1

4
κδ(|g1|2 − |g2|2), L(3)

3 = |3〉〈0|,

�
(3)
± = ± 1

16
|g1g2|(δ2 − |g1|2 − |g2|2),

L(3)
± = e−iφ1 |1〉 ∓ ie−iφ2 |2〉√

2
〈4|. (10.8)
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−
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+
K

)
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B

+
C
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−
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K

)

K
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K
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eff K

(2)
eff K

(3)
eff K
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eff

K
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(b)

FIG. 2. (a) Norm distances as functions of time t between the full
evolution et (γ B+C) and the kth-order adiabatic approximations of the

form et (γ B+K (k)
eff ) with K (k)

eff = ∑k
j=0 K ( j)/γ j (k = 0, 1, 2, 3, 4,∞), for

the dissipative five-level system (10.1) with a � structure (see Fig. 1).
The parameters are set at δ̃ = g̃1 = g̃2 = 1, κ̃ = 0.001, κ̃0 = 1, and
γ = 10. We have chosen the spectral norm (the maximum of the
singular values) of a matrix representation of the map to estimate the
distance. The distances actually oscillate radically as quasiperiodic
functions of time: their upper envelopes are plotted here. It is clearly
observed that the kth-order approximation K (k)

eff works well for times
up to t = O(γ k+1), while the nonperturbative adiabatic generator
K = K (∞)

eff works eternally with the error remaining O(1/γ ) for long
times. (b) Maximum distance maxt�105 ‖et (γ B+C) − et (γ B+K )‖ as a
function of γ . The model and the parameters other than γ are the
same as in (a). The error approximately decreases as 2.98/γ as γ is
increased.

These extend the valid time range up to t = O(γ 3) and t =
O(γ 4), respectively. In general, the kth-order adiabatic ap-
proximation K (k)

eff = ∑k
j=0 K ( j)/γ j works well for times up

to t = O(γ k+1), and the nonperturbative adiabatic generator
K = K (∞)

eff works eternally, keeping the error O(1/γ ), as is
clearly observed in Fig. 2.

For a nonvanishing δ, it is generally impossible to get an
analytical expression for the nonperturbative adiabatic gen-
erator K , but it can be estimated numerically. For instance,
for ω = δ = g1 = g2 = κ = κ0 = 1, and γ = 10, we get

K = K (∞)
eff in the GKLS form

K = −i[H, • ]

− 1

2

∑
i

�i(L
†
i Li • + • L†

i Li − 2Li • L†
i ), (10.9)

with

H =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 −0.524 −0.025 0 0
0 −0.025 0.474 0 0
0 0 0 0.050 0
0 0 0 0 0

⎞
⎟⎟⎟⎠,

�1 = 1.000, L1 = (cos θ |1〉 − eiφ sin θ |2〉) 〈0|,
�2 = 0.995, L2 = (e−iφ sin θ |1〉 + cos θ |2〉) 〈0|,
�3 = 0.005, L3 = |3〉〈0|,

�± = ±0.025, L± = |1〉 ∓ i|2〉√
2

〈4|, (10.10)

where tan θ = 0.909, tan φ = 0.029. This provides an effec-
tive generator for the relevant subspaces, which closely (and
eternally) approximates the evolution of the system. To get
this nonperturbative generator K numerically, we used the
adiabatic Bloch equation (3.2) as

�� =CP� + S���N� − 1

γ
CS��� + 1

γ
S��

2
� ≡ f (��), (10.11)

and performed naive iterations over the function f , which
for γ = 10 converged quickly with the initial guess �

(0)
� =

〈C〉P� = ∑n�−1
n=0 Sn

�CNn
� P�, that is the zeroth-order solution of

�� (there is no nilpotent N� in the present model and the

TABLE I. The spectra of B and γ B + C of the dissipative �

system (10.2) and (10.3) with δ = 0. Here g = √|g1|2 + |g2|2.

B γ B + C

0 (threefold degenerated)

± i
2 (

√
γ 2 + g2 − γ )

0 −κ ± iω

−κ ± i
[
ω + 1

2 (
√

γ 2 + g2 − γ )
]

−2κ

± i
2 (γ + √

γ 2 + g2)

±i ±i
√

γ 2 + g2

−κ ± i
[

1
2 (γ + √

γ 2 + g2) − ω
]

− 1
2 κ0 ± i − 1

2 γ κ0 ± i
2 (3γ − √

γ 2 + g2)

− 1
2 γ κ0 ± 2iγ

− 1
2 κ0 ± 2i − 1

2 γ κ0 ± i
2 (3γ + √

γ 2 + g2)

− 1
2 γ κ0 − κ ± i(2γ − ω)

−κ0 −γ κ0
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initial guess we used was simply CP�). A more sophisticated
algorithm with advanced convergence speed and guaranteed
solution using Newton iteration is provided in Ref. [63].
See Appendix D for the conditions for the existence and
the uniqueness of the solution to the adiabatic Bloch equa-
tion (3.2) based on the Newton-Kantorovich theorem for the
Newton iteration [43]. After obtaining D� = P���P� from ��,
we also solved the conjugate adiabatic Bloch equation (7.2)
numerically, constructed U� and Ũ� through (5.3) and (7.8), re-
spectively, and applied the similarity transformation (Ũ�U�)1/2

to get K� from D� according to (8.14). We can also solve the
Bloch equations (5.11) and (7.12) in the same way to obtain
U� and Ũ� directly, instead of solving (3.2) and (7.2) for ��

and �̃�. Then, we can construct K� according to (8.14).
One might have noticed that the perturbative terms pre-

sented above are all HP and TP, but not CP, except for the Zeno
generator K (0), because of the non-positive-semidefinite Kos-
sakowski matrices in the dissipators. In the nonperturbative
adiabatic generator K in (10.10), summing up all the pertur-
bative contributions, there remains one negative eigenvalue
�− = −0.025 in the Kossakowski matrix. It is associated with
the strong decay from |4〉 to the � subspace. This negativity is
not canceled by the dissipative part of the strong generator γ B:

the total adiabatic generator γ B + K has a negative eigenvalue
�̃− = −6.22×10−5 in its Kossakowski matrix with a Lind-
blad operator L̃− = (cos θ̃ |1〉 + i sin θ̃ |1〉)〈4|, where tan θ̃ =
0.0025.

If one computes D for the present model, it is not CP
even in the absence of the decays (i.e., even for κ0 = κ = 0).
It is turned into K by the Schrieffer-Wolff transformation
and becomes skew-Hermitian and CP. The Schrieffer-Wolff
transformation, however, does not amend CP in the presence
of the decays. The unitary part, on the other hand, is properly
amended by the Schrieffer-Wolff transformation, even in the
presence of the decays. The decaying components anyway
decay out, and the adiabatic evolution at long times within
the decoherence-free subspaces {|1〉, |2〉} and {|3〉} are well
described by the Hamiltonian part H of the resummed pertur-
bative series. In any case, the error remains O(1/γ ) eternally.
Within this approximation, the analysis is fully consistent and
the violation of the CP condition of the effective evolution
yields effects that are within the error O(1/γ ) at all times.

For δ = 0, analytical expressions are available. The spec-
trum of γ B + C is listed in Table I, and the nonperturbative
adiabatic generator K is given in the GKLS form (10.9)
with

H = ω|0〉〈0| + 1

2
(
√

γ 2 + g2 − γ )

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 −|g1|2/g2 −g∗

1g2/g2 0 0

0 −g1g∗
2/g2 −|g2|2/g2 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�1 = κ, L1 = 1

g
(g2|1〉 − g1|2〉) 〈0|,

�2 = κ
γ 2 + γ

√
γ 2 + g2 + g2 + 8κ2

2(γ 2 + g2 + 4κ2)
, L2 = 1

g
(g∗

1|1〉 + g∗
2|2〉) 〈0|,

�3 = κ
γ 2 − γ

√
γ 2 + g2 + g2

2(γ 2 + g2 + 4κ2)
, L3 = |3〉〈0|,

�± = ±1

2
(
√

γ 2 + g2 − γ )
|g1g2|

g2
, L± = 1√

2
(e−iφ1 |1〉 ∓ ie−iφ2 |2〉) 〈4|,

(10.12)

where g =
√

|g1|2 + |g2|2. Combined with the strong generator γ B, the Kossakowski matrix of the total adiabatic generator
γ B + K has the same spectrum {�i} as (10.12) except for the last two terms with �± and L±, which are replaced by

�̃± = 1

2
γ κ0

(
1 ±

√
1 + 4 tan2 φ

|g1g2|2
g4

)
, L̃+ = (c1e−iφ1 |1〉 − c2e−iφ2 |2〉) 〈4|, L̃− = (c∗

2e−iφ1 |1〉 + c∗
1e−iφ2 |2〉) 〈4|,

(10.13)

where {
c1 = (u+|g2| − u−eiφ |g1|)/g,
c2 = (u+|g1| + u−eiφ |g2|)/g,

tan φ =
√

γ 2 + g2 − γ

2γ κ0
, u± =

√
1

2

(
1 ± 1√

1 + 4 tan2 φ |g1g2|2/g4

)
. (10.14)

The eigenvalue �̃− is strictly negative, which is

�̃− = − |g1g2|2
16γ 3κ0

+ O(1/γ 5) (10.15)

for large γ .
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B. Single qubit with nilpotent

We can apply our formalism to open systems, even for a
generator B that admits a nilpotent. Let us look at a simple
qubit example,

B = − i

2
[X, • ] − (1 − Z • Z ), (10.16)

C = −i[X + Y, • ], (10.17)

where X , Y , and Z are Pauli operators. In a matrix representa-
tion, the generator B is put in the Jordan normal form

B = R

⎛
⎜⎝

−2
−1 1

0 −1
0

⎞
⎟⎠R−1, (10.18)

via a similarity transformation R. The eigenvalue −1 is de-
generate and accompanies a nilpotent in its eigenspace. In this
basis, the weak part C of the generator is represented by

C = R

⎛
⎜⎝

0 −2 0 0
2 −2 2 0
2 −4 2 0
0 0 0 0

⎞
⎟⎠R−1. (10.19)

This simple model is tractable analytically. For instance,
the spectrum of γ B + C reads

{0,−γ ± 2i
√

γ + 2,−2γ }. (10.20)

Moreover, we can solve the adiabatic Bloch equation and get
the nonperturbative adiabatic generator

K = (
√

γ 2 + 4γ + 8 − γ ) R

⎛
⎜⎝

0 0 0 0
0 −1 1 0
0 −2 1 0
0 0 0 0

⎞
⎟⎠R−1

= − i

2

(√
γ 2 + 4γ + 8 − γ

)
[X, • ]. (10.21)

Note that even though K is endowed with the same block
structure as B they do not commute, [B, K] �= 0. Observe also
that K is physical, i.e., HP, TP, and CP, in this example. The
adiabatic generator γ B + K is similar to the original generator
γ B + C as

γ B + K = W −1(γ B + C)W (10.22)

TABLE II. The spectra of B and γ B + C for the three-level
system (10.24) and (10.25).

B γ B + C

0 0 (twofold degenerated)
−2

± i
3 − 1

2 ± i
3 γ

± 2i
3 − 1

2 ± 2i
3 γ

±i −1 ± i
√

γ 2 − 1

with

W = R

⎛
⎜⎜⎜⎜⎝

1 − 2√
γ 2+4γ+8

2√
γ 2+4γ+8

0

0 1 0 0

− 2
γ+2 1 − γ+2√

γ 2+4γ+8

γ+2√
γ 2+4γ+8

0

0 0 0 1

⎞
⎟⎟⎟⎟⎠R−1,

(10.23)
and they share the same spectrum (10.20).

C. Impossibility of physical generator

In the previous qubit example, K is physical (HP, TP, and
CP), but it is just a lucky case. Indeed, in the first example
(dissipative � system), the adiabatic generator K is not of
proper physical structure. We are sure about HP and TP of
K , as proved in Sec. IX, but CP is not guaranteed in general.
One might think that CP can be amended via an additional
small similarity transformation on γ B + K keeping the block
structure of B. However, it is generally impossible, as we
prove here.

We provide a counterexample,

B = −i[H0, • ], C = −(1 − L0 • L†
0 ), (10.24)

with

H0 = 1

3

⎛
⎝0 0 0

0 1 0
0 0 3

⎞
⎠, L0 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠. (10.25)

The strong generator B has seven spectral blocks,

B = R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0
−i/3

i/3
−2i/3

2i/3
−i

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R−1. (10.26)

All the sectors are nondecaying. The spectrum of the total generator γ B + C is given in Table II, and decays are induced by the
perturbation C in the nondecaying eigenspaces of B. For this model, the adiabatic generator K is obtained via the generalized
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Schrieffer-Wolff transformation in the GKLS form (10.9) with

H = 1

3
(γ −

√
γ 2 − 1)

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠,

�1 = �2 = 1

2
, L1 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, L2 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

�± = ± 1

3
√

3
(γ −

√
γ 2 − 1), L± =

⎛
⎝e±π i/3 0 0

0 e∓π i/3 0
0 0 −1

⎞
⎠. (10.27)

This K is HP and TP, but not CP.
Now we try to find an adiabatic generator K̃ that is endowed with the same block structure as B, shares the same spectrum

with γ B + C, and is physical (HP, TP, and CP), via an additional similarity transformation on γ B + K . Let us first impose HP,
TP, and the block structure of B on γ B + K̃ . Then a possible adiabatic generator γ B + K̃ is constrained to

γ B + K̃ = R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 r2 r3

r4 r5 r6

−r1 − r4 −r2 − r5 −r3 − r6

r7 + ir8

r7 − ir8

r9 + ir10

r9 − ir10

r11 + ir12

r11 − ir12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R−1,

(10.28)

parametrized by 12 real parameters (r1, . . . , r12). By further requiring that γ B + K̃ should have the same spectrum as γ B + C
listed in Table II, we realize that the parameters should satisfy the conditions

r7 = r9 = −1

2
, r11 = −1, (10.29)

r8 = −1

3
γ , r10 = −2

3
γ , r12 = −

√
γ 2 − 1, (10.30)

and

(r1 + r5) − (r3 + r6) = −2, (10.31)

(r1 − r3)(r5 − r6) − (r2 − r3)(r4 − r6) = 0. (10.32)

The last two constraints are for the top-left 3×3 block to admit the eigenvalues 0 and −2. In this way we are left with four free
parameters. By tuning the remaining four parameters, we try to make γ B + K̃ physical. Since it is already required to be HP and
TP, we try to achieve CP. In terms of the remaining parameters, the spectrum of the Kossakowski matrix of γ B + K̃ is given by{

1

2
r2,

1

2
r3,

1

2
r4,

1

2
r6,−1

2
(r1 + r4),−1

2
(r2 + r5),± 1

12

√
9(r1 + r5 + 1)2 + 3(r1 − r5 + 1)2 + 12(γ −

√
γ 2 − 1)2

}
. (10.33)

All these eigenvalues should be nonnegative for γ B + K̃ to be
CP. However, the last eigenvalue is strictly negative, and it is
impossible to achieve the goal by tuning the parameters and
to make γ B + K̃ physical.

This counterexample leads us to the following conclusion.
If we wish to find an adiabatic generator endowed with the
physical structure (HP, TP, and CP), we have to sacrifice some
of the axioms listed in the Introduction. We emphasize again
that the breakdown of the CP structure does not imply the
failure of the approximation and working assumptions. The
distance of the effective evolution from the true evolution is
guaranteed to be O(1/γ ) for arbitrarily long times, and the
violation of CP is small.

XI. CONCLUSIONS

We have developed a general perturbation theory based on
an iterated adiabatic theorem for arbitrary finite-dimensional
quantum systems. Special cases previously known are given
by Zeno dynamics, adiabatic elimination, Bloch generators,
des Cloizeaux generators, and by the Schrieffer-Wolff ap-
proach. Although we showed that an ideal effective generator
cannot always be provided in open quantum systems, our gen-
eralization provides a good approach to highlight the eternal
adiabatic resilience of quantum systems to perturbations. We
were able to provide concise bounds for this. We note that
many of our theorems can be generalized easily to bounded
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operators on infinite-dimensional Hilbert spaces, provided
that appropriate bounds on the spectral gap appearing in the
reduced resolvent are assumed.

In this work we focused on static systems, with time-
independent generators and time-independent perturbations.
From a quantum control perspective, the eternal adiabaticity
would also have important applications in driven quantum
systems. See for instance Refs. [64–66]. In the unitary case,
the generalization of Bloch’s perturbation theory to the time-
dependent case is studied in Ref. [67], and it would be
interesting to see how our current framework can be extended
towards the study of driven systems.
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APPENDIX A: KEY FORMULA FOR THE ADIABATIC THEOREM

Here we show the derivation of the key formula (2.10) for the iterative application of the adiabatic theorem. Recall first
(B − b�)S� = 1 − P� in (2.9), satisfied by the reduced resolvent S� defined in (2.7). Note also that

e(t−s)(γ B+C)(B − b�) = − 1

γ

(
∂

∂s
(e(t−s)(γ B+C)es(γ b�+C) )

)
e−s(γ b�+C). (A1)

Combining these relations we have

e(t−s)(γ B+C)(1 − P�) = e(t−s)(γ B+C)(B − b�)S� = − 1

γ

(
∂

∂s
(e(t−s)(γ B+C)es(γ b�+C) )

)
e−s(γ b�+C)S�. (A2)

Then, for an arbitrary operator A, we get

∫ t

0
ds e(t−s)(γ B+C)AP�es(γ B+D� )

=
∫ t

0
ds e(t−s)(γ B+C)P�AP�es(γ B+D� ) +

∫ t

0
ds e(t−s)(γ B+C)(1 − P�)AP�es(γ B+D� )

=
∫ t

0
ds e(t−s)(γ B+C)P�AP�es(γ B+D� ) − 1

γ

∫ t

0
ds

(
∂

∂s
(e(t−s)(γ B+C)es(γ b�+C) )

)
e−s(γ b�+C)S�AP�es(γ B+D� )

=
∫ t

0
ds e(t−s)(γ B+C)P�AP�es(γ B+D� ) − 1

γ
[e(t−s)(γ B+C)S�AP�es(γ B+D� )]s=t

s=0

+ 1

γ

∫ t

0
ds e(t−s)(γ B+C)es(γ b�+C) ∂

∂s
(e−s(γ b�+C)S�AP�es(γ B+D� ) )

=
∫ t

0
ds e(t−s)(γ B+C)P�AP�es(γ B+D� ) + 1

γ
et (γ B+C)S�AP� − 1

γ
S�AP�et (γ B+D� ) − 1

γ

∫ t

0
ds e(t−s)(γ B+C)K�(A)P�es(γ B+D� ), (A3)

where K� is defined in (2.11). The key formula (2.10) is thus obtained.

APPENDIX B: BOUNDING THE LAST TERM OF (2.13)

We show that the last term of (2.13) decays as n → +∞. To show this, let us bound A(n)
� /γ n = Kn

� (C − D�)/γ n, where K is
defined in (2.11). Recall that there exists an integer n� � 1 such that Nn�

� = 0. This limits the highest possible power of γ in the
expansion of Kn

� to n − �n/n��, where �x� is the largest integer less than or equal to x. This is because, in the expansion of Kn
� , the

nilpotent N� can repeat only n� − 1 times sequentially and D� should interrupt the sequence. The highest-order terms look like
γ n−�n/n��Sn

� • N p
� D�(Nn�−1

� D�)�n/n��−1Nq
� with integers p and q satisfying p, q � n� − 1 and p + q = n − (�n/n�� − 1)n� − 1.
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Therefore, A(n)
� is bounded by

‖A(n)
� ‖ �

n−�n/n��∑
r=0

(
n
r

)
(‖C‖‖S�‖ + ‖S�‖‖D�‖)n−r (γ ‖S�‖‖N�‖)r‖C − D�‖. (B1)

It is a rough bound since it is overcounting also vanishing terms containing Nm
� with m > n� − 1, but this suffices for our purpose.

For γ > 1, it is further bounded by

� γ n−�n/n��‖S�‖n
n−�n/n��∑

r=0

(
n
r

)
(‖C‖ + ‖D�‖)n−r‖N�‖r‖C − D�‖ � γ n−�n/n�� [‖S�‖(‖C‖ + ‖D�‖ + ‖N�‖)]n‖C − D�‖. (B2)

Since (n + 1)/n� − 1 � �n/n�� � n/n�,

� γ n−(n+1)/n�+1 [‖S�‖(‖C‖ + ‖D�‖ + ‖N�‖)]n‖C − D�‖ = γ n−1/n�+1

(
[‖S�‖(‖C‖ + ‖D�‖ + ‖N�‖)]n�

γ

)n/n�

‖C − D�‖. (B3)

Therefore, ‖A(n)
� ‖/γ n → 0 as n → +∞, provided γ > max{1, [‖S�‖(‖C‖ + ‖D�‖ + ‖N�‖)]n�}.

APPENDIX C: LINK WITH BLOCH’S
PERTURBATION THEORY

We want to translate our adiabatic Bloch equation (3.2)
with (3.3) for �� into the equation for the similarity trans-
formation U� defined in (5.3). This will show that our theory
is equivalent to Bloch’s perturbation theory in the unitary case
[38] and generalizes it to the nonunitary case.

Let us first try to invert the relation (5.3) between U� and
��, i.e.,

U� = P� − 1

γ
S���. (C1)

It yields S���/γ = P� − U�. We use it to replace �� with U�

in our adiabatic Bloch equation (3.2),

�� = 1

γ
S��

2
� − 1

γ
CS��� + S���N� + CP�

= (P� − U�)�� − C(P� − U�) + γ (P� − U�)N� + CP�

= CU� + (P� − U�)(�� + γ N�)

= CU� − (1 − P�)U�(�� + γ N�), (C2)

where we have used P�U� = P� from (5.6). This implies

P��� = P�CU�. (C3)

Therefore, by inserting it back into the right-hand side of (C2)
and by noting U�P� = U� from (5.6), we get

�� = CU� − (1 − P�)U�(CU� + γ N�). (C4)

This is the inversion of the relation (C1).
By inserting this expression into the right-hand side of the

relation (C1), we obtain the equation for U� as

U� = P� − 1

γ
S�(CU� − U�CU�) + S�U�N�, (C5)

with

U�P� = U�. (C6)

These equations are presented in (5.11) and (5.12) of the main
text. Note that Eq. (C5) automatically reproduces one of the
two properties of U� in (5.6), P�U� = P�, while the other one
U�P� = U� is independent of (C5). We need (C6) in addition
to Eq. (C5) to characterize U�.

When B and C are Hamiltonians (multiplied by −i), there
is no nilpotent N� in B, and Eq. (C5) for U� is nothing but
the well-known Bloch equation [38]. Our Eq. (C5) gener-
alizes Bloch’s equation to the case where B and C are not
skew-Hermitian and B might be even nondiagonalizable. In
particular, our formalism can describe noisy quantum dynam-
ics.

Let us check the validity of the results just obtained. First,
we assume that �� satisfies our adiabatic Bloch equation (3.2)
with (3.3) and show that U� introduced through the relation
(C1) solves the generalized Bloch equation (C5). Before start-
ing to show it, note that our adiabatic Bloch equation (3.2)
multiplied by P� from the left yields

−P�

(
1 + 1

γ
CS�

)
�� + P�CP� = 0. (C7)

Now, by inserting the relation (C1) for U�,

U� − P� + 1

γ
S�(CU� − U�CU�) − S�U�N�

=
(

P� − 1

γ
S���

)
− P� + 1

γ
S�

[
C

(
P� − 1

γ
S���

)
−

(
P� − 1

γ
S���

)
C

(
P� − 1

γ
S���

)]
− S�

(
P� − 1

γ
S���

)
N�

= − 1

γ
S�

[
�� − C

(
P� − 1

γ
S���

)
− 1

γ
S���

(
P�CP� − 1

γ
P�CS���

)
− S���N�

]
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= − 1

γ
S�

[
�� − C

(
P� − 1

γ
S���

)
− 1

γ
S���P��� − S���N�

]

= 1

γ
S�

[
1

γ
S��

2
� −

(
1 + 1

γ
CS�

)
�� + CP� + S���N�

]
= 0. (C8)

We have used S�P� = 0 and �� = ��P� from (3.3) for the second equality, used (C7) to get the third equality, and used our
adiabatic Bloch equation (3.2) for the last equality. This proves that the generalized Bloch equation (C5) is satisfied. Equation
(C6) also follows from the definition of U� in (C1) and ��P� = �� from (3.3).

The converse is also true. We now assume that U� satisfies the generalized Bloch equation (C5) with (C6) and show that ��

introduced through the relation (C4) solves our Bloch equation (3.2). By inserting the relation (C4) for ��,

1

γ
S��

2
� −

(
1 + 1

γ
CS�

)
�� + CP� + S���N�

= 1

γ
S�[CU� − (1 − P�)U�(CU� + γ N�)]2 −

(
1 + 1

γ
CS�

)
[CU� − (1 − P�)U�(CU� + γ N�)]

+ CP� + S�[CU� − (1 − P�)U�(CU� + γ N�)]N�

= 1

γ
S�[CU� − U�(CU� + γ N�)]CU� − CU� + (1 − P�)U�(CU� + γ N�) − C

1

γ
S�[CU� − U�(CU� + γ N�)]

+ CP� + 1

γ
S�[CU� − U�(CU� + γ N�)]γ N�

= (P� − U�)CU� − CU� + (1 − P�)U�(CU� + γ N�) − C(P� − U�) + CP� + γ (P� − U�)N� = 0. (C9)

We have used S�(1 − P�) = S� and U�(1 − P�) = 0 from (C6) for the second equality, used the generalized Bloch equation (C5)
to get the third equality, and used P�U� = P�, which follows from the generalized Bloch equation (C5), for the last equality. This
proves that our adiabatic Bloch equation (3.2) is satisfied. Equation (3.3) also follows from the relation (C4) and U�P� = U� from
(C6).

Finally, let us also check that (C1) and (C4) are indeed the inverses of each other, provided that both Bloch equations (3.2)
with (3.3) and (C5) with (C6) hold: by inserting (C4) for �� into the right-hand side of (C1) we immediately get

P� − 1

γ
S��� = P� − 1

γ
S�[CU� − (1 − P�)U�(CU� + γ N�)] = U�, (C10)

thanks to the generalized Bloch equation (C5), while by inserting (C1) for U� into the right-hand side of (C4) we get

CU� − (1 − P�)U�(CU� + γ N�) = C

(
P� − 1

γ
S���

)
− (1 − P�)

(
P� − 1

γ
S���

)[
C

(
P� − 1

γ
S���

)
+ γ N�

]

= C

(
P� − 1

γ
S���

)
+ 1

γ
S���

[
P�C

(
P� − 1

γ
S���

)
+ γ N�

]

= C

(
P� − 1

γ
S���

)
+ 1

γ
S���(P��� + γ N�)

= 1

γ
S��

2
� − 1

γ
CS��� + CP� + S���N�

= ��, (C11)

where we have used (C7), which follows from our Bloch equation (3.2). Everything is thus consistent.

APPENDIX D: SOLVABILITY OF THE ADIABATIC
BLOCH EQUATIONS

For a given �, the adiabatic Bloch equations (3.2) and
(5.11) for �� and U�, respectively, are quadratic matrix equa-
tions. Lancaster and Rokne [63] studied the existence and
the uniqueness problem of a similar quadratic equation using

the Newton-Kantorovich theorem [43]. We can follow simi-
lar proofs for the adiabatic Bloch equations (3.2) and (5.11)
using Ref. [43] directly. It shows the existence of a solution
constructively by a converging Newton iteration finding a
solution of the equation. Let us show here the solvability of
the adiabatic Bloch equation (5.11) for the wave operator U�.
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We can also analyze the other adiabatic Bloch equation (3.2)
for �� in the same way. Strictly speaking the adiabatic Bloch
equation is a set of coupled equations (5.11) and (5.12). We
will see that the Newton iteration preserves the latter condition
(5.12), so we can solve both equations simultaneously.

The adiabatic Bloch equation (5.11) for the wave operator
U� is a quadratic matrix equation in X = U� of the form

F (X ) = X − S�XN� + 1

γ
S�(CX − XCX ) − P� = 0. (D1)

The (Fréchet) derivative of F (X ) reads

F ′
X (A) = A − S�AN� + 1

γ
S�(CA − XCA − ACX ). (D2)

The derivative F ′
X is invertible for large γ ,

(F ′
X )−1 =

(
I + 1

γ
GX

)−1

= I−1

(
1 + 1

γ
GXI−1

)−1

, (D3)

where

I (A) = A − S�AN�, I−1(A) =
n�−1∑
n=0

Sn
�ANn

� , (D4)

GX (A) = S�(CA − XCA − ACX ). (D5)

The Newton iteration is then given by

Xk+1 = Xk − (F ′
Xk

)−1(F (Xk )). (D6)

It is reasonable to choose the zeroth-order solution of the
perturbative equation as an initial guess. With

X0 = U (0)
� = I−1(P�) = P�, (D7)

we have

F (X0) = 1

γ
S�CP� (D8)

and

GX0 (A) = S�(CA − ACP�). (D9)

Explicit bounds are readily obtained from geometric series:

‖I−1‖ �
n�−1∑
n=0

(‖S�‖‖N�‖)n = 1 − (‖S�‖‖N�‖)n�

1 − ‖S�‖‖N�‖ ≡ μ�,

(D10)

‖F (X0)‖ � 1

γ
‖S�‖‖C‖‖P�‖, (D11)

‖GX0‖ � 2‖S�‖‖C‖‖P�‖, (D12)

where we have used ‖P�‖ � 1. Therefore,

‖(F ′
X0

)−1‖ � ‖I−1‖
1 − 1

γ
‖GX0‖‖I−1‖

� μ�

1 − 2
γ
μ�‖S�‖‖C‖‖P�‖

≡ β�, (D13)

‖(F ′
X0

)−1(F (X0))‖ � 1

γ

μ�‖S�‖‖C‖‖P�‖
1 − 2

γ
μ�‖S�‖‖C‖‖P�‖

≡ ν�.

(D14)

Moreover, since

F ′
X (A) − F ′

Y (A) = − 1

γ
S�[(X − Y )CA + AC(X − Y )],

(D15)
we have

‖F ′
X − F ′

Y ‖ � 2

γ
‖S�‖‖C‖‖X − Y ‖ � L�‖X − Y ‖, (D16)

with

L� = 2

γ
‖S�‖‖C‖‖P�‖. (D17)

According to Ref. [43], if

h� = β�L�ν� �
1

2
, (D18)

there is a solution of F (X ) = 0 within

‖X − X0‖ � �� = 1 − √
1 − 2h�

β�L�

. (D19)

Moreover, there is at most one solution within

‖X − X0‖ < �� = 1 + √
1 − 2h�

β�L�

. (D20)

Finally, the convergence is at least quadratic if h� < 1/2.
In the present case,

h� = β�L�ν� = 1

γ 2

2μ2
�‖S�‖2‖C‖2‖P�‖2(

1 − 2
γ
μ�‖S�‖‖C‖‖P�‖

)2 (D21)

and

�� = 1 − √
1 − γ�/γ

1 + √
1 − γ�/γ

= �−1
� , (D22)

with

γ� = 4μ�‖S�‖C‖‖P�‖. (D23)

The condition h� � 1/2 for the solvability of the Bloch equa-
tion (5.11) requires

γ � γ�. (D24)

Under this condition, a solution U� exists within

‖U� − P�‖ � �� = O(1/γ ), (D25)

and there is at most one solution within

‖U� − P�‖ < �� = O(γ ). (D26)

We note that X0 = X0P�. Furthermore, since F contains
right multiplication with only N�, it preserves X = XP�, i.e.,
F (X ) = F (X )P�. The same holds for F ′

X (X ) because it only
contains right multiplication by N� and CX , i.e., F ′

X (X ) =
F ′(X )P�. Therefore, the Newton iteration (D6) preserves this
property, and the limit X∞ fulfills both F (X∞) = 0 and X∞ =
X∞P�. The solution U� = X∞ obtained by the Newton itera-
tion satisfies (5.12). In addition, the small distance O(1/γ )
from the initial guess X0 = P� justifies the perturbative ap-
proach taken in Sec. IV.

Finally, the bound on U� in (D25) allows us to estimate the
size of the adiabatic generator D�. Recalling that D� = P�CU�,
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its norm is bounded by

‖D�‖ =‖P�CU�‖ � ‖P�‖‖C‖(1 + ‖U� − P�‖) ‖P�‖

� 2‖C‖‖P�‖2

1 + √
1 − γ�/γ

. (D27)

APPENDIX E: ETERNAL BOUNDS

We can also work on the conjugate Bloch equation (7.12)
for Ũ�, and get

‖Ũ� − P�‖ � ��, (E1)

with the same �� given in (D22). This and the bound on
U� in (D25) allow us to explicitly bound the norm distance
between the approximate adiabatic evolution et (γ B+K ) and the
true evolution et (γ B+C) eternally.

The similarity between the generators γ B + C and γ B + K
in (8.21) implies the similarity between the evolutions et (γ B+C)

and et (γ B+K ). The difference between the two evolutions is
then estimated to be

et (γ B+C) − et (γ B+K ) = et (γ B+C) − W −1et (γ B+C)W

= −et (γ B+C)(W − 1)

−(W −1 − 1)et (γ B+C)W

= −
∑

�

et (γ B+C)(W� − P�)

+
∑

�

(W� − P�)W −1
� et (γ B+C)W�. (E2)

Note the intertwining relations

W� = W�P� = P̃�W�, (E3)

W −1
� = P�W

−1
� = W −1

� P̃� (E4)

in (8.8) and (8.12). Recall here the definitions of W� and W −1
�

in (8.7) and (8.11), and the pseudoinverse (Ũ�U�)−1 in (8.2).
Since

U� = U�P�, P�U� = P�, (E5)

Ũ� = P�Ũ�, Ũ�P� = P�, (E6)

as noted in (5.6) and (7.11), we have

W� = [1 + (U� − P�)][1 + (Ũ� − P�)(U� − P�)]−1/2P�, (E7)

W −1
� = P�[1 + (Ũ� − P�)(U� − P�)]−1/2[1 + (Ũ� − P�)],

(E8)

and

W� − P� = [1 + (U� − P�)][1 + (Ũ� − P�)(U� − P�)]−1/2−1,

(E9)

W −1
� −P� = [1 + (Ũ�−P�)(U�−P�)]−1/2[1 + (Ũ� − P�)] − 1.

(E10)

These are bounded by

‖W�‖, ‖W −1
� ‖ � 1 + ��√

1 − �2
�

‖P�‖, (E11)

‖W� − P�‖, ‖W −1
� − P�‖ � 1 + ��√

1 − �2
�

− 1, (E12)

using the bounds ‖U� − P�‖ � �� and ‖Ũ� − P�‖ � �� in (D25) and (E1). We hence get

‖et (γ B+C) − et (γ B+K )‖ �
∑

�

(‖W� − P�‖ + ‖(W� − P�)W −1
� ‖‖W�‖

)‖et (γ B+C)‖

�
∑

�

2

1 − ��

(√
1 + ��

1 − ��

− 1

)
‖P�‖‖et (γ B+C)‖

=
∑

�

(
1√

1 − γ�/γ
+ 1

)(
1

4
√

1 − γ�/γ
− 1

)
‖P�‖‖et (γ B+C)‖, (E13)

where

γ� = 4‖S�‖‖C‖‖P�‖1 − (‖S�‖‖N�‖)n�

1 − ‖S�‖‖N�‖ . (E14)

This can be loosely bounded as in (8.23) for γ � 2 max� γ�,
in the norm induced by the operator trace norm.

The distance between et (γ B+C) and et (γ B+D), which are sim-
ilar to each other through U , can be bounded in a similar way.
Note the intertwining relations

U� = U�P� = P̃�U�, (E15)

U −1
� = P�U

−1
� = U −1

� P̃�, (E16)

where

U −1
� = (Ũ�U�)−1Ũ� (E17)

is a pseudoinverse satisfying

U −1
� U� = P�, U�U

−1
� = P̃�. (E18)

It is bounded by

‖U −1
� ‖ � 1 + ��

1 − �2
�

. (E19)
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Then the difference

et (γ B+C) − et (γ B+D) = −
∑

�

et (γ B+C)(U� − P�) +
∑

�

(U� − P�)U −1
� et (γ B+D)U� (E20)

is bounded by

‖et (γ B+C) − et (γ B+D)‖ �
∑

�

(‖U� − P�‖ + ‖(U� − P�)U −1
� ‖‖U�‖

)‖et (γ B+C)‖

�
∑

�

2��

1 − ��

‖P�‖‖et (γ B+C)‖

=
∑

�

(
1√

1 − γ�/γ
− 1

)
‖P�‖‖et (γ B+C)‖. (E21)

This bound is smaller than the bound on the distance ‖et (γ B+C) − et (γ B+K )‖ in (E13). Since 1/
√

1 − x − 1 < x for 0 < x � 1/2,
this can be loosely bounded as in (6.6) for γ � 2 max� γ�, in the 1-1 norm induced by the operator trace norm.

Moreover, in the unitary case, by using the spectral norm, so that ‖A‖ = ‖A†A‖1/2 = ‖AA†‖1/2, tighter bounds are available.
For instance, by using the unitarity of W and et (γ B+C), whose norms are ‖W ‖ = ‖et (γ B+C)‖ = 1, and the orthogonality
(Wk − Pk )(W� − P�)† = 0 for k �= �, we can bound the distance as

‖et (γ B+C) − et (γ B+K )‖ = ‖−et (γ B+C)(W − I ) + (W − I )W −1et (γ B+C)W ‖

� 2‖W − I‖

= 2

∥∥∥∥∥
∑

�

(W� − P�)

∥∥∥∥∥
= 2

∥∥∥∥∑
k

(Wk − Pk )
∑

�

(W� − P�)†

∥∥∥∥
1/2

= 2

∥∥∥∥∑
�

(W� − P�)(W� − P�)†

∥∥∥∥
1/2

� 2

(∑
�

‖W� − P�‖2

)1/2

� 2

√√√√∑
�

(√
1 + ��

1 − ��

− 1

)2

� 2
√

d max
�

(√
1 + ��

1 − ��

− 1

)

= 2
√

d

(
1

4
√

1 − 4‖C‖/(γ η)
− 1

)
, (E22)

where d is the number of distinct eigenvalues of B, and

η = min
k �=�

|bk − b�| (E23)

is the spectral gap of B. Note that μ� = 1, ‖P�‖ = 1, and hence γ� = 4‖S�‖‖C‖ � 4‖C‖/η in the unitary case.
For the distance between et (γ B+C) and et (γ B+D), the similarity transformation U between them is not unitary even for unitary

evolution, but anyway, we can bound it as

‖et (γ B+C) − et (γ B+D)‖ = ‖−et (γ B+C)(U − I ) + (U − I )U −1et (γ B+C)U‖

� ‖U − I‖ + ‖(U − I )U −1et (γ B+C)U‖
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=
∥∥∥∥∥
∑

�

(U� − P�)

∥∥∥∥∥ +
∥∥∥∥∥
∑

�

(U� − P�)U −1
� et (γ B+C)U�

∥∥∥∥∥
�

(∑
�

‖U� − P�‖2

)1/2

+
(∑

�

∥∥(U� − P�)U −1
� et (γ B+C)U�

∥∥2

)1/2

�
√∑

�

�2
� +

√√√√∑
�

(
��

1 + ��

1 − ��

)2

�
√

d max
�

(
2��

1 − ��

)

=
√

d

(
1√

1 − 4‖C‖/(γ η)
− 1

)
, (E24)

where we have used the orthogonality UkU
†
� = 0 for k �= �. This bound is larger than the bound on the distance ‖et (γ B+C) −

et (γ B+K )‖ in (E22).
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