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We show that for any finite-dimensional quantum systems the conserved quantities can be characterized
by their robustness to small perturbations: for fragile symmetries, small perturbations can lead to large
deviations over long times, while for robust symmetries, their expectation values remain close to their initial
values for all times. This is in analogy with the celebrated Kolmogorov-Arnold-Moser theorem in classical
mechanics. To prove this result, we introduce a resummation of a perturbation series, which generalizes the
Hamiltonian of the quantum Zeno dynamics.
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Symmetries and conserved quantities are the corner-
stones of modern theoretical physics [1]. In quantum
mechanics, it is well known that conserved quantities are
characterized by observables that commute with the system
Hamiltonian. Here, we show that this characterization is
incomplete, because some symmetries in quantum mechan-
ics are more conserved than others.
More precisely, we can consider the robustness of

symmetries. Some fundamental symmetries (such as
those related to superselection rules [2]) are considered
almost unbreakable in nonrelativistic quantum mechan-
ics, while other, accidental [3], symmetries are easily
perturbed.
We now introduce such distinction into fundamental,

robust symmetries and accidental, fragile ones in an
analogous, but much more applied context, namely, one
provided by a time-independent Hamiltonian on a finite-
dimensional quantum system. This Hamiltonian H acts as
a reference for its symmetries S, characterized by
½H; S� ¼ 0, and with respect to which we define their
robust component Srobust as the part almost conserved [up
to a term OðεÞ] for all times and for any small time-
independent perturbation εV, while we define their fragile
component Sfragile as the part for which there are pertur-
bations that will accumulate large amounts of change over
time. As an alternative view, for any robust symmetry
there is a slightly modified observable that is conserved in
the perturbed system Srobust → Sεrobust, while for fragile
symmetries there is not. Such conserved quantities were
constructed recently in many-body systems for specific
perturbations [4], while we provide a general construction
and characterization, and show a natural decomposition of
any symmetry S

S ¼ Srobust þ Sfragile: ð1Þ

The importance of robust observables is exemplified
by analog quantum simulations [5], where the aim is to
run a complex Hamiltonian long enough such that
observable quantities are no longer easily computable
by classical computers. The problem is, however, that
small perturbations in the lab are not under control
and can destroy the reliability of the simulation [6,7].
On the other hand, as we show below, the expectation
values of robust observables remain reliable even in the
long term.
More fundamentally, our result is in close analogy to

the Kolmogorov-Arnold-Moser (KAM) perturbation
theory in classical mechanics [8,9], which proved the
long-time stability of planetary orbits, despite accumulat-
ing perturbations. Quantum mechanical versions of KAM
perturbation have been considered previously by Scherer
[10] to mimic a superconvergent series. In the context of
many-body systems, Nekhoroshev estimates were used to
show a robustness of certain observables for intermediate
times [11–15]. Our focus, instead, is an algebraic
approach based on the adiabatic theorem, enabling us
to provide nonperturbative bounds valid for arbitrarily
long times, with no structural assumptions on the gen-
erators and observables, and generalizations to open
systems (Lindbladians). This way, we prove a result
analogous to the KAM stability in finite-dimensional
quantum systems.
How can we characterize which observables are fragile

and which are robust? Under which conditions are there
robust ones, and just how robust are they? In the
unperturbed system, the conserved quantities are the
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observables commuting with H, given by all Hermitian
matrices that are block diagonal with respect to the
eigenspaces of H. They may share the degenerate
eigenspaces of H or they may lift their degeneracy. In
this Letter, we will show that this precisely distinguishes
robust and fragile symmetries. Moreover, unless H
is the identity, there always exist nontrivial robust
symmetries.
Fragile symmetries.—First, consider a symmetryM that

breaks degeneracy in an eigenspace of H. We show that
such a conserved quantity is not robust against perturba-
tion. For instance, take two simultaneous eigenstates of H
andM, say je1i and je2i, belonging to the same eigenspace
of H but belonging to different eigenspaces of M; i.e.,
Hje1i ¼ eje1i and Hje2i ¼ eje2i, while Mje1i ¼ m1je1i
and Mje2i ¼ m2je2i, with Δ ¼ m1 −m2 > 0. Let us take
V ¼ je1ihe2j þ je2ihe1j as a perturbation and consider
H þ εV. If we focus on initial states jψi in the subspace
spanned by fje1i; je2ig, the problem is reduced to a two-
dimensional problem. Take, for instance, je1i as an initial
state. We find

hMiεt − hMit ¼ hMiεt − hMi0 ¼ −Δ sin2 εt; ð2Þ

where the expectations h·it and h·iεt are taken with
respect to states evolved under the free and the
perturbed evolution, e−itHjψi and e−itðHþεVÞjψi, respec-
tively. At time t ¼ π=ð2εÞ the error is Δ, which is
independent of ε. This kind of example can be con-
structed for any M that is nondegenerate within a sub-
space of H, and we conclude that such conserved
observables are fragile.
Robust symmetries.—Second, consider a conserved

observable that acts uniformly within each eigenspace of
H. We may write M ¼ P

mkPk, where fPkg are the
spectral projections of H ¼ P

k ekPk (with ek ≠ el for k ≠
l and PkPl ¼ δklPl). Using results on the quantum Zeno
dynamics [16–19], one can show that such observables are
endowed with some intrinsic robustness with respect to
small perturbations εV, with kVk ¼ 1. Indeed, we have a
bound [20]

δZðtÞ ¼ keitðHþεVÞ − eitðHþεVZÞk ≤ 2
ffiffiffi
d

p
εð1þ εtÞ=η; ð3Þ

where d is the number of distinct eigenvalues of the
Hamiltonian H, η ¼ mink≠l jek − elj is the spectral
gap of H (strictly positive for any nontrivial H), and
VZ ¼ P

k PkVPk is the “Zeno Hamiltonian” [16,17]. By
construction, ½M;VZ� ¼ 0, and we obtain [19,20]

kMε
t −Mk ≤ 2kMkδZðtÞ ≤ 4

ffiffiffi
d

p
kMkεð1þ εtÞ=η; ð4Þ

where Mε
t ¼ eitðHþεVÞMe−itðHþεVÞ is the perturbed evolu-

tion of observable M. This bound, however, is

informational as far as it is less than the trivial bound
2kMk, which is not for sufficiently large times t.
This is, anyway, just an upper bound, and it might be a

loose bound. Let us look more carefully at a two-dimen-
sional example again and show that there are indeed
perturbations V such that δZðtÞ in (3) saturates the trivial
bound 2, for every ε, however small. Consider H ¼ σz and
V ¼ σx, the third and first Pauli matrices, respectively. In
this case, we have VZ ¼ 0, and δZðtÞ ¼ keitðσzþεσxÞ − eitσzk.
This is a complicated quasiperiodic function, with
suptδZðtÞ ¼ 2 [31], proving that, in general, the Zeno
Hamiltonian VZ is not a good approximation for
long times.
However, notwithstanding the negative result about the

smallness of the distance δZðtÞ in (3), the conserved
quantity M ¼ P

mkPk considered above is actually stable
for all times, eternally. The key idea behind the above
phenomenon is to choose an (ε-dependent) approximation
of V that has the same block structure as H and is therefore
commutative with M. The Zeno Hamiltonian VZ is not a
good choice. To make the point, consider again the above
two-dimensional example with H ¼ σz and V ¼ σx,
and now choose, in place of VZ, the operator VHðεÞ ¼
ε−1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p
− 1Þσz as an approximation of V. Obviously,

½VH;H� ¼ 0. Moreover, VHðεÞ ¼ VZ þOðεÞ. With this
choice, we get

δðtÞ ¼ keitðσzþεσxÞ − eit½σzþεVHðεÞ�k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p
�s

j sinðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ε2 þ 1

q
Þj ≤ ε: ð5Þ

This bound is independent of time t and implies that [20]

kMε
t −Mk ≤ 2kMkδðtÞ ≤ 2kMkε; ð6Þ

for all times and for any observable of the form
M ¼ diagðm1; m2Þ. Such observables are robust.
General result.—Of course, we did not just guess

VHðεÞ arbitrarily. We discovered a way of constructing
such eternal block-diagonal approximations for any
finite-dimensional quantum systems, including noisy
systems with Lindbladians. They can be seen as resum-
mation of a perturbative series, whose zeroth-order term
is the Zeno Hamiltonian VHð0Þ ¼ VZ. Its theory, proof,
and generalizations are discussed in great detail in
Ref. [32].
The crucial ingredient is that the block-diagonal approxi-

mationH þ εVHðεÞ, unlikeH þ εVZ, can be chosen to have
the same spectrum of H þ εV and thus to be unitarily
equivalent to it: H þ εVHðεÞ ¼ W†

εðH þ εVÞWε, with a
unitary Wε ¼ 1þOðεÞ [20]. This is a necessary condition,
since geometrically the evolution of a Hamiltonian with d
distinct eigenvalues yields a (quasi-)periodic motion of a point
on a torus. Two motions with different frequencies, however
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small the differences may be, will eventually accumulate a
divergence of Oð1Þ. The only way to avoid this slow drift is
that the two motions be isochronous, that is, the two
Hamiltonians be isospectral. In such a case, we get

δ∞ ¼ sup
t
keitðHþεVÞ − eit½HþεVHðεÞ�k

¼ sup
t
keitðHþεVÞ −W†

εeitðHþεVÞWεk < 7
ffiffiffi
d

p
ε=η ð7Þ

(see the Supplemental Material [20] for a perturbative proof
and Ref. [32] for explicit bounds). It follows that any quantum
system has robust conserved quantities S ¼ Srobust, with
½S;H� ¼ 0, and hence S ¼ St, such that for every perturbation
εV,

kSεt − Sk ≤ 2kSkδ∞ ¼ OðεÞ; ð8Þ

for all times [20], where Sεt ¼ eitðHþεVÞSe−itðHþεVÞ, and they
are precisely of the form S ¼ Srobust, where

Srobust ¼
X

k

skPk; ð9Þ

withH ¼ P
k ekPk. All other conserved quantities are fragile,

as the distance (8) becomes Oð1Þ.
While this is a complete characterization of robust

conserved quantities, the representation in terms of
spectral projections requires diagonalization of the
Hamiltonian H and is impractical for high-dimensional
systems. However, given Hn ¼ P

k e
n
kPk, one can invoke

the invertibility of the Vandermonde matrix ðej−1k Þ to see
that S ¼ P

d−1
k¼0 ckH

k. This means that any primary matrix
function fðHÞ of the Hamiltonian H is robust. If the
original Hamiltonian is sparse, for instance, low-order
polynomials can be constructed efficiently. In particular,
we obtain that for any state the energy expectation value
and the variance

hHiεt − hHi0 ¼ OðεÞ; hΔH2iεt − hΔH2i0 ¼ OðεÞ ð10Þ

remain close to their unperturbed values forever. This is
easily generalized to higher moments.
We can also rephrase the fact that any robust observable

is a polynomial function ofH in terms of the symmetries of
H. That is, S is robust if and only if it shares all symmetries
ofH: for any C such that ½H;C� ¼ 0, we also have ½S; C� ¼
0 [33]. For more details on the algebraic structure, see the
Supplemental Material [20].
Finally, let us emphasize that the above characterization

provides a natural decomposition of any observableM into
three parts: one dynamical part that is not conserved by H,
one that is conserved but is fragile to perturbations, and one
that is robust. The nonconserved part is off diagonal with
respect to the spectral projections of H,

Mnoncons ¼ M −Mcons ¼ M −
X

k

PkMPk; ð11Þ

the robust component of the conserved part Mcons acts
trivially within the eigenspaces of H,

Mrobust ¼
X

k

d−1k trðPkMPkÞPk; ð12Þ

with dk being the dimension of the kth eigenspace, and the
fragile part is the remaining symmetry

Mfragile ¼
X

k

Pk½M − d−1k trðPkMPkÞ�Pk: ð13Þ

Integrable example.—While an unambiguous and uni-
versal definition of integrability for quantum systems is
still lacking [34,35], we take the Heisenberg chain as a
typical example of a system which we think of
as integrable. The Hamiltonian acts on N qubits
and is given by H ¼ −J

P
N
n¼1 σn · σnþ1, where σn ¼

ðσn;x; σn;y; σn;zÞ is the vector of Pauli matrices acting
on the nth qubit, and we impose the periodic boundary
conditions σNþ1 ¼ σ1. The Heisenberg chain can be
solved analytically by the algebraic Bethe ansatz. The
corresponding conserved charges Q2;…; QN can be
generated using the boost operator B ¼ 1

2

P
N
n¼1 nσn ·

σnþ1 as Qnþ1 ¼ −i½B;Qn� with Q2 ¼ H, and Qn acts
nontrivially on sets of n neighbors on the chain only [36].
Combined with the total magnetization Q1 ¼

P
N
n¼1 σn;z,

they provide a maximal Abelian algebra. These con-
served charges are the pinnacle of integrability. However,
they are fragile: because the charges are algebraically
independent, except for Q2 ¼ H, none are robust.
Incidentally, this shows that the findings in Ref. [4]
are restricted to specific perturbation classes. A simple
example is given by the total magnetization Q1: due to
the rotational invariance of H, we could have equally
chosen the magnetization in another direction, say
Q̃1 ¼

P
N
n¼1 σn;x. As a perturbation, however, Q̃1 causes

the expectation value of Q1 to oscillate and deviate vastly
from its original value. For instance, if we start with a z-
polarized state, we obtain hQ1iεt ¼ cosðωtÞN for some ω
depending on the perturbation strength ε. We show
numerical examples of the evolution of a randomly
chosen observable (Fig. 1) as well as physical
ones (Fig. 2).
Our bound (7) scales with the number d of distinct

eigenvalues and the inverse of the spectral gap η of the
Hamiltonian H. Therefore, in the context of many-body
physics, it is useful only for particular systems as system
size grows. In many-body setups, weaker types of
robustness of observables were shown, assuming locality
of the Hamiltonian, observable, and perturbation
[11–15]. In the context of KAM, such bounds are analo-
gous to Nekhoroshev estimates, showing stability for an

PHYSICAL REVIEW LETTERS 126, 150401 (2021)

150401-3



exponentially long time. While the spectral gap is impor-
tant for our bound, our result is valid for arbitrarily long
times, requiring no structural assumptions on the
Hamiltonians, observables, and perturbations.
Thermalization.—It is one of the most celebrated results

in mathematical quantum statistical mechanics that the
Kubo-Martin-Schwinger state [the Gibbs state
∝ expð−βHÞ] is the unique state that maximizes entropy,
stationary under the time evolution of the Hamiltonian H,
and robust under perturbations [37]. However, to date, this
was only considered for short times. Our characterization of
robust observables implies that

e−itðHþεVÞ expð−βHÞeitðHþεVÞ ¼ expð−βHÞ þOðεÞ; ð14Þ

uniformly in time for any finite-dimensional system.
Note, on the other hand, that generalized Gibbs ensembles
[38–44] such as expð−P

j βjQjÞ for integrable charges are
not robust.
Open systems.—How do we generalize this to

Lindbladian dynamics? For a Lindbladian L, it would
be natural to consider M ¼ Mrobust ¼

P
k mkPk, with

fPkg the spectral projections of L, as a candidate for a
robust symmetry. However, it is easy to see that the trace
preservation of L implies that trMðρÞ ¼ m0trρ ¼ m0,
where P0 is the projection for the zero eigenvalue of
L. Therefore, this quantity is trivial. This is related to
the fact that Noether’s theorem breaks down for
Lindbladian systems [45] and to the fact that we are
talking about a superoperator structure on top of the usual
observable space. Very recently, however, Styliaris and
Zanardi showed [46] that for each conserved superoper-
ator M satisfying ½M;L� ¼ 0 one can define a monotone
function

fMðρÞ ¼ tr½MðρÞ†ðLρ þ λRρÞ−1ðMðρÞÞ�; ð15Þ

with λ ≥ 0, where LρðXÞ ¼ ρX and RρðXÞ ¼ Xρ are the
superoperators of left and right multiplication by ρ,
respectively, and the inverse is well defined for strictly
positive ρ. They showed that such a monotone, as
complicated as it might look at first glance, is well
motivated from entropic distances and is decreasing under
the evolution etL,

fMðρtÞ ≤ fMðρÞ; for all t ≥ 0; ð16Þ

where ρt ¼ etLρ. Using our generalized eternal block-
diagonal approximation VLðεÞ to a perturbation V for
open systems [32], we can write the perturbed dynamics

etðLþεVÞ ¼ et½LþεVLðεÞ� þOðεÞ ð17Þ

for all times and see that, for any robust symmetry
M ¼ Mrobust and for any perturbation εV, the monotone
fMðρÞ remains approximately monotonic [20],

fMðρεt Þ ≤ fMðρÞ þOðεÞ; ð18Þ

under the perturbed evolution ρεt ¼ etðLþεVÞρ. In this
sense, the monotone is robust against perturbation. See
Fig. 3 for a couple of examples for a qubit dephasing
evolution. The monotone defined with Mrobust is robust
against perturbation: it is perturbed and becomes non-
monotonic, but the nonmonotonicity is small. On the other
hand, the monotone defined with Mfragile that lifts the
degeneracy in L is fragile.

FIG. 2. Same setup and realization as in Fig. 1, but now
showing the dynamics of the expectation of Q2 ¼ H (robust) and
Q1 ¼

P
N
n¼1 σn;z (fragile).

FIG. 1. Dynamics of the expectation of a randomly picked
observable M in a Heisenberg chain with N ¼ 4 as a function of
time. We show its decomposition into nonconserved, robust, and
fragile parts [Eqs. (11)–(13)]. The initial state and the perturba-
tion V are chosen randomly with strength εkVk ¼ 0.02kHk.
Shown is one realization.
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Conclusions.—While our results in spirit reproduce a
lot of features one would hope a quantum KAM theory to
feature—long-term stability of certain observables with
respect to perturbations, in analogy with the KAM theory
in classical mechanics [8,9]—there are also some perhaps
surprising aspects. Conserved charges and generalizedGibbs
states from quantum integrable models are not robust, while
randomly chosen Hamiltonians (thus without degeneracies)
have the property that all conserved quantities are robust.
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In this Supplemental Material, we discuss the mathematical details.

Zeno dynamics. Error bound

Consider the spectral resolution of H = H†:

H =

d∑
k=1

hkPk, (1)

where

PkP` = δk`P` = δk`P
†
` ,

∑
k

Pk = 11, (2)

d ≤ dimH is the number of distinct eigenvalues of H, and hk ∈ R, with hk 6= h` for k 6= `. Given a perturbation
V = V † its diagonal part (Zeno Hamiltonian) is given by

VZ =
∑
k

PkV Pk. (3)

We want to bound the divergence

δZ(t) = ‖eit(H+εV ) − eit(H+εVZ)‖ (4)

between the dynamics generated by H + εV and the dynamics generated by its block-diagonal part H + εVZ. We will
use a trick elaborated in Ref. [1], which is based on Kato’s seminal proof of the adiabatic theorem [2].

Fix a spectral projection P` and consider the reduced resolvent at h`, limz→h`
(H − z11)−1(11− P`), that is

S` =
∑
k : k 6=`

1

hk − h`
Pk. (5)

In the following, we will use 1 for the identity operator 11 and simply write H − z instead of H − z11. We get
P`S` = S`P` = 0 and

(H − h`)S` = S`(H − h`) =
∑
k : k 6=`

hk − h`
hk − h`

Pk =
∑
k : k 6=`

Pk = 1− P`, (6)

that is S` is the inverse of H − h` on the subspace range of 1− P`. We get

eit(H+εV ) − eit(H+εVZ) = −
∫ t

0

ds
∂

∂s

(
ei(t−s)(H+εV )eis(H+εVZ)

)
= iε

∫ t

0

ds ei(t−s)(H+εV )(V − VZ)eis(H+εVZ), (7)

whence (
eit(H+εV ) − eit(H+εVZ)

)
P` = iε

∫ t

0

ds ei(t−s)(H+εV )(1− P`)V P`eis(h`+εVZ). (8)
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By (6) we have

(
eit(H+εV ) − eit(H+εVZ)

)
P` = iε

∫ t

0

ds ei(t−s)(H+εV )(H − h`)S`V P`eis(h`+εVZ). (9)

Now notice that

iei(t−s)(H+εV )(H − h`) = − ∂

∂s

(
ei(t−s)(H+εV )eis(h`+εV )

)
e−is(h`+εV ), (10)

and thus (
eit(H+εV ) − eit(H+εVZ)

)
P` = −ε

∫ t

0

ds
∂

∂s

(
ei(t−s)(H+εV )eis(h`+εV )

)
e−isεV S`V P`e

isεVZ . (11)

By integrating by parts

(
eit(H+εV ) − eit(H+εVZ)

)
P` = −ε

∫ t

0

ds
∂

∂s

(
ei(t−s)(H+εV )eis(h`+εV )e−isεV S`V P`e

isεVZ
)

+ ε

∫ t

0

ds ei(t−s)(H+εV )eis(h`+εV ) ∂

∂s

(
e−isεV S`V P`e

isεVZ
)

= ε
(
eit(H+εV )S`V P` − S`V P`eit(H+εVZ)

)
− iε2

∫ t

0

ds ei(t−s)(H+εV )(V S`V P` − S`V P`VZ)eis(H+εVZ). (12)

Finally, by summing over ` we have

eit(H+εV ) − eit(H+εVZ) = ε
(
eit(H+εV )X −Xeit(H+εVZ)

)
− iε2

∫ t

0

ds ei(t−s)(H+εV )(V X −XVZ)eis(H+εVZ), (13)

where

X =
∑
`

S`V P`. (14)

By taking the operator norm, one gets

δZ(t) = ‖eit(H+εV ) − eit(H+εVZ)‖ ≤ 2ε‖X‖+ ε2
∫ t

0

ds (‖V ‖‖X‖+ ‖X‖‖VZ‖) = 2ε‖X‖+ ε2‖X‖(‖V ‖+ ‖VZ‖)t. (15)

Now, we get

‖X‖2 = ‖XX†‖ =

∥∥∥∥∥∑
`

S`V P`V S`

∥∥∥∥∥ ≤∑
`

‖S`V P`V S`‖ ≤
∑
`

‖S`‖2‖V ‖2, (16)

while

‖S`‖ =

∥∥∥∥∥∥
∑
k : k 6=`

Pk
hk − h`

∥∥∥∥∥∥ = max
k : k 6=`

∣∣∣∣ 1

hk − h`

∣∣∣∣ ≤ 1

η
, (17)

where

η = min
k,` : k 6=`

|hk − h`| (18)

is the minimum spectral gap of H, and thus

‖X‖ ≤
√
d

η
‖V ‖. (19)
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Moreover, in the operator norm,

‖VZ‖ =

∥∥∥∥∥∑
k

PkV Pk

∥∥∥∥∥ = max
k
‖PkV Pk‖ ≤ ‖V ‖. (20)

Therefore, by plugging (19) and (20) into (15), we finally get

δZ(t) = ‖eit(H+εV ) − eit(H+εVZ)‖ ≤ 2
√
d

η
ε‖V ‖(1 + ε‖V ‖t), (21)

which for ‖V ‖ = 1 reduces to Eq. (3) of the Letter.

Robust symmetries

Consider now a robust symmetry

M =
∑
k

mkPk, (22)

with mk ∈ R. This is a conserved observable, M = M†, [M,H] = 0, that acts uniformly within each eigenspace of H.
We have Mt = eitHMe−itH = M , and for every perturbation εV ,

‖Mε
t −M‖ = ‖eit(H+εV )Me−it(H+εV ) −M‖

= ‖eit(H+εV )M −Meit(H+εV )‖
=
∥∥(eit(H+εV ) − eit(H+εVZ)

)
M + eit(H+εVZ)M −Meit(H+εV )

∥∥. (23)

By making use of the commutativity [M,VZ] = 0, one gets

‖Mε
t −M‖ =

∥∥(eit(H+εV ) − eit(H+εVZ)
)
M −M

(
eit(H+εV ) − eit(H+εVZ)

)∥∥ ≤ 2‖M‖‖eit(H+εV ) − eit(H+εVZ)‖, (24)

that is

‖Mε
t −M‖ ≤ 2‖M‖δZ(t), (25)

which is the inequality (4) of the Letter.
Analogously, by substituting in the previous derivation VZ with VH(ε), which still commutes with the robust

conserved observable M , i.e. [M,VH(ε)] = 0, one has the bound

‖Mε
t −M‖ =

∥∥(eit(H+εV ) − eit[H+εVH(ε)]
)
M −M

(
eit(H+εV ) − eit[H+εVH(ε)]

)∥∥ ≤ 2‖M‖δ∞, (26)

where

δ∞ = sup
t
‖eit(H+εV ) − eit[H+εVH(ε)]‖ (27)

is the uniform bound on the divergence of the two dynamics. This is the first inequality in Eq. (9) of the Letter.
The block-diagonal perturbation VH(ε) can be chosen such that δ∞ = O(ε). The crucial ingredient is to choose a

block-diagonal perturbation H + εVH(ε) which is isospectral with H + εV , and thus is unitarily equivalent to it:

H + εVH(ε) = W †ε (H + εV )Wε, (28)

with a unitary Wε = 1 +O(ε). Such a block-diagonal VH(ε) and a unitary Wε actually exist [3–5]. By plugging (28)
into (27), we get

δ∞ = sup
t
‖eit(H+εV ) −W †ε eit(H+εV )Wε‖

= sup
t
‖(1−W †ε )eit(H+εV ) +W †ε eit(H+εV )(1−Wε)‖

≤ sup
t
‖1−W †ε ‖‖eit(H+εV )‖+ ‖W †ε eit(H+εV )‖‖1−Wε‖

= ‖1−W †ε ‖+ ‖1−Wε‖

= O(ε). (29)
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The existence, and the explicit construction, of a unitary Wε, that carries the perturbed Hamiltonian into a block-
diagonal form, is proved and discussed in detail in Ref. [5]. Here, in the next subsections, we will show the necessity
of an isospectral perturbation, and then discuss its construction and prove that

VH(ε) = VZ +O(ε), (30)

by exploiting the connection with quantum KAM theory.

Isospectral perturbations

Consider a Hamiltonian H = H† and a perturbation H̃ = H + O(ε), with small ε. We want to compare the two
dynamics by looking at their divergence:

δH,H̃(t) = ‖eitH̃ − eitH‖. (31)

Consider the spectral decompositions

H =

d∑
k=1

hkPk, H̃ =

d∑
k=1

h̃kP̃k, (32)

where d is the number of distinct eigenvalues of H̃, i.e. h̃k 6= h̃` for k 6= `. It may happen that hk = h` for some
k 6= `, if the degeneracy is lifted by the perturbation. However in such a case we choose the orthogonal projections
Pk and P` such that they are adapted to the perturbation, that is P̃k = Pk +O(ε) and P̃` = P` +O(ε) [6]. As for the
eigenvalues, h̃k = hk +O(ε).

We get

eitH̃ − eitH =
∑
k

(
eith̃k P̃k − eithkPk

)
=
∑
k

eith̃k(P̃k − Pk)−
∑
k

(eith̃k − eithk)Pk. (33)

The first sum on the right-hand side is O(ε) uniformly in time, as∥∥∥∥∥∑
k

eith̃k(P̃k − Pk)

∥∥∥∥∥ ≤∑
k

‖P̃k − Pk‖ = O(ε). (34)

On the other hand, the last term reads∥∥∥∥∥∑
k

(eith̃k − eithk)Pk

∥∥∥∥∥ = max
k
|eith̃k − eithk | = 2 max

k

∣∣∣∣∣sin
(
t
h̃k − hk

2

)∣∣∣∣∣ , (35)

so that

δH,H̃(t) = 2 max
k

∣∣∣∣∣sin
(
t
h̃k − hk

2

)∣∣∣∣∣+O(ε). (36)

Therefore, since h̃k − hk = O(ε), we get

δH,H̃(t) = O(ε), for t = O(1). (37)

However, the divergence has a slow drift (secular term) and becomes O(1) for sufficiently large times O(1/ε). Indeed,

δH,H̃(t) = 2 +O(ε), for t =
π

h̃k − hk
= O(1/ε), (38)

that is, the maximal divergence

δ∞ = sup
t
δH,H̃(t) = 2 +O(ε). (39)

Geometrically, the evolution of a Hamiltonian with d distinct eigenvalues yields a (quasi-)periodic motion of a point
on a torus. Two motions with different frequencies, however small the differences may be, will eventually accumulate
a divergence of O(1). The only way to avoid this slow drift is that the two motions be isochronous, that is the first
term in (36) should be identically zero. This means that

δ∞ = O(ε) iff h̃k = hk, for all k, (40)

i.e., the Hamiltonian H and its perturbation H̃ must be isospectral.
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Quantum KAM iteration. Homological equation

We are looking for a unitary transformation Wε close to the identity, such that the transformed total Hamiltonian
is isospectral to H + εV ,

H + εVH(ε) = W †ε (H + εV )Wε, (41)

with the constraint that VH(ε) be block-diagonal,

VH = 〈VH〉 :=
∑
k

PkVHPk. (42)

By writing

Wε = eiK(ε), K(ε) = εK1 +O(ε2), (43)

with K1 = K†1 , and

VH(ε) = V0 +O(ε), (44)

with V0 = V †0 , Eq. (41) reads

H + εVH(ε) = (1− iεK1)(H + εV )(1 + iεK1) +O(ε2), (45)

whence

V0 = i[H,K1] + V. (46)

Notice that

〈[H,K1]〉 =
∑
k

Pk(HK1 −K1H)Pk =
∑
k

Pk(hkK1 −K1hk)Pk = 0. (47)

Therefore, the constraint (42), which implies V0 = 〈V0〉, gives

V0 = 〈V 〉 =
∑
k

PkV Pk = VZ, (48)

and

i[H,K1] = −{V }, (49)

where

{V } := V − 〈V 〉 =
∑

k,` : k 6=`

PkV P` =
∑
k

PkV (1− Pk) =
1

2

∑
k

[Pk, [Pk, V ]] (50)

is the off-diagonal part of V .
The expression (49) should be understood as an equation for K1, the first-order term of the generator K(ε) of the

unitary Wε. It is known as the homological equation and is the fundamental block of quantum KAM theory [7–11].
It is the quantum analog of the homological equation of KAM theory in classical mechanics, where the commutator
is replaced by (−i times) the Poisson bracket, while 〈 · 〉 and { · } are replaced by the averaged and the oscillating part
of the perturbation, respectively [12, 13].

One can prove that the homological equation (49) has a unique solution with 〈K1〉 = 0, for every H and V . Indeed,
by sandwiching (49) between Pk and P` with k 6= ` we get

(hk − h`)PkK1P` = iPkV P`, (51)

that is

{K1} = i
∑

k,` : k 6=`

PkV P`
hk − h`

= i
∑
`

S`V P`. (52)
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Notice that {K1} = {K1}†, as it should be, and in fact one has

{K1} = i
∑
`

S`V P` = −i
∑
`

P`V S` =
i

2

∑
`

(S`V P` − P`V S`). (53)

Moreover, notice that we have a complete freedom in the choice of the block-diagonal part 〈K1〉 of K1, since it
commutes with H and thus is immaterial in equation (49), so that

K1 = i
∑
`

S`V P` +
∑
`

P`ZP`, (54)

with an arbitrary Z = Z†. In the following, for simplicity, we will fix the gauge Z = 0, i.e. 〈K1〉 = 0, and thus will
make the solution of (49) unique.

From the explicit expression of the generator K1, we can now easily evaluate a uniform bound on the divergence (27).
From the inequality (29), we get

δ∞ = sup
t
‖eit(H+εV ) − eit[H+εVH(ε)]‖ ≤ 2‖1−Wε‖ ≤ 2ε‖K1‖+O(ε2) ≤ 2

√
d

η
ε‖V ‖+O(ε2), (55)

where the last inequality is a consequence of the bound (19), since K1 = iX.
In fact, an explicit bound on the divergence δ∞ is obtained in Ref. [5, Appendix E] as

δ∞ ≤ δ̂∞, where δ̂∞ = 2
√
d

(
1

4
√

1− 4ε/η
− 1

)
=

2
√
d

η
ε+O(ε2), (56)

for ‖V ‖ = 1, which is easily seen to be always larger than the first order term in (55), δ̂∞ ≥ 2
√
d ε/η.

This bound becomes trivial once it exceeds δ∞ = 2 as ε increases. Since d ≥ 2, let us care only about the values of
ε where 2

√
2 (1/ 4

√
1− 4ε/η − 1) ≤ 2, namely, for 4ε/η ≤ (13 + 12

√
2)/(17 + 12

√
2) = x0. Within this range, one gets

the linear bound 2(1/ 4
√

1− 4ε/η − 1) ≤ (
√

2/x0)4ε/η < 7ε/η. Therefore, we have

δ∞ <
7
√
d

η
ε. (57)

This yields Eq. (7) of the Letter.

Higher-order terms

One can also show that all the following steps of the KAM iteration, giving higher-order terms Vn in VH(ε) and
Kn+1 in K(ε), with n ≥ 1, have the same structure as the first step and involve homological equations. For example,
by considering the next-order terms,

K(ε) = εK1 + ε2K2 +O(ε3), VH(ε) = V0 + εV1 +O(ε2), (58)

one gets

H + εV0 + ε2V1 = (H + εV ) + iε[H + εV,K1]− 1

2
ε2[[H,K1],K1] + iε2[H,K2] +O(ε3). (59)

The second-order terms give

V1 = i[H,K2]− 1

2
[[H,K1],K1] + i[V,K1], (60)

that is

V1 = i[H,K2] + i

[
V − 1

2
{V },K1

]
. (61)
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This has the same structure as (46), and gives

V1 = 〈V1〉 =

〈
i

[
V − 1

2
{V },K1

]〉
= −

∑
`

P`V S`V P`, (62)

and a homological equation for K2:

i[H,K2] = −
{

i

[
V − 1

2
{V },K1

]}
. (63)

In general, at order εn+1 one gets an equation of the form

Vn = i[H,Kn+1] + Pn(K1, . . . ,Kn)(H) +Qn(K1, . . . ,Kn)(V ), (64)

where Pn and Qn are polynomials of order n and Kj are the superoperators Kj(Y ) = i[Y,Kj ]. This has the same
structure as (46) or (60). Vn will be given by the block-diagonal part of the right-hand side, while Kn+1 will be the
solution of the homological equation given by the off-diagonal part.

This is the algebraic structure of the KAM iteration scheme. And for our purposes this is enough. See for
example [14, 15]. However, most difficulties and the hardest part of this scheme arises for infinite-dimensional systems
with a vanishing minimal spectral gap η because of an accumulation point of the discrete spectrum. Interesting
cases are systems with dense point spectrum [7–11]. In such a situation, at each iteration step, the solution of the
homological equation (52) suffers from the plague of small denominators, the same problem that besets celestial
mechanics. The reduced resolvent S` becomes unbounded, and the formal expression (52) is a bounded operator only
for a particular class of perturbations V which are adapted to the Hamiltonian H: the closer are the eigenvalues hk
and h` of H at the denominator of (52), the smaller must be the numerator PkV P`. In such a case, the proof of the
existence and the convergence of the series makes use of classical techniques of KAM perturbation theory with a careful
control of small denominators through a Diophantine condition, and a super-convergent iteration scheme [12, 13].

Algebraic framework

In this section we want to set our analysis in an algebraic framework and gather our definitions and results in a
more mathematical language.

Let H ' Cn be an n-dimensional Hilbert space. The C*-algebra of observables is B(H) ' Mn(C) ' Cn
2

, where
Mn(C) is the set of n × n complex matrices. Consider a Hamiltonian H = H† ∈ B(H). Its spectral decomposition
reads

H =

d∑
k=1

ekPk, (65)

where {ek : k = 1, . . . , d} ⊂ R is its spectrum consisting of d ≤ n distinct eigenvalues, and Pk = P 2
k = P †k , with

PkP` = δk`Pk and
∑d
k=1 Pk = 1, are its spectral projections of rank dk = trPk.

In our work two algebras associated with the Hamiltonian H play a fundamental role: the commutant {H}′ and
the bicommutant {H}′′ of H. Let us recall their definitions, together with some properties.

The commutant is the set of observables commuting with H, namely,

{H}′ = {A ∈ B(H) : [A,H] = 0}

=

{
A ∈ B(H) : A =

d∑
k=1

PkAPk

}
, (66)

that is the set of observables with the same block-diagonal structure of H. One has {H}′ ' C
∑d

k=1 d
2
k , and obviously

H ∈ {H}′.
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The bicommutant is the set of observables commuting with all the elements of the commutant {H}′, namely,

{H}′′ = {A ∈ B(H) : [A,B] = 0, for all B ∈ {H}′}
= {A ∈ B(H) : A = f(H), for all f : R→ C}
= {A ∈ B(H) : A = pd−1(H), for all pd−1 = polynomial of degree ≤ d− 1}

=

{
A ∈ B(H) : A =

d∑
k=1

akPk

}
' Cd. (67)

The second equality (von Neumann theorem) identifies the bicommutant of H with the (Abelian) algebra generated
by H, that is the set of all functions of H, which coincides with the set of polynomials of degree ≤ d − 1, since the
spectrum of H has d points [or H satisfies

∏d
k=1(H − ek) = 0] (third equality). The last equality gives the explicit

structure of the elements of the bicommutant as the observables which act as constants in each eigenspace of H.
We get

{H}′′ ⊆ {H}′ ⊆ B(H), (68)

the first inclusion being an equality iff d = n, that is if the spectrum of H is simple; the second inclusion being an
equality if d = 1, that is if the Hamiltonian is fully degenerate (proportional to the identity). Both {H}′′ and {H}′
are C*-algebras.

Now let us go back to our object of analysis by starting with the definition of a symmetry.

Definition 1. An observable A ∈ B(H) is a symmetry of H or a conserved quantity if

At = eitHAe−itH = A, for all t ∈ R.

It is easy to prove the characterization of the symmetries as the elements of the commutant:

Theorem 1. A is a symmetry of H iff A ∈ {H}′.

We are seeking for a finer classification of symmetries in terms of their robustness with respect to a perturbation
of H. By definition we have that if A is a symmetry, the distance ‖At − A‖ = 0 for all times t. What happens if we
instead consider a perturbed evolution Aεt = eit(H+εV )Ae−it(H+εV )? Does it remain close to the unperturbed one?

For small times and small ε we get that the distance ‖Aεt − At‖ = ‖Aεt − A‖ is of order ε. We will consider a
symmetry robust under perturbations if the distance remains small for all times t for every small perturbation, that
is if the observable is an approximate symmetry of the perturbed dynamics. Notice that this is the case for A = cI,
so the question is whether there exist nontrivial robust symmetries.

At the other extreme there might be symmetries such that, however small a particular perturbation may be, the
distance ‖Aεt − A‖ accumulates over large times and eventually becomes O(1). We will consider such a symmetry
fragile. Notice that by the triangle inequality and the unitarity of evolution,

‖Aεt −A‖ ≤ ‖Aεt‖+ ‖A‖ = 2‖A‖, (69)

so the maximum divergence is 2‖A‖ and is obtained if Aεt = eit(H+εV )Ae−it(H+εV ) = −A. In the following definition
we will consider a fragile symmetry whose divergence gets to reach its upper bound 2‖A‖ over time, that is the worst
situation.

Definition 2. A symmetry A ∈ {H}′ is fragile if there exists a perturbation V = V † ∈ B(H) such that

sup
t∈R

∥∥eit(H+εV )Ae−it(H+εV ) −A
∥∥ = 2‖A‖, for all ε > 0. (70)

A symmetry which is not fragile is called robust.

We gather our main results in the following theorem.

Theorem 2. Let A ∈ {H}′ be a symmetry of H. Then the following assertions are equivalent:

1. A is robust;

2. A ∈ {H}′′;
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3. There exists a constant c = cH > 0 such that for all V = V † ∈ B(H) and for all t ∈ R one has∥∥eit(H+V )Ae−it(H+V ) −A
∥∥ ≤ c‖V ‖‖A‖. (71)

Item 2 gives an algebraic characterization of the set of robust symmetries as the bicommutant of H, and thus a
characterization of fragile symmetries as elements of the complement {H}′ \{H}′′. Item 3 is of dynamical nature, and
characterizes robust symmetries as those symmetries whose divergence remains forever small for small perturbations.
Moreover, the divergence is linearly controlled by the perturbation strength ‖V ‖ times a universal constant which
depends only on H. We have shown above that c ≤ 2δ∞ < 14

√
d/η. Its bound depends on the spectral gap η and the

number d of eigenvalues of H.
A striking consequence of the above theorem is that in fact only the two possible extreme scenarios discussed above

are possible: either a symmetry is an approximate symmetry for all perturbations (robust symmetry), or it maximally
diverges over time from its unperturbed value for a particular perturbation however small the latter may be (fragile
symmetry).

The proof of Theorem 2 goes as follows in the Letter. We first prove that if M ∈ {H}′ \ {H}′′ then we get the
saturation (70) for some perturbation V , and thus M is fragile according to Definition 2; this is done by reducing the
analysis to the two-dimensional case. Then we prove, by isospectral deformations, that if the symmetry is instead in
the complementary set M ∈ {H}′′, then it satisfies (71) for all perturbations V (see the above analysis). Therefore,
M cannot saturate the divergence (70) for any V and thus it is robust according to Definition 2.

Robustness of monotones

In Ref. [16], it is shown that for a symmetryM of a Lindbladian L satisfying [M,L] = 0 one can define a monotone

fM(ρ) = tr[M(ρ)†(Lρ + λRρ)
−1(M(ρ))], (72)

which decreases under the evolution ρt = etLρ,

fM(ρt) ≤ fM(ρ), for all t ≥ 0, (73)

where Lρ(X) = ρX and Rρ(X) = Xρ are the superoperators of left and right multiplication by ρ, respectively, and
the inverse with λ ≥ 0 is well defined for strictly positive ρ. Here, we prove that a monotone defined with respect to
a symmetry of the form

M =
∑
k

mkPk, (74)

where {Pk} are the spectral projections of the Lindbladian L, remains a monotone up to an error O(ε) eternally even
in the presence of a perturbation εV, namely,

fM(ρεt ) ≤ fM(ρ) +O(ε), for all t ≥ 0, (75)

where ρεt = et(L+εV)ρ. In this sense, M in (74) is a robust symmetry of the evolution L.
To show this, we first note that even in the case of open-system evolution one can find a block-diagonal approximation

VL(ε) of the perturbation V such that L+ εVL(ε) is similar to L+ εV [5],

L+ εVL(ε) =W−1ε (L+ εV)Wε. (76)

Then, let us consider

M̃ =WεMW−1ε . (77)

This is a symmetry of the perturbed system L + εV, corresponding to the symmetry M of the unperturbed system
L, since [M,VL(ε)] = 0. Since this similarity transformation is small, Wε = 1 +O(ε), we have

M̃ =M+O(ε). (78)
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Notice that the monotone fM̃(ρ) defined with respect to M̃ is decreasing under the perturbed evolution ρεt = et(L+εV)ρ.
Therefore,

fM(ρεt ) = fM̃(ρεt ) +O(ε) ≤ fM̃(ρ) +O(ε) = fM(ρ) +O(ε), for all t ≥ 0. (79)

This proves the approximate monotonicity (75).
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