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Photon-emitter dressed states in a closed waveguide
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We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of
a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the states
in which one excitation is steadily shared between the field and the emitters. We unearth finite-size effects in the
field-emitter interactions and identify a family of dressed bound states that represent the forerunners of bound
states in the continuum in the limit of an infinite waveguide. We finally consider the potential interest of such
states for applications in the field of quantum information.
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I. INTRODUCTION

One-dimensional and quasi-one-dimensional systems are
attracting increasing interest [1], due both to the fundamental
and technological relevance of their phenomenology and to
the wide range of robust and versatile available experimental
platforms, in which dimensional reduction can be efficiently
implemented. Among such platforms, it is worth mentioning
those based on optical fibers [2,3], cold atoms [4–6], circuit
QED [7–13], photonic crystals [14–18], and quantum dots in
photonic nanowires [19,20]. In these systems, light propagates
in a quasi-one-dimensional geometry with different energy
dispersion relations and emitter-photon interaction form fac-
tors, determining dimension-dependent features that heavily
affect dynamics, decay, and propagation [21,22].

Recent work has been devoted to understand the physics
of light-matter coupling in waveguides, systems made up of
either single quantum emitters [4,12,23–26] or sets of two
[27–41] or even more emitters [17,18,21,23,25,42–61]. In
the latter cases, dynamics is deeply influenced by photon-
mediated quantum correlations between the emitters, leading
to collective phenomena, such as the emergence of superra-
diant and subradiant states and correlated photon emission.
The interplay between distance and wavelength brings to light
a number of interesting quantum resonance effects that take
place when these two quantities are comparable to each other,
thus generalizing the phenomenology observed at very large
wavelengths, including Dicke states [62–65].

In this article we characterize the bound states of a system
made up of one or two quantum emitters, coupled to a sin-
gle transverse mode of a closed waveguide. The analysis is
performed in the limit in which only the length of the guide
is relevant, the other important physical features being inde-
pendent of its specific geometry. The system we will consider

can be experimentally realized in terms of ring resonators
[66,67] or whispering-gallery-mode resonators [68]. Unlike in
the case of unbounded waveguides, the system admits an infi-
nite number of bound states, regardless of the features of the
coupling. However, their characterization highlights features
that are specific to different classes of bound states, which can
be identified in many cases as forerunners of the bound and
quasibound (unstable) states in an unbounded geometry.

The results are interesting both in view of determining
finite-size corrections to the effects identified in the physics of
indefinite waveguides, and to identify novel phenomenology
that can lead to practical applications. We will indeed show
how the properties of a specific class of bound states, related
to the wavelength of emitted light resonating with the inter-
atomic distances, suggest the implementation of a qubit in this
system.

II. SINGLE EMITTER

A. The model

We first consider one quantum emitter in a closed waveg-
uide of length L, as represented in Fig. 1. In the following
analysis, we will assume that effects related to the specific
geometry of the waveguide are negligible, though they can
play a relevant role in the practical realization of the system.

The emitter is modeled as a two-level system, with its
ground |g〉 and excited |e〉 states separated by the excitation
energy ε, and effectively coupled to a single transverse mode
propagating in the waveguide. It is known from waveguide
electrodynamics that such a mode behaves as a scalar field
with a dispersion relation characterized by an effective photon
mass m, inversely proportional to the transverse size of the
guide [29,69]. In the case considered here, in which the field
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FIG. 1. Single two-level emitter coupled to a transverse mode of
a closed waveguide, in a circular (left) and square (right) geometry.
In our analysis the specific geometry of the ring is immaterial, only
its total length L being relevant.

is also longitudinally confined (and thus subjected to periodic
boundary conditions), the allowed photon wavenumbers can
take the discrete values qk = 2πk/L, with k ∈ Z, correspond-
ing to the spectrum

ωk =
√(

2πk

L

)2

+ m2, (1)

where we consider for simplicity a unit system in which the
speed of light in the waveguide is v = 1. The free part of the
Hamiltonian thus reads

H0 = ε σ+σ− +
∞∑

k=−∞
ωkb†

kbk, (2)

where σ+ = (σ−)† = |e〉〈g| are the atom ladder operators,
and bk the photon longitudinal mode operators, satisfying the
canonical commutation relations [bk, bk′ ] = 0 and [bk, b†

k′ ] =
δkk′ . The interaction Hamiltonian in the electric dipole atom-
field coupling and rotating-wave approximation reads

Hint =
∞∑

k=−∞
Fk (σ+bk + σ−b†

k ), (3)

where the interaction form factor is [29]

Fk =
√

γ

Lωk
, (4)

with γ > 0 being a constant with the dimensions of squared
energy. The Hamiltonian model outlined above does not de-
scribe photon losses towards external modes, and therefore is
able to capture the main features of the dynamics at timescales
shorter than the characteristic dissipation times.

The rotating-wave form of the interaction (3) allows diago-
nalization of the Hamiltonian in sectors with fixed number of
excitations N = |e〉〈e| + ∑

k b†
kbk . In the N = 1 sector, the

state of the system reads

|�〉 = a |e〉 ⊗ |vac〉 + |g〉 ⊗
∑

k

ξkb†
k |vac〉 , (5)

where |vac〉 is the field vacuum state.
Assume that the atom is placed at x = 0; the photon wave-

function ξ (x), with x ∈ [−L/2, L/2], is given by the Fourier

series

ξ (x) =
√

2π

L

∑
k

ξke
2π ikx

L . (6)

Normalization adds a further bound on amplitudes:

|a|2 +
∫ L/2

−L/2
|ξ (x)|2 dx = 1. (7)

Notice that the amplitude ξ (x) has dimensions of L−1/2, and
therefore its squared norm

∫ |ξ (x)|2 dx appearing in the nor-
malization condition is dimensionless as it should be.

B. Atom-photon bound states

We are mainly interested in the eigenstates of the system, in
particular those in which the atomic excitation plays a relevant
role. We first briefly examine the bound states in the absence
of coupling (γ = 0), and then proceed to the case γ �= 0.

1. Bound states in absence of coupling

The free Hamiltonian H0 admits two types of eigenstates in
the one-excitation sector, corresponding to the eigenstates of
the two terms in Eq. (2), respectively: (i) excited atom and
no photons (i.e., a = 1, up to an immaterial global phase),
|�〉 = |e〉 ⊗ |vac〉, with energy ε, and (ii) atom in the ground
state and a single photon (i.e., a = 0), |�〉 = |g〉 ⊗ b†

k |vac〉,
with energy ωk � m. In these two cases, for ε �= ωk , the single
excitation available to the system is either in the emitter or in
the photon field, respectively, since it cannot be exchanged
between the two components of the system. As we will see,
these two kinds of states (pure-atom and pure-field excitation)
correspond to the two limiting cases of atom-photon bound
states in the presence of a nonvanishing coupling.

2. Bound states in presence of coupling

When the coupling is switched on, the bound states are
modified and the excitation is in general coherently shared be-
tween atom and field. In order to find them, we must solve the
eigenvalue equation for the full Hamiltonian H = H0 + Hint;
this is done in Appendix A, where a detailed proof of the
following statements is presented. The eigenenergies E are
the solutions of the equation

E − ε − 
(E ) = 0, (8)

where 
(E ) is the self-energy function of the atomic excited
state [70]:


(E ) =
∑

k

F 2
k

E − ωk
. (9)

The amplitudes a and ξk in Eq. (5) are determined by the
eigenvalue equation and the normalization condition (7):

a = [1 − 
′(E )]−
1
2 , (10)

ξk = Fk

E − ωk
[1 − 
′(E )]−

1
2 , (11)

where the prime denotes derivative, 
′(E ) = d
(E )
dE . As shown

in Appendix B, for the form factor (4) one gets the analytic
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FIG. 2. Plots of single-emitter atom-photon bound states with energy E = ω� + δE , with � = 8 and for various values of δE , for the full
Hamiltonian H = H0 + Hint of the system with length mL = 40π and coupling γ /m2 = 10−4. Each of these bound states is obtained by tuning
the excitation energy ε to one of the values given by Eq. (8). (a) The bound state with energy E ≈ ω� with a purely photonic excitation (i.e.,
a = 0); this state coincides with the one obtained in the absence of coupling between the atom and the field: the latter is unaffected by the
presence of the atom, and the resulting photon field is smooth at the position x = 0 of the emitter. (b), (c) The case of dressed bound states
with energy E �= ω�: the atom acquires a nonvanishing portion of excitation, and correspondingly the first derivative of the photon amplitude
acquires a discontinuity at x = 0. (d) A state with E sufficiently far from any ω�, in which the atom retains most of the excitation probability.
Notice that the z axes of the various figures have different scales: as |a|2 increases, by Eq. (7) the photon field gets smaller. Plotted quantities
are dimensionless.

expression


(E ) = γ

(
cot(q(E )L/2)

q(E )
θ (E ) + β0(E )

)
, (12)

with q(E ) = √
E2 − m2 and θ being the Heaviside step func-

tion. Here β0(E ) is a real-valued function bounded by

|β0(E )| � 1

πm
coth

(
mL

2

)
, (13)

while the first term in 
(E ) diverges at E = ωk , for all k.
Therefore, the eigenvalue equation (8) always admits ex-
actly one solution Ek in each interval (ωk, ωk+1), so that the
eigenvalues alternate with the photon frequencies: ωk < Ek <

ωk+1 < Ek+1 (see Fig. 6 in Appendix B).
The photon wavefunction ξ (x), corresponding to an eigen-

value E , is evaluated in Appendix C and reads

ξ (x) = a ξ1(x), (14)

where

ξ1(x) =
√

2πγ E

q(E )
[cot (q(E )L/2) cos (q(E )x)

+ sin (q(E )|x|)]θ (E ) + η(x), (15)

with η(x) being again a small real-valued correction. Exam-
ples of photon wavefunctions are reported in Fig. 2.

Having solved explicitly the eigenproblem for our system,
we can discuss the properties of the eigenenergies and the cor-
responding bound states for different values of the parameters.
If ω� < ε < ω�+1, we can outline the following typical fea-
tures of the eigenstates in the perturbative regime: eigenvalues
Ek �= E� correspond to states that are generally dominated by
a symmetric combination of photon excitations with opposite
momenta, whose energy is, respectively, slightly smaller than
ωk+1 (for Ek < E�) or slightly larger than ωk (for Ek > E�);
the eigenvalue E� is close to ε, up to a correction of O(γ ), and
corresponds to a state with a dominant atomic excitation. A
value of ε very close to a photon frequency ω� generates two
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FIG. 3. Emitter excitation probability |a|2, given by Eq. (10),
in an eigenstate with energy E , for mL = 40π and γ /m2 = 10−4.
The probability that the emitter is in its excited state vanishes at the
photon frequencies ωk , with k ∈ Z: the corresponding states are the
same that would be obtained in the absence of the emitter. Values of
E for which |a|2 is nonzero correspond to bound states in which the
emitter shares part of the excitation. For these states, the derivative of
the photon field acquires a discontinuity at the position of the emitter,
and the norm of the photon wavefunction decreases (see Fig. 2).
Plotted quantities are dimensionless.

eigenstates, with energies above and below ω�, in which the
photon and the atomic excitation are strongly hybridized. By
increasing γ , the eigenvalues Ek migrate towards the center of
the intervals (ωk, ωk+1), indicating a stronger superposition
between atomic and photonic excitations, with a significant
involvement of photons with different wavenumbers. Notice
that, in any regime, the parameters can be tuned to select a
given value of the emitter excitation probability, as summa-
rized in Fig. 3.

Finally, it is interesting to study what happens in the limit
of a large ring. By increasing the value of L, energy eigen-
values become more and more dense, and the value |a|2 of the
atomic excitation probability decreases. In a semiclassical pic-
ture, for L → ∞ the photon emitted by the atom will take an
infinite time to return to the emitter, which will have released
a larger part of its excitation in the meanwhile. None of the
eigenstates survives the limit L → ∞: this is expected, since
the system becomes locally equivalent to an infinite-length
linear waveguide, in which no bound state with energy E > m
emerges, for a nonvanishing form factor, in the single-emitter
case, though bound excited states of two or more emitters are
possible [29].

III. TWO EMITTERS

We now consider the case in which two identical emitters,
with equal excitation energy ε and positions x1 and x2 at a
distance d , are coupled to a transverse waveguide mode. Their
ground and excited states will be denoted by |gα〉 and |eα〉,
with α = 1, 2, respectively. The two emitters interact with
each other only by photon exchange, and no direct coupling
is assumed. The interaction Hamiltonian, which generalizes

Eq. (3), reads

Hint =
∞∑

k=−∞

∑
α=1,2

Fk
(
e

2π ikxα
L σ+

α bk + e
−2π ikxα

L σ−
α b†

k

)
, (16)

and the state in the one-excitation sector is

|�〉 =
∑

α=1,2

aασ+
α |G〉 ⊗ |vac〉 + |G〉 ⊗

∑
k

ξkb†
k |vac〉 , (17)

with |G〉 = |g1〉 ⊗ |g2〉.

A. Bound states

As in the single-emitter case, in order to evaluate the bound
states of the system we must solve the eigenproblem; this
is done in Appendix C, where we prove the following state-
ments. The eigenvalue E corresponding to an eigenstate with
finite atomic excitation amplitude obeys the equation

det [(E − ε)1 − 
(E )] = 0, (18)

where the self-energy is now a 2 × 2 matrix, and 1 is the
identity matrix. The atom amplitude vector a = (a1, a2)T

characterizing the corresponding eigenstate satisfies

[(E − ε)1 − 
(E )]a = 0, (19)

which fixes a1 and a2 up to a global multiplication constant
(notice that, generally, ‖a‖ < 1), while the photon ampli-
tudes are determined by a straightforward generalization of
Eq. (11). The values of a j and ξk are eventually fixed, up to an
overall phase factor, by state normalization. Also in this case,
one can derive an analytical form of the self-energy,


 j�(E ) = γ

q(E )
Aj�(q(E ))θ (E ) + γ β j−�(E ), (20)

where q(E ) = √
E2 − m2,

Aj�(q) = cot

(
qL

2

)
cos (( j − �)qd ) + sin (| j − �|qd ),

(21)
β0 is the same function that appears in Eq. (12), and β1 =
β−1 is a function suppressed like |β1(E )| � [e−m(L−d ) +
e−md ]/(πm). By neglecting the latter contribution for
md, m(L − d )  1, the energies of the bound states are de-
termined by the solutions of the following equations:

E � ε + γ

q(E )
χ (n)(q(E )) + γ β0(E ), (22)

where χ (n)(q), with n = 1, 2, are the eigenvalues, possibly co-
incident, of the matrix A(q). As in the single-emitter case, the
right-hand side diverges at each ωk , providing a set of energy
pairs {E (1)

k , E (2)
k } in each interval (ωk, ωk+1). The correspond-

ing value of the ratio a2/a1 is determined by the eigenvector
of A corresponding to the specific eigenvalue χ (n).

Correspondingly, the photon wavefunction will be

ξ (x) = a1 ξ1(x − x1) + a2 ξ1(x − x2), (23)

with ξ1(x) as in Eq. (15), and −L/2 � x1 < x2 < L/2 being
the positions of the two emitters. An analogous result holds
when more than two emitters are considered.
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B. A special case: Resonant states

As in the single-emitter case, the bound state energy can
take any value E > m depending on ε, γ , and m. Instead of
discussing the eigenproblem for the two-emitter system in the
general case, we focus on a case of particular interest, which
is a forerunner of effects observed in an infinite waveguide.
Namely, we study the eigenvalues that resonate with the dis-
tance d between the emitters, that is,

E = Eν =
√(

νπ

d

)2

+ m2, ν = 1, 2, . . . , (24)

for which an integer number of half wavelengths π/q(Eν ) =
d/ν [generally not coinciding with any of the half wave-
lengths π/qk = L/(2k) of the photon in the ring] separate the
two emitters. We refer to this particular class of bound states
as resonant states.

For this class of bound states, the atomic excitation is
determined, up to O(e−md ), by the eigenstates of the matrix

A

(
νπ

d

)
= cot

(
πνL

2d

)(
1 (−1)ν

(−1)ν 1

)
. (25)

The eigenvalues are χ (1) = 0, corresponding to a solu-
tion with a2/a1 = (−1)ν+1, occurring for values of atomic
excitation energy satisfying ε = Eν + β0(Eν ), and χ (2) =
2 cot(πνL/2d ), related to an eigenstate with opposite atomic
excitation parity, a2/a1 = (−1)ν , occurring when

ε = Eν + β0(Eν ) − 2γ d cot (πνL/2d )/(νπ ). (26)

It is evident that, while the former energy eigenvalue is prac-
tically independent of L, the latter wildly oscillates as L
increases. Indeed, one of the states converges to a true bound
state on the infinite waveguide, in which the atomic excita-
tions are combined in such a way to confine the field between
the emitter, while the orthogonal combination becomes part of
an unbound state, characterized by twice the decay rate of an
isolated atom [29].

Such states have the following peculiar property: the
photon wavefunction corresponding to a resonant state is con-
fined, up to a small correction, in the region of space between
the two atoms. Indeed, by Eqs. (15)–(23), and by noticing that,
as a consequence of Eq. (24), q(Eν ) = νπ/d , by setting the
positions of the two atoms at x = 0 and x = d and discarding
the contributions of the terms η(x) and η(x − d ) coming from
Eq. (15), we have

ξ (x) =
{√

2πγ Eνd
νπ

sin
(

νπx
d

)
, 0 � x � d

0, otherwise.
(27)

In particular, both atoms are placed at nodes of the photon
wavefunction. Interestingly, there is no dependence on L in
the previous equation; in particular, these states survive the
limit L → ∞, where bound states in the continuum (BIC) [71]
are expected to emerge [29]. On the contrary, nonresonant
(and thus not confined) bound states generally do depend on
L and do not survive in the limit, merging in the continuum of
scattering (non-normalized) states. We remark that resonant
bound states are robust with respect to small variations in

FIG. 4. Photon amplitudes in two resonant bound states occur-
ring in the same system. An integer number of half wavelengths,
corresponding to approximately the same energy, can be accommo-
dated in the shortest (of length d) and longest (of length L − d)
path connecting the two emitters. We set mL = 40π , md = 25, and
γ /m2 = 10−4. Plotted quantities are dimensionless.

the interatomic distance, in the L → ∞ limit, as shown in
Ref. [29].

Given the value d of the distance, a complementary set of
resonant bound states exists, besides the ones discussed above,
corresponding to the energies

E = Ẽν =
√(

νπ

L − d

)2

+ m2, ν = 1, 2, . . . . (28)

These states are characterized by the fact that the region
between the emitters, of length L − d , is [up to O(e−md )] a
multiple of the half wavelength associated with the eigen-
value. Their properties are obtained by merely replacing d
with L − d in the above equations. However, none of these
eigenstates survives as a bound state in the L → ∞ limit.

IV. APPLICATIONS

An interesting situation occurs in the case, depicted in
Fig. 4, when the energy Eν of a resonant state with non-
vanishing field in the inner region between the emitters
approximately coincides with the energy Ẽν ′ of a resonant
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state with the field confined in the outer region of length
L − d and with opposite atomic parity, for some pair (ν, ν ′) of
integers. Clearly, this case can occur only when d and L − d
are at least approximately commensurable. The relevance of
this case lies in the fact that these two states, quasidegenerate
and orthogonal to each other, represent the pair {E (1)

k , E (2)
k }

of eigenvalues expected in some interval (ωk, ωk+1), and are
therefore separated from the other eigenvalues by a quan-
tity ∼L−1. Thus, especially for small waveguide lengths, the
energy separation of the complementary resonant states al-
lows them to be coherently addressed and manipulated as a
two-level system, provided the energy scale g of the external
coupling satisfies

g � |Eν − ωk̄|, (29)

with k̄ the closest integer to νL/2d . In this case, the subspace
spanned by the two resonant states is a good candidate for a
robust qubit, and coherent manipulation can occur by apply-
ing an external driving field (either time dependent or time
independent, according to the performed tasks) to one or both
emitters, while measurement in the computational basis can
be performed by detecting the photon in the inner or outer
region.

Finally, it is worth addressing the nontrivial task of reading
the emitter state. The challenge arising in this field reflects
the tension between the need for the system to be closed for
free dynamics and open for readout, and for the latter to be
performed without damaging the properties of the isolated
system. A possible strategy to extract information on the state
of the emitters can consist in the coupling with modes that leak
into the waveguide from the outer space [72], that is negligible
during dynamics, but could be enhanced by either enacting
a Q-switching process [73], bringing in another waveguide
into the evanescent mode, or by properly tuning in and out of
resonance the relevant optical parameters. The last technique
is applied, for example, in Ref. [10], by tuning the atomic
excitation frequency out of resonance with the external field
for the duration of the measurement.

V. CONCLUSIONS

We have outlined the features of bound states in systems of
one and two emitters coupled to a single transverse mode of a
closed linear waveguide. In these eigenstates, the atomic and
photonic excitations are dressed by interaction and hybridized
with each other. In the two-emitter case, we have unearthed
the existence of pairs of quasidegenerate eigenstates, that rep-
resent the forerunners of the bound states in the continuum
observed in unbounded geometries. Such a feature, which
is absent in unbounded waveguides, opens the possibility to
implement a qubit. A promising experimental platform to re-
alize the described system is represented by superconducting
qubits coupled to transmission line resonators [74,75], as well
as in one-dimensional slot waveguide and related types of
structures [76], that can be used to implement configurations
analogous to the one in the right-hand panel of Fig. 1.

Future research will focus on specific entangled states in
multiemitter configurations and on the analysis of moving
emitters [77], in which the interplay between internal and
translational degrees of freedom can yield interesting effects.
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APPENDIX A: EIGENVALUE EQUATION

1. One emitter

The state in the one-excitation sector has the form given in
Eq. (5):

|�〉 = a |e〉 ⊗ |vac〉 + |g〉 ⊗
∑

k

ξkb†
k |vac〉

= a |e, vac〉 +
∑

k

ξk |g, k〉 , (A1)

and the action of the Hamiltonian H = H0 + Hint, given in
Eqs. (2) and (3), on the basis vectors reads

H |e, vac〉 = ε |e, vac〉 +
∑

k

Fk |g, k〉 ,

H |g, k〉 = ωk |g, k〉 + Fk |e, vac〉 . (A2)

Therefore, the eigenvalue equation H |�〉 = E |�〉 projected
on the basis vectors gives

(E − ε)a +
∑

k

Fkξk = 0,

(E − ωk )ξk + Fka = 0. (A3)

By solving the second equation,

ξk = Fk

E − ωk
a, (A4)

and plugging it into the first one, we finally get

(E − ε − 
(E ))a = 0, (A5)

where


(E ) =
∑

k

F 2
k

E − ωk
(A6)

is the self-energy function of the model. This gives Eq. (8).
The state normalization |a|2 + ∑

k |ξk|2 = 1 gives

|a|2
(

1 +
∑

k

F 2
k

(E − ωk )2

)
= |a|2

(
1 − d

dE

(E )

)
= 1,

(A7)
from which we get Eqs. (10) and (11).

2. Two emitters

The computation is a straightforward generalization of the
one-emitter case. The state in the one-excitation sector has the
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form given in Eq. (17):

|�〉 =
∑

α=1,2

aασ+
α |G〉 ⊗ |vac〉 + |G〉 ⊗

∑
k

ξkb†
k |vac〉

= a1 |e1, vac〉 + a2 |e2, vac〉 +
∑

k

ξk |G, k〉 , (A8)

and the action of the Hamiltonian H = H0 + Hint on the basis
vectors reads

H |e1, vac〉 = ε |e1, vac〉 +
∑

k

Fke
−2π ikx1

L |G, k〉 ,

H |e2, vac〉 = ε |e2, vac〉 +
∑

k

Fke
−2π ikx2

L |G, k〉 ,

H |G, k〉 = ωk |G, k〉 + Fke
2π ikx1

L |e1, vac〉
+ Fke

2π ikx2
L |e1, vac〉 . (A9)

Therefore, the eigenvalue equation H |�〉 = E |�〉 projected
on the basis vectors gives

(E − ε)a1 +
∑

k

Fke
2π ikx1

L ξk = 0,

(E − ε)a2 +
∑

k

Fke
2π ikx2

L ξk = 0, (A10)

(E − ωk )ξk + Fke
−2π ikx1

L a1 + Fke
−2π ikx2

L a2 = 0.

By solving the third equation,

ξk = Fk

E − ωk

(
e

−2π ikx1
L a1 + e

−2π ikx2
L a2

)
, (A11)

and plugging it into the first and the second one, we finally get

[(E − ε)1 − 
(E )]a = 0, (A12)

where a = (a1, a2)T , and 
(E ) = (
 j�(E )) j,�=1,2, with


 j�(E ) =
∑

k

F 2
k

E − ωk
e

2π ik(x j −x� )

L , (A13)

which is the 2 × 2 self-energy matrix of the model. This gives
Eq. (20). The energy of the nontrivial solution must satisfy

det [(E − ε)1 − 
(E )] = 0, (A14)

that is Eq. (18).

APPENDIX B: CALCULATION OF THE SELF-ENERGY

The self-energy of the model has matrix elements given by


 j�(E ) =
∑

k

F 2
k

E − ωk
exp

(
2π ik(x j − x�)

L

)

= γ

L

∞∑
k=−∞

1

ωk (E − ωk )
exp

(
2π ik(x j − x�)

L

)
,

(B1)

where

ωk =
√(

2πk

L

)2

+ m2 (B2)

FIG. 5. Integration contour of the complex function fE ,d (κ ) in
the complex plane. The integral over the path � (the two red curves),
here chosen in such a way to encircle the two branch cuts of the
function, equals the sum of its residua, namely, those corresponding
to the points κ = 2πk

L , k ∈ Z (orange small circles), plus the ones
corresponding to the points κ = ±q(E ), q(E ) = √

E 2 − m2, as far
as E > 0 (blue large circles).

and x j, x� are the positions of the emitters in the guide.
The diagonal elements 
11(E ) = 
22(E ) are nothing but the
single-emitter self-energy function discussed in Sec. II. Notice
that, because of the property ω−k = ωk , 
 j�(E ) = 
� j (E );
therefore, we can equivalently write


 j�(E ) = γ

L

∞∑
k=−∞

1

ωk (E − ωk )
exp

(
2π ikd j�

L

)
, (B3)

with d j� = |x j − x�|. Also notice that the self-energy is invari-
ant under the transformation

d j� → L − d j�, (B4)

as it must be since the physics of the system cannot depend on
the orientation of the coordinate system.

To compute 
 j�(E ) we will make use of the “Herglotz
trick” of the cotangent, a beautiful argument which allows to
determine the series by a complex integration [78]. Consider
the following function on the complex κ plane:

fE ,d (κ ) = eidκ

√
κ2 + m2(E − √

κ2 + m2)
π

[
cot

(
κL

2

)
− i

]
,

(B5)

the complex square root to be interpreted in the sense of the
principal value; we will fix 0 < d < L. For every real E , this is
a meromorphic function in C \ [±im,±i∞) having (a) simple
poles at κ = 2kπ

L for all k ∈ Z; (b) two simple poles at κ =
±q(E ) = ±√

E2 − m2, as far as E > 0; and (c) two branch
cuts along ±i[m,∞). Besides, it is exponentially bounded at
∞ in both half planes: indeed, one gets

eidκ

[
cot

(
κL

2

)
− i

]
= 2i

eidκ

eiLκ − 1
, (B6)

where its modulus for κ = iy, y > 0, decays as e−dy, while for
κ = −iy, y > 0, it decays as e−(L−d )y.

By the residue theorem, the integral of fE ,d (κ ) on any
positively oriented contour � (see Fig. 5) which includes all
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its simple poles is given by

1

2π i

∮
�

fE ,d (κ ) dκ

=
∞∑

k=−∞
Res fE ,d

(
2πk

L

)
+ Res fE ,d (

√
E2 − m2)θ (E )

+ Res fE ,d (−
√

E2 − m2)θ (E ), (B7)

where θ (E ) is the Heaviside step function. An immediate
calculation shows that

Res fE ,d

(
2πk

L

)
= 2π

L

1

ωk (E − ωk )
exp

(
2π ikd

L

)
, (B8)

while

Res fE ,d (±
√

E2 − m2)

= −e±id
√

E2−m2

√
E2 − m2

π

[
cot

(
L
√

E2 − m2

2

)
∓ i

]
, (B9)

implying that

2π

L

∞∑
k=−∞

1

ωk (ωk − E )
exp

(
2π ikd

L

)
= 2π

cot
(

L
√

E2−m2

2

)
cos(d

√
E2 − m2) + sin(d

√
E2 − m2)√

E2 − m2
θ (E ) + 1

2π i

∮
�

fE ,d (κ ) dκ.

(B10)

Let us focus on the integral along the integration contour �; while the choice of � is immaterial, it will be convenient to choose
a contour which encircles both branch cuts of fE ,d (κ ) as in Fig. 5; that is,∮

�

fE ,d (κ ) dκ =
∫ i∞−0+

im−0+
fE ,d (κ ) dκ −

∫ i∞+0+

im+0+
fE ,d (κ ) dκ +

∫ −i∞+0+

−im+0+
fE ,d (κ ) dκ −

∫ −i∞−0+

−im−0+
fE ,d (κ ) dκ

= i
∫ ∞

m
( fE ,d (iy − 0+) − fE ,d (iy + 0+)) dy − i

∫ ∞

m
( fE ,d (−iy + 0+) − fE ,d (−iy − 0+)) dy

= −2π i
∫ ∞

m

e−dy

e−Ly − 1

1√
y2 − m2

2E

E2 + y2 − m2
dy + 2π i

∫ ∞

m

edy

eLy − 1

1√
y2 − m2

2E

E2 + y2 − m2
dy

= 4π i
∫ ∞

m

e−dy + e−(L−d )y

1 − e−Ly

1√
y2 − m2

E

E2 + y2 − m2
dy

= 4π i
∫ ∞

m

cosh(dy) coth
( Ly

2

) − sinh(dy)√
y2 − m2

E

E2 + y2 − m2
dy. (B11)

Notice that the latter contribution is invariant under the transformation d → L − d . We finally get


 j�(E ) = γ
cot

(
L
√

E2−m2

2

)
cos(d j�

√
E2 − m2) + sin(d j�

√
E2 − m2)√

E2 − m2
θ (E ) + γ β j−�(E ), (B12)

where the functions

β j−�(E ) = 1

π

∫ ∞

m

cosh (d j�y) coth
( Ly

2

) − sinh (d j�y)√
y2 − m2

E

E2 + y2 − m2
dy (B13)

appear in Eq. (20). In particular, for j = �, one gets dj� = 0 and the above expressions reduce to the single-emitter case:


(E ) = γ
cot

(
L
√

E2−m2

2

)
√

E2 − m2
θ (E ) + γ β0(E ), (B14)

with

β0(E ) = 1

π

∫ ∞

m

coth
( Ly

2

)
√

y2 − m2

E

E2 + y2 − m2
dy. (B15)

This is the expression whose upper bound is shown in Eq. (13).
Consider energies E � 0. As long as d < L, the integrand in Eq. (B13) is a positive, monotonically decreasing function of y,

since

d

dy

e−d j�y − e−(L−d j� )y

1 − e−Ly
= −1

2
[(L − d j�) cosh(d j�y) + d j� cosh ((L − d j�)y)] csch

(
Ly

2

)2

. (B16)
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Consequently, we have

β j�(E ) � 1

π

[
cosh(mdj�) coth

(
mL

2

)
− sinh(mdj�)

] ∫ ∞

m

1√
y2 − m2

E

E2 + y2 − m2
dy

= 1

π

[
cosh(mdj�) coth

(
mL

2

)
− sinh(mdj�)

]
arcsinh

(√
E2−m2

m

)
√

E2 − m2

= 1

π

[
e−m(L−d j� ) + e−mdj�

1 − e−mL

]
arcsinh

(√
E2−m2

m

)
√

E2 − m2
. (B17)

In particular,

β0(E ) � 1

π
coth

(
mL

2

)
arcsinh

(√
E2−m2

m

)
√

E2 − m2

� 1

πm
coth

(
mL

2

)
(B18)

is positive and bounded for all positive energies. Moreover,
if both md  1 and m(L − d )  1, i.e., the two emitters are
sufficiently far away, β1(E ) = β−1(E ) will be small and may
be neglected:

|β1(E )| = |β−1(E )| � 1

πm
[e−m(L−d ) + e−md ]. (B19)

Mathematically, the contribution of the upper and lower parts
of the contour in Fig. 5 yield, respectively, an O(e−md ) and an
O(e−m(L−d ) ) contribution to 
12(E ).

Having computed the self-energy, in principle we can solve
the eigenvalue problem for the model. In particular, in Fig. 6
we provide a graphical analysis of the solutions of the eigen-
value equation (A5) for the single emitter in a waveguide for
a suitable choice of the parameters; we have countably many
eigenvalues above the mass threshold E > m, each being em-

FIG. 6. Solutions of Eq. (A5) with ε/m = 2.3 and mL = 10. The
orange solid curve corresponds to the self-energy, its asymptotes,
represented as orange dotted vertical lines, corresponding to the
values ωk , k = 0, ±1, ±2, . . ., in Eq. (B2); the dashed blue line is
the graph of E − ε. The abscissa of each black dot is a solution of
the eigenvalue equation. Plotted quantities are dimensionless.

bedded between two consecutive eigenenergies ωk, ωk+1 of
the uncoupled system. In particular, eigenvalues far from ε

will be close to the extrema of the interval (ωk, ωk+1), regard-
less of the choice of the parameters, while eigenvalues close
to ε will lie somewhere in the middle and will be sensibly
dependent on the parameters. Notice that the model will also
exhibit a single eigenvalue below m, corresponding to an
evanescent boson field concentrated around the emitter.

APPENDIX C: PHOTON WAVEFUNCTION

Let us finally evaluate the photon wavefunction associated
with a bound state of the system. Recalling our discussion in
Appendix A, respectively in the single-emitter case, Eq. (A4),
and in the two-emitter case, Eq. (A11), we have, up to an
overall normalization constant,

ξ (x) = a ξ1(x), (C1)

ξ (x) = a1ξ (x − x1) + a2ξ1(x − x2), (C2)

where, in both cases,

ξ1(x) =
√

2πγ

L

∞∑
k=−∞

1√
ωk (E − ωk )

exp

(
2π ikx

L

)
. (C3)

Since ω−k = ωk , we can equivalently write

ξ1(x) =
√

2πγ

L

∞∑
k=−∞

1√
ωk (E − ωk )

exp

(
2π ik|x|

L

)
. (C4)

To compute this quantity, let us introduce the complex
function

gE ,x(κ ) = ei|x|κ
4
√

κ2 + m2(E − √
κ2 + m2)

π

[
cot

(
κL

2

)
− i

]
.

(C5)

By the residue theorem,

1

2π i

∮
�

gE ,x (κ ) dκ

=
∞∑

k=−∞
ResgE ,x

(
2πk

L

)
+ ResgE ,x (

√
E2 − m2)θ (E )

+ ResgE ,x (−
√

E2 − m2)θ (E ). (C6)

The terms in the last equation are easily obtained:

ResgE ,x

(
2πk

L

)
= 2π

L

1√
ωk (E − ωk )

exp

(
2π ik|x|

L

)
, (C7)
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as well as

ResgE ,x (±
√

E2 − m2) = −e±i|x|√E2−m2

√
E

E2 − m2
π

[
cot

(
L
√

E2 − m2

2

)
∓ i

]
, (C8)

finally yielding

2π

L

∞∑
k=−∞

1√
ωk (ωk − E )

exp

(
2π ik|x|

L

)
= 2π

√
E

E2 − m2

[
cot

(
L
√

E2 − m2

2

)
cos(x

√
E2 − m2)

+ sin(|x|
√

E2 − m2)
]
θ (E ) + 1

2π i

∮
�

gE ,x(κ ) dκ. (C9)

Choosing again a contour that encircles both branch cuts of gE ,x(κ ) as in Fig. 5, we get∮
�

gE ,x(κ ) dκ =
∫ i∞−0+

im−0+
gE ,x(κ ) dκ −

∫ i∞+0+

im+0+
gE ,x (κ ) dκ +

∫ −i∞+0+

−im+0+
gE ,x(κ ) dκ −

∫ −i∞−0+

−im−0+
gE ,x(κ ) dκ

= i
∫ ∞

m
(gE ,x(iy − 0+) − gE ,x(iy + 0+)) dy − i

∫ ∞

m
(gE ,x(−iy + 0+) − gE ,x(−iy − 0+)) dy

= −2π i
∫ ∞

m

e−|x|y

e−Ly − 1

√
2
(
E −

√
y2 − m2

)
4
√

y2 − m2(E2 + y2 − m2)
dy + 2π i

∫ ∞

m

e|x|y

eLy − 1

√
2
(
E −

√
y2 − m2

)
4
√

y2 − m2(E2 + y2 − m2)
dy

= 2
√

2π i
∫ ∞

m

e−|x|y + e−(L−|x|)y

1 − e−Ly

1
4
√

y2 − m2

E −
√

y2 − m2

E2 + y2 − m2
dy

= 2
√

2π i
∫ ∞

m

cosh(|x|y) coth
( Ly

2

) − sinh(|x|y)
4
√

y2 − m2

E −
√

y2 − m2

E2 + y2 − m2
dy. (C10)

We finally obtain

ξ1(x) =
√

2πγ E

E2 − m2

[
cot

(
L
√

E2 − m2

2

)
cos(x

√
E2 − m2) + sin(|x|

√
E2 − m2)

]
θ (E ) + η(x), (C11)

where

η(x) =
√

γ

π

∫ ∞

m

cosh (|x|y) coth
( Ly

2

) − sinh (|x|y)√
y2 − m2

E −
√

y2 − m2

E2 + y2 − m2
dy, (C12)

the latter term vanishing exponentially far from x = 0. This completes the description of the eigensystem of the model. In
particular, we can comment on the pair of resonant two-emitter states involved in the implementation of a qubit, discussed in
Sec. IV. While in the case of weak coupling the emitters retain the largest part of the excitation, in the strong-coupling regime
the photonic component becomes dominant. In both regimes, the emitter excitation for the symmetric state is larger than in the
antisymmetric case.
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