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Abstract
Goyeneche et al [2018 Phys. Rev. A 97 062326] introduced several classes of
quantum combinatorial designs, namely quantum Latin squares, quantum Latin
cubes, and the notion of orthogonality on them. They also showed that mutually
orthogonal quantum Latin arrangements can be entangled in the same way in
which quantum states are entangled. Moreover, they established a relationship
between quantum combinatorial designs and a remarkable class of entangled
states called k-uniform states, i.e. multipartite pure states such that every reduc-
tion to k parties is maximally mixed. In this article, we put forward the notions of
incomplete quantum Latin squares and orthogonality on them and present con-
struction methods for mutually orthogonal quantum Latin squares and mutually
orthogonal quantum Latin cubes. Furthermore, we introduce the notions of gen-
eralized mutually orthogonal quantum Latin squares and generalized mutually
orthogonal quantum Latin cubes, which are equivalent to quantum orthogo-
nal arrays of size d2 and d3, respectively, and thus naturally provide two- and
three-uniform states.

Keywords: quantum Latin square, quantum Latin cube, quantum orthogonal
array, k-uniform entangled state

(Some !gures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.

1751-8121/21/505204+33$33.00 © 2021 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/ac3705
https://orcid.org/0000-0001-7763-4632
https://orcid.org/0000-0001-9152-6515
https://orcid.org/0000-0002-8503-5151
mailto:tianzh68@163.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ac3705&domain=pdf&date_stamp=2021-11-26


J. Phys. A: Math. Theor. 54 (2021) 505204 Y Zang et al

1. Introduction

Entanglement is considered to be one of the most striking features of quantum mechanics
and has been widely utilized as a crucial resource in quantum information science [1, 33],
from quantum computation [24] to quantum teleportation [3] and quantum key distribution
[2, 29]. The research on multipartite entanglement is no simple matter. Recently, a striking
class of N-party entangled pure states, called k-uniform states, have attracted much atten-
tion. These states have the property that every reduction to k parties is maximally mixed,
where k ! "N/2#, with ".# denoting the "oor function [16]. When k = "N/2#, these states,
known as maximally multipartite entangled states [15], or absolutely maximally entangled
(AME) states [20], exhibit maximal entanglement in all possible partitions and thus play a piv-
otal role in quantum secret sharing, multipartite teleportation, and in tensor network states for
holographic codes [27, 50].

So far, plenty of work has been done for !nding the application and the existence of
k-uniform states [14, 15, 20]. Orthogonal array is a very important con!guration in com-
binatorial design. Recently, Goyeneche and Życzkowski established a link between a spe-
cial kind of orthogonal arrays and k-uniform states [16]. Moreover, Zang, Li and Pang et al
presented some two, three-uniform states by those orthogonal arrays [28, 35, 48, 49]. Besides,
Latin square (LS) is another signi!cative con!guration in combinatorial design and has a long
history [12]. Latin squares have wide applications in many !elds ranging from quantum infor-
mation, to experimental designs and cryptology. In particular, orthogonal Latin squares have a
very closed connection with mutually unbiased bases [18, 37, 38, 43].

In recent years, Musto and Vicary introduced the notions of quantum Latin square (QLS)
[31], weakly orthogonal QLSs and orthogonal QLSs [30], where classical symbols appearing
in entries of arrangements were extended to quantum states. These concepts could be used to
construct unitary error bases and mutually unbiased bases [30–32]. In 2018, Goyeneche et al
put forward the concept of quantum Latin cube (QLC) and quantum Latin hypercube [17]. They
also introduced the notions of orthogonal QLCs and orthogonal quantum Latin hypercubes.
Moreover, they identi!ed a crucial ingredient missing in the previous approach in [30]: they
pointed out that a pair of orthogonal QLSs could be entangled in such a way that they cannot
be expressed as two separated arrangements, the same with orthogonal QLCs and orthogonal
quantum Latin hypercubes. These entangled designs are intrinsically associated with quantum
orthogonal arrays (QOAs) [17], which can generate k-uniform states.

A self-orthogonal Latin square (SOLS) is a special kind of orthogonal LSs, which is orthog-
onal to its transpose, thus it is not equivalent with a pair of orthogonal LSs. Indeed, SOLS
takes up less storage space in experimental designs than orthogonal LSs, which is one of the
reasons why it is an interesting concept in combinatorial designs. In this article, we will intro-
duce a quantum version of SOLS, which will be named self-orthogonal quantum Latin square
(SOQLS). Primarily we will exhibit construction methods of mutually orthogonal quantum
Latin squares (MOQLSs), mutually orthogonal quantum Latin cubes (MOQLCs), such that
families of k-uniform states can be obtained, with k = 2, 3. Furthermore, we will introduce
generalizations of MOQLSs and MOQLCs in which the arrangements may be entangled, so
that they will have a one-to-one relationship with QOAs.

The article is organized as follows. In section 2 we present two construction methods: one
is the direct product for MOQLSs and the other is !lling in holes for SOQLS. Interestingly
enough, the obtained MOQLSs and SOQLS are not equivalent with each other. Meanwhile,
we de!ne the notions of incomplete quantum Latin squares (IQLSs) and orthogonality on
them as tools for the construction of !lling in holes. In section 3 we give a notion of mutually
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orthogonal quantum Latin cubes (MOQLCs), which is different from the one in [17]. More-
over, we show a construction method of direct product for MOQLCs. In section 4 we intro-
duce the notions of generalized mutually orthogonal quantum Latin squares (GMOQLSs) and
generalized mutually orthogonal quantum Latin cubes (GMOQLCs), whose arrangements may
be entangled. Actually, MOQLSs and MOQLCs are special cases of GMOQLSs and GMO-
QLCs when the arrangements are fully separated. Moreover we give direct proofs of the one-
to-one relationships between GMOQLSs and QOAs, as well as GMOQLCs and QOAs with
size d2 and d3, respectively. Finally, after setting up the quantum combinatorial designs, we
get a family of k-uniform states and AME states. In section 5 we gather and discuss the main
results obtained in this article and draw our conclusions.

2. Quantum Latin squares

2.1. Classical Latin squares

In this section, we review some basic combinatorial concepts used in this work. A (classi-
cal) Latin square of order d denoted by LS(d) is a d × d square in which each of the num-
bers 0, 1, . . . , d − 1 occurs exactly once in each row and exactly once in each column. Two
Latin squares L1, L2 of order d are orthogonal, if when L1 is superimposed on L2, every
ordered pair 00, 01, . . . , d − 1d − 1 occurs. A set of t " 2 mutually orthogonal Latin squares
of order d, denoted by t-MOLS(d), is a set of Latin squares L1, . . . , Lt(t " 2) such that every
i, j, 1 ! i < j ! t, Li and L j are orthogonal. A SOLS is a Latin square that is orthogonal to its
transpose. The reader can see the references [8, 10, 12, 19] for deep research on them.

Lemma 2.1. ([8]) There exists a SOLS(d) if and only if d " 4 and d &= 6.

Let m(d) be the largest number of mutually orthogonal classical Latin squares of order d.

Lemma 2.2. ([10]) For any integer d " 2, m(d) ! d − 1.

An orthogonal array of size r, with N factors, d levels, and strength k, denoted by
OA(r, N, d, k), is an r × N array A over a set S of d symbols such that every r × k subarray
contains each k-tuple based on S exactly λ times as a row, where λ = r/dk [19].

Actually, mutually orthogonal classical Latin squares have an equivalence relationship with
orthogonal arrays of strength 2 and λ = 1.

Lemma 2.3. ([19]) There exists a t-MOLS(d) if and only if there exists an OA(d2, t +
2, d, 2).

As a consequence of the relation between MOLSs and OAs given by lemma 2.3, there are
some results about the largest number of MOLSs m(d).

Lemma 2.4. ([7, 9, 10, 19])

(a) If q is a prime power, then m(q) = q − 1.
(b) Suppose that d = pr1

1 pr2
2 . . . prs

s , where s " 2, ri is a positive integer, pi is a prime and
pi &= pj for 1 ! i &= j ! s, then m(d) " min{pri

i − 1 : 1 ! i ! s}.
(c) For any d &= 2, 6, m(d) " 2.
(d) For any d &= 2, 3, 6, 10, m(d) " 3.
(e) For any d &= 2, 3, 4, 6, 10, 22, m(d) " 4.
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2.2. Quantum Latin squares

Recently, quantum Latin square (QLS) [31] and orthogonal QLSs [30] have been introduced.
In this section, we review the concepts of QLS and orthogonal QLSs, but also generalize
the orthogonality of two QLSs to t QLSs, and self-orthogonal quantum Latin square. In the
following, let [d] = {0, 1, . . . , d − 1} and Sd be the symmetric group on the set [d].

Definition 2.5. A quantum Latin square Φ of dimension d denoted by QLS(d) is a
d × d array of vectors |Φi, j〉 ∈ Cd, i, j ∈ [d], such that every row and every column determine
an orthonormal basis of the complex vector space Cd.

Two classical Latin squares are said to be equivalent if one can be transformed into the other
by permutations of the rows, columns or relabeling the symbols. Similarly, there is a notion of
equivalence between two quantum Latin squares [31].

Definition 2.6. Two quantum Latin squares Φ, Ψ of dimension d are equivalent if there
exists a unitary operator U on Cd , a set of modulus-1 complex numbers ci j, and two
permutations σ, τ ∈ Sd, such that the following holds for all i, j ∈ [d]:

|Ψi, j〉 = ci jU|Φσ(i),τ ( j)〉. (1)

By associating with each number l ∈ [d] in a classical Latin square of order d the computa-
tional basis element |l〉 ∈ Cd , we get a quantum Latin square for which the elements in every
row or column form a computational basis, and we call it a classical quantum Latin square.
Moreover, if a quantum Latin square is equivalent to a classical one, then we also call it a
classical quantum Latin square, otherwise, it is a non-classical quantum Latin square [32] or
a genuinely quantum Latin square [34].

Lemma 2.7. If Φ is a classical quantum Latin square of dimension d, then for any i, j, m, n ∈
[d], it satis!es |〈Φi,j|Φm,n〉| = 0 or 1.

Proof. Let l = (li, j) be a classical Latin square of order d, and L = (|li, j〉) be the cor-
responding classical quantum Latin square of l. Then for any i, j, m, n ∈ [d], it should
be true that 〈li, j|lm,n〉 = 0 or 1. Suppose Φ is equivalent to L, then there exists a uni-
tary operator U on Cd, a family of modulus-1 complex numbers ci j, and two permu-
tations σ, τ ∈ Sd, such that for any i, j ∈ [d], the equation |li, j〉 = ci jU|Φσ(i),τ ( j)〉 holds.
Thus, 〈li, j|lm,n〉 = c∗i jcm,n〈Φσ(i),τ ( j)|U†U|Φσ(m),τ (n)〉 = c∗i jcm,n〈Φσ(i),τ ( j)|Φσ(m),τ (n)〉 = 0 or 1. Since
c∗i j, cm,n are modulus-1 complex numbers, and σ, τ ∈ Sd , then for any i, j, m, n ∈ [d], it is true
that |〈Φi, j|Φm,n〉| = 0 or 1. #

Definition 2.8. Two quantum Latin squares Φ,Ψ of dimension d are orthogonal if the set
of vectors {|Φi, j〉 ⊗ |Ψi, j〉 : i, j ∈ [d]} forms an orthonormal basis of the space Cd ⊗ Cd, i.e.
〈Φi, j ⊗Ψi, j|Φi ′, j′ ⊗Ψi ′, j′ 〉 = 〈Φi, j|Φi ′, j′ 〉〈Ψi, j|Ψi ′, j′ 〉 = δii ′δ j j′ , for i, j, i′, j′ ∈ [d].

The orthogonality of quantum Latin squares is unaffected by conjugation of one of the
squares [32].

Definition 2.9. Given a quantum Latin square Φ, its conjugate Φ∗, is the quantum Latin
square with entries (|Φ∗

i, j〉) = (|Φi, j〉∗) for i, j ∈ [d].

Lemma 2.10. ([32]) Two quantum Latin squares Φ, Ψ are orthogonal if and only if Φ∗, Ψ
are orthogonal.
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Similar to the concept of self-orthogonal (classical) Latin square, we give a de!nition of
self-orthogonal quantum Latin square.

Definition 2.11. Given a quantum Latin square Φ, its transpose ΦT is the quantum Latin
square with entries (|ΦT

i, j〉) = (|Φ j,i〉) for i, j ∈ [d].

Definition 2.12. Given a quantum Latin squareΦ, its conjugate transposeΦ† is the quantum
Latin square with entries (|Φ†

i, j〉) = (|Φ j,i〉∗) for i, j ∈ [d].

Definition 2.13. Let Φ be a quantum Latin square of dimension d. If Φ is orthogonal to its
conjugate transpose, then we call it a self-orthogonal quantum Latin square, and denote it by
SOQLS(d).

From lemma 2.10, we know that Φ is orthogonal to its conjugate transpose Φ† if and only
if Φ is orthogonal to its transpose ΦT. So we have the following lemma.

Lemma 2.14. Φ is a SOQLS(d) if and only if Φ is orthogonal to its transpose ΦT.

Lemma 2.15. If Φ is a SOQLS(d), then d " 4; moreover, {|Φii〉 : i ∈ [d]} forms an
orthonormal basis of the space Cd.

Proof. Since for any i, j ∈ [d], 〈Φ j j ⊗ Φ j j|Φii ⊗ Φii〉 = 〈Φ j j|Φii〉2 = δi j. Thus {|Φii〉 : i ∈
[d]} forms an orthonormal basis of the space Cd . The impossibility of d = 2 is obvious.
If a SOQLS(3) exists, then {|Φii〉 : i ∈ [3]} forms an orthonormal basis of the space C3.
Furthermore 〈Φ01|Φii〉 = 0 and 〈Φ10|Φii〉 = 0 for i = 0, 1, which is in contradiction with
〈Φ01 ⊗ Φ10|Φ22 ⊗ Φ22〉 = 0. Therefore d " 4. #
Example 2.1. (Non-classical SOQLS) There exists a SOQLS(14).

Let

|φ1〉 =
|10〉 + |11〉 + |12〉 + |13〉

2
, |φ2〉 =

|10〉 − |11〉 + |12〉 − |13〉
2

,

|φ3〉 =
|10〉 + |11〉 − |12〉 − |13〉

2
, |φ4〉 =

|10〉 − |11〉 − |12〉 + |13〉
2

.

Then,
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is a non-classical SOQLS(14).
A set of t " 2 quantum Latin squares of dimension d, say Φ1,Φ2, . . . ,Φt, is said to be

mutually orthogonal, and is denoted by t-MOQLS(d), if Φi and Φ j are orthogonal for all
1 ! i < j ! t.

Let M(d) be the largest number of mutually orthogonal non-classical quantum Latin squares
of dimension d. Analogously to classical Latin squares, an upper bound to M(d) can be proved.

Lemma 2.16. ([32]) For any integer d " 2, M(d) ! d − 1.

In the following, we will focus on the bound which can be reached for mutually orthogonal
non-classical quantum Latin squares.

2.3. Direct product construction

In this subsection, we will provide a construction of mutually orthogonal quantum Latin
squares by direct product. In particular, we describe a method to construct mutually orthogonal
non-classical quantum Latin squares from the mutually orthogonal classical Latin squares.

Let V and W be Hilbert spaces of dimension d1 and d2 respectively. Then the tensor product
V ⊗ W is a Hilbert space of dimension d1d2, whose elements are linear combinations of ‘tensor
products’ |v〉 ⊗ |w〉 of elements |v〉 of V and |w〉 of W. In particular, if {|i〉} and {| j〉} are
orthonormal basis of the spaces V and W, respectively, then {|i〉 ⊗ |j〉} is an orthonormal basis
of V ⊗ W, whence Cd1d2 , Cd1 ⊗ Cd2 [33].

Construction 2.17. (Direct product construction) If there exists a 2-MOQLS(d1) and a
2-MOQLS(d2), then there exists a 2-MOQLS(d1d2).

Proof. Suppose Φ1 = (|Φ1
i, j〉), Φ2 = (|Φ2

i, j〉) is a pair of orthogonal quantum Latin squares of
dimension d1, and Ψ1 = (|Ψ1

m,n〉), Ψ2 = (|Ψ2
m,n〉) is a pair of orthogonal quantum Latin squares

of dimension d2. Then Φ = (|Φ(i,m),( j,n)〉) = Φ1 ⊗Ψ1 and Ψ = (|Ψ(i,m),( j,n)〉) = Φ2 ⊗Ψ2 is a
pair of orthogonal quantum Latin squares of dimension d1d2, where |Φ(i,m),( j,n)〉 = |Φ1

i, j〉 ⊗
|Ψ1

m,n〉 and |Ψ(i,m),( j,n)〉 = |Φ2
i, j〉 ⊗ |Ψ2

m,n〉.
In fact, the set of vectors {|Φ(i,m),( j,n)〉 ⊗ |Ψ(i,m),( j,n)〉 : i, j ∈ [d1], m, n ∈ [d2]} forms an

orthonormal basis of the space Cd1d2 ⊗ Cd1d2 . Indeed,

(|Φ(i,m),( j,n)〉 ⊗ |Ψ(i,m),( j,n)〉, |Φ(i′ ,m′),( j ′,n′)〉 ⊗ |Ψ(i′,m′),( j ′,n′)〉)

=
((

|Φ1
i, j〉 ⊗ |Ψ1

m,n〉
)
⊗ (|Φ2

i, j〉 ⊗ |Ψ2
m,n〉), (|Φ1

i′ , j ′ 〉 ⊗ |Ψ1
m′ ,n′ 〉) ⊗

(
|Φ2

i′, j ′ 〉 ⊗ |Ψ2
m′ ,n′ 〉

))

= (|Φ1
i, j〉 ⊗ |Ψ1

m,n〉, |Φ1
i′ , j ′ 〉 ⊗ |Ψ1

m′ ,n′ 〉)(|Φ2
i, j〉 ⊗ |Ψ2

m,n〉, |Φ2
i′, j ′ 〉 ⊗ |Ψ2

m′,n′ 〉)

= 〈Φ1
i, j|Φ1

i′, j ′ 〉〈Φ
2
i, j|Φ2

i′, j ′ 〉〈Ψ
1
m,n|Ψ1

m′ ,n′ 〉〈Ψ2
m,n|Ψ2

m′,n′ 〉

= δii′δ j j ′δmm′δnn′.

#
The construction can be easily generalized to t mutually orthogonal quantum Latin squares.

Corollary 2.18. Let l " 2. If there exist a tj-MOQLS(dj), for any 1 ! j ! l, then there exists
a t-MOQLS(d), where t = min{t1, t2, . . . , tl} and d = d1d2 . . . dl.
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In particular, mutually orthogonal quantum Latin squares of dimension d1d2 can be estab-
lished from mutually orthogonal classical quantum Latin squares of dimension d1 and d2 after
the action of unitary matrices.

Construction 2.19. If there exists a 2-MOLS(d1) and a 2-MOLS(d2), then there exists a
2-MOQLS(d1d2).

See appendix A for the proof of construction 2.19. Analogously to corollary 2.18, we can
generalize the result as follows.

Corollary 2.20. Let l " 2 and d = d1d2 . . . dl, with m(dj) " 2 for all 1 ! j ! l. Then there
exists a t-MOQLS(d) with t = min{m(d1), m(d2), . . . , m(dl)}.

From the proof of construction 2.19, for given suitable unitary matrices we get plenty of
non-classical quantum Latin squares by different choices of the τ s in each block of Φ or Ψ.
Actually, for different choice of τ in each block of the two squares, we can get different 2-
MOQLS(d1d2)s. Obviously, we cannot choose τ s all being I or U in Φ or Ψ, if we want to get
non-classical quantum Latin squares.

Example 2.2. (Non-classical 2-MOQLSs) There exists a 2-MOQLS(12).

Proof. Let C3 = span{|0〉, |1〉, |2〉} and C4 = span{|0〉, |1〉, |2〉, |3〉}. Then C12 , C4 ⊗
C3 = span{|i〉 ⊗ | j〉 : i ∈ [4], j ∈ [3]} = span{|0〉, |1〉, . . . , |11〉}. De!ne U =

∑
i∈[4]|i〉〈i| ⊗

Ui, where

U0 =
1√
3





1 1 1

1 e
2π

√
−1

3 e
−2π

√
−1

3

1 e
−2π

√
−1

3 e
2π

√
−1

3



 , U1 =
1√
3





1 +
√
−1

1 −
√
−1√

2
0

−
√

−1
2

1
1√
2

+
√
−1

1√
2

√
−1 1 −

√
−1
2




,

U2 =





1√
2

1√
2

0

1√
2
− 1√

2
0

0 0
1√
2




, U3 =





2
3

2
3

1
3

1
3

−2
3

2
3

−2
3

1
3

2
3




.

(2)

The orthogonal classical quantum Latin squares of dimension 3 and 4 are

(3)

De!ne Φ and Ψ as the arrays (4) and (5), then Φ and Ψ is a pair of orthogonal quan-
tum Latin squares of dimension 12. Furthermore, put (i, j) = (0, 3), (m, n) = (9, 10), then
|〈Φ0,3|Φ9,10〉| = |〈3|U|4〉| = | 1−

√
−1√
6

| &= 0 or &= 1 for Φ; put (i, j) = (0, 3), (m, n) = (9, 1),

7
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then |〈Ψ0,3|Ψ9,1〉| = |〈3|U†|4〉| = |
√

−1
6 | &= 0 or &=1 for Ψ, where we set |3〉 = |1〉 ⊗ |0〉 and

|4〉 = |1〉 ⊗ |1〉. Thus Φ and Ψ are both non-classical quantum Latin squares by lemma 2.7.

(4)

(5)

#
From lemmas 2.4, 2.16, corollaries 2.18 and 2.20, we draw the following conclusion.

Theorem 2.21.

(a) Suppose that d = pr1
1 pr2

2 . . . prs
s , where s " 2, ri is a positive integer, pi is a prime and

pi &= pj for 1 ! i &= j ! s. Then

M(d) " min{pri
i − 1 : 1 ! i ! s};

moreover, if s = 1, r1 " 2, with r1 = r′ + r′′, 0 < r′ ! r′′, then M(d) " pr′
1 − 1.

(b) Let E2 = {2, 3, 4, 6, 8, 18, p, 2p, 6p : p " 5 is a prime}. If d /∈ E2, then M(d) " 2.
(c) Let E3 = {9, 12, 24, 27, 50, 54, 3p : p " 5 is a prime}. If d /∈ E2 ∪ E3, then M(d) " 3.
(d) Let E4 = {16, 32, 36, 48, 66, 110, 242, 4p : p " 5 is a prime} = E4. If d /∈ E2 ∪ E3 ∪ E4,

then M(d) " 4.

8
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2.4. Filling-in-holes construction

In this subsection, we will provide another method (!lling in holes) to construct new types
of orthogonal non-classical quantum Latin squares (self-orthogonal quantum Latin square),
which are not equivalent to the orthogonal quantum Latin squares constructed in section 2.3.
Firstly, we review some basic combinatorial concepts used in this work.

Let H = {S1, S2, . . . , Sn} be a set of disjoint subsets of [d]. An incomplete Latin square
ILS(d; s1, s2, . . . , sn) [10] with hole set H is a d × d array L whose rows and columns are
indexed by the elements of [d], and satis!es the following properties:

(a) Each cell of L is empty or contains an element of [d];
(b) The subarrays (called holes) indexed by Si × Si are empty for 1 ! i ! n; and
(c) Suppose the row or column is indexed by s, then the elements in the row or column are

exactly those of [d]\Si if s ∈ Si, and of [d] otherwise.

It is easy to see that when H = ∅, an incomplete Latin square is exactly a Latin square.
Two incomplete Latin squares on the symbol set [d] and with hole set H, say L1 and L2, are

said to be orthogonal and denoted by IMOLS(d; s1, s2, . . . , sn) if their superimposition yields
every ordered pairs in ([d] × [d])\

⋃n
i=1(Si × Si). Similarly, t-IMOLS(d; s1, s2, . . . , sn) denotes

a set of t ILS(d; s1, s2, . . . , sn)s that are pairwise orthogonal [10].
If H = {S1, S2, . . . , Sn} is a partition of [d], then an incomplete Latin square is called

a partitioned incomplete Latin square, denoted by PILS. The type of the PILS is de!ned
to be the multiset {|Si| : 1 ! i ! n}. We shall use an ‘exponential’ notation to describe
types, so type hn1

1 hn2
2 . . . hnl

l denotes ni occurrences of hi, 1 ! i ! l, in the multiset.
Similarly, t-HMOLS(hn1

1 hn2
2 . . . hnl

l ) denotes a set of t PILSs of type hn1
1 hn2

2 . . . hnl
l that are

pairwise orthogonal [6].
An incomplete Latin square is called sel f-orthogonal and denoted by ISOLS [6], if it is

orthogonal to its transpose. When {S1, S2, . . . , Sn} is a partition of [d], we use the notation
HSOLS(hn1

1 hn2
2 . . . hnl

l ) instead of ISOLS with the type hn1
1 hn2

2 . . . hnl
l accurately.

Lemma 2.22. [45, 47] For h " 2, there exists an HSOLS(hn) if and only if n " 4.

For more results on HMOLSs, we refer to [4, 5, 11, 26, 44, 46].
An incomplete Latin square is usually used to construct a Latin square by the method of !ll-

ing in holes in the !eld of combinatorial designs. In this section, we are going to construct some
quantum Latin squares by applying that method. Now we generalize the de!nitions of ILS,
t-IMOLSs, t-HMOLSs, ISOLS and HSOLS to incomplete quantum Latin square, incomplete
mutually orthogonal quantum Latin squares and incomplete self-orthogonal quantum Latin
square.

Definition 2.23. Let V = {V1, V2, . . . , Vn} be a set of mutually orthogonal sub-
spaces of the complex vector space Cd, where dim Vi = di for 1 ! i ! n. An
incomplete quantum Latin square IQLS(d; d1, d2, . . . , dn) with hole set V is a d × d array
Ψ whose rows and columns are indexed by one orthogonal basis of Cd, {φ1,φ2, . . . ,φd},
satis!es the following properties:

(a) Every cell of Ψ is either empty or contains a unit vector of Cd;
(b) The subarrays (called holes) whose rows and columns are indexed by the basis of Vis are

empty; and
(c) Suppose the row or column is indexed by φ, then the elements in the row or column are

exactly the basis of Cd\Vi if φ ∈ Vi, and of Cd otherwise.

9
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An incomplete classical Latin square is an incomplete quantum Latin square for which every
element of the array is in the computational basis, and we call it a classical incomplete quantum
Latin square.

Two incomplete quantum Latin squares on Cd and hole set V , say Ψ and Φ, are said to be
orthogonal, and are denoted by IMOQLS(d; d1, d2, . . . , dn), if their ‘superimposition’ yields
an orthonormal basis of (Cd ⊗ Cd)\

⊕n
i=1(Vi ⊗ Vi). A set of t IQLS(d; d1, d2, . . . , dn)s that are

pairwise orthogonal is denoted by t-IMOQLS(d; d1, d2, . . . , dn).
Similar with the classical case, if V = {V1, V2, . . . , Vn}, where

⊕
1!i!n Vi = Cd , then an

incomplete quantum Latin square is called a partitioned incomplete quantum Latin square,
and denoted by PIQLS. A set of t PIQLSs of type dn1

1 dn2
2 . . . dnl

l that are pairwise orthogonal is
denoted by t-HMOQLS(dn1

1 dn2
2 . . . dnl

l ). Here the meaning of the notation of type is analogous
to the classical case. The type of a PIQLS is de!ned to be the multiset {dim Vi : 1 ! i ! n}.
So type dn1

1 dn2
2 . . . dnl

l denotes ni occurrences of di, 1 ! i ! l, in the multiset.
Here we give an example of two quantum Latin squares obtained from two different kinds

of incomplete quantum Latin squares by !lling the holes.

Example 2.3. There is a non-classical QLS(4) from a classical IQLS(4; 2), and a non-
classical QLS(7) from a classical PIQLS(1322).

Notice that for a PIQLS we can always get diagonal holes by permuting the rows and
columns, therewith the order of the indexes changed such as Φ or Ψ in example 2.3. More-
over, by the process of !lling in holes in example 2.3, the construction below can be obtained
directly without proof.

Construction 2.24. (Filling in holes) If there exists an IQLS(d; d1, d2, . . . , dn) and a
QLS(di) for 1 ! i ! n, then there exists a QLS(d).

An incomplete quantum Latin square is called self-orthogonal if it is orthogonal to its conju-
gate transpose. We use the notation ISOQLS(d; d1, d2, . . . , dn) for incomplete self-orthogonal
quantum Latin square and HSOQLS for when {V1, V2, . . . , Vn} is a partition of Cd like classical
ones.

10
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From the construction 2.24, we get the following corollary.

Corollary 2.25. If there exists an HSOQLS(dn
1) and a SOQLS(d1), then there exists a

SOQLS(d1n).

In particular, we can also obtain a non-classical SOQLS(d1n) from a classical HSOQLS(dn
1)

by !lling in the holes of size d1 with SOQLS(d1)s which are from classical SOLS(d1)s after a
unitary matrix action. Here we denote by Zd = {0, 1, . . . , d − 1} the additive group of integers
modulo d.

Construction 2.26. If there exists an HSOLS(dn
1) and a SOLS(d1), then there exists an

SOQLS(d1n).

See appendix B for the proof of construction 2.26.

Example 2.4. (Non-classical SOQLS). There exists a SOQLS(16).

See appendix I for the proof of example 2.4.
According to the constructions above, a SOQLS can generate a pair of orthogonal quantum

Latin squares. But it is easy to see that the SOQLS is not equivalent to a 2-MOQLSs constructed
in section 2.3, since SOQLS has the special property that it is orthogonal with its transpose.
Moreover, by lemmas 2.1, 2.22 and construction 2.26, we get the main result of this subsection.

Theorem 2.27. If d1, d2 " 4, then there exists a SOQLS(d1d2), except possibly for dimen-
sion 36.

Incomplete quantum Latin squares play an important role in the construction of !lling in
holes. Here we present a helpful construction for getting incomplete quantum Latin squares,
which is a variation of the weighting construction of lemma 3.6 in [45].

Construction 2.28. (Weighting). If there exists a (classical) HMOQLS(hn) and a (non-
classical) 2-MOQLS(m), then there exists a (non-classical) HMOQLS((hm)n).

See appendix C for the proof of construction 2.28. Furthermore, construction 2.28 can be
generalized to t-HMOQLSs.

Corollary 2.29. If there exists a (classical) t-HMOQLS(hn) and a (non-classical) t-
MOQLS(m), then there exists a (non-classical) t-HMOQLS((hm)n).

LetΨ = {|Ψi,j〉} be an HSOQLS(hn) with hole set V = {V1, V2, . . . , Vn} on Chn, and assume
that the holes are in the diagonal line, and dim Vi = h for 1 ! i ! n. Suppose Φ1 = {|Φ1

l,k〉}
and Φ2 = {|Φ2

l,k〉} is a 2-MOQLS(m) on Cm. Let Φ = {|Φ(i,l),(j,k)〉}, where

|Φ(i,l),( j,k)〉 =

{
|Ψi, j〉 ⊗ |Φ1

l,k〉, if i ! j;

|Ψi, j〉 ⊗ |Φ2
k,l〉∗, otherwise.

(6)

Then Φ is an HSOQLS((hm)n) with hole set V ′ = {V1 ⊗ Cm, V2 ⊗ Cm, . . . , Vn ⊗ Cm} on Chmn.

Construction 2.30. If there exists an HSOQLS(hn) and a 2-MOQLS(m), then there exists
an HSOQLS((hm)n).

See appendix D for the proof of construction 2.30.

Example 2.5. An HSOQLS(34) can be constructed from an HSOQLS(14) and a
2-MOQLS(3).

See appendix J for the proof of example 2.5.

11
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3. Quantum Latin cubes

3.1. Classical Latin cubes

In this section, we list some notions of Latin cubes and the orthogonality among them which
are from reference [12].

A (classical) Latin cube of order d, denoted by LC(d), is a d × d × d cube (d rows, d
columns and d !les) in which the numbers 0, 1, . . . , d − 1 are entered so that each num-
ber occurs exactly once in each row, column and !le. Three Latin cubes of order d are
orthogonal, if when superimposed, each ordered triple 000, 001, . . . , d − 1d − 1d − 1 occurs.
A set of Latin cubes L1, L2, . . . , Lt(t " 3) is mutually orthogonal, or a set of MOLC, if for every
1 ! x < y < z ! t, Lx , Ly and Lz are orthogonal. We denote such set by t-MOLC(d).

Mutually orthogonal classical Latin cubes have a close relationship with orthogonal arrays
of strength 3 and λ = 1.

Lemma 3.1. For t " 3, there exists an OA(d3, t + 3, d, 3) if and only if after removing the
!rst 3 columns, the remaining t columns satisfy the following conditions:

(A) They correspond to t mutually orthogonal Latin cubes;
(B) Every corresponding planes of any two cubes is a pair of orthogonal Latin squares.

See appendix E for the proof of lemma 3.1. In the following, we mainly consider the special
case of t mutually orthogonal Latin cubes having property (B).

Let c(d) be the largest number of mutually orthogonal classical Latin cubes of order d with
property (B). By the relation between MOLCs and OAs in lemma 3.1, some results about the
number c(d) follow.

Lemma 3.2. ([10, 12, 25])

(a) For any integer d " 2, c(d) ! d − 1.
(b) If q " 5 is a prime power, then c(q) " q − 2. Moreover, if q " 4 is a power of 2, then

c(q) " q − 1.
(c) Let d be an integer satisfying gcd(d, 4) &= 2 and gcd(d, 18) &= 3, then c(d) " 3. Besides,

c(15), c(21) " 3.

3.2. Quantum Latin cubes

Goyeneche et al put forward the concepts of quantum Latin cube and orthogonality among
three quantum Latin cubes in reference [17]. In this section, we review the concept and give a
new de!nition of orthogonality among the quantum Latin cubes.

Definition 3.3. A quantum Latin cubeΦ of dimension d, denoted by QLC(d), is a d × d × d
cube of elements |Φi, j,k〉 ∈ Cd, i, j, k ∈ [d], such that every row, every column and every !le
determine an orthonormal basis of the complex Hilbert space Cd .

Two classical Latin cubes are said to be equivalent if one can be transformed into the other
by permutations of the rows, columns, !les or relabeling of the symbols. Similarly, we give a
notion of equivalence between two quantum Latin cubes.

Definition 3.4. Two quantum Latin cubesΦ, Ψ of dimension d are equivalent if there exist a
unitary operator U on Cd, a family of modulus-1 complex numbers ci jk, and three permutations
σ, τ , ζ ∈ Sd , such that the following holds for all i, j, k ∈ [d]:

|Ψi, j,k〉 = ci jkU|Φσ(i),τ ( j),ζ(k)〉. (7)

12
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A classical Latin cube can form a quantum Latin cube by associating each number in the
classical Latin cube with a computational basis element, and we call it classical quantum Latin
cube. Moreover, if there is a quantum Latin cube equivalent to a classical one, then we also
call it a classical quantum Latin cube, otherwise, it is a non-classical quantum Latin cube.
Similarly to classical quantum Latin squares, classical quantum Latin cubes also have the
following property, with a similar proof.

Lemma 3.5. If Φ is a classical quantum Latin cube of dimension d, then for any
i, j, k, f, g, h ∈ [d], one has |〈Φi,j,k|Φf,g,h〉| = 0 or 1.

Now we give a de!nition of mutually orthogonal quantum Latin cubes, which differs from
the one given in [17] by adding a condition similar to property (B), and is analogous to
de!nition 11 of m triplewise orthogonal quantum frequency cubes in reference [36]. This will
establish a direct link of this notion with that of a quantum orthogonal array in de!nition 4.1.

Definition 3.6. Three quantum Latin cubes Φ,Ψ,Υ of dimension d are orthogonal, if the
following properties hold:

(a) {|Φi, j,k〉 ⊗ |Ψi, j,k〉 ⊗ |Υi, j,k〉 : i, j, k ∈ [d]} forms an orthonormal basis of the space
Cd ⊗ Cd ⊗ Cd.

(b) For each !xed i, j or k, the corresponding planes of any two cubes coming from Φ,Ψ and
Υ can form a pair of orthogonal quantum Latin squares, i.e.

∑

xy

|Λi, j,k〉〈Λi, j,k| ⊗ |∆i, j,k〉〈∆i, j,k| = Id2 ,

for different x, y ∈ {i, j, k}, and Λ,∆ ∈ {Φ,Ψ,Υ}.

A set of t " 3 quantum Latin cubes of dimension d, sayΦ1,Φ2, . . . ,Φt, is said to be mutually
orthogonal if Φi, Φ j and Φk are orthogonal for all 1 ! i < j < k ! t, and is denoted by t-
MOQLC(d).

Thus a set of mutually orthogonal classical Latin cubes with property (B) forms a set of
mutually orthogonal classical quantum Latin cubes.

Let C(d) be the largest number of mutually orthogonal non-classical quantum Latin cubes
of dimension d. From lemma 2.16 and condition (b) in de!nition 3.6, we can establish the
following upper bound.

Lemma 3.7. For any d " 2, C(d) ! d − 1.

Definition 3.8. Given a quantum Latin cube Φ, its conjugate Φ∗, is the quantum Latin cube
with entries (|Φ∗

i, j,k〉) = (|Φi, j,k〉∗).

In [32], it is proved the orthogonality of quantum Latin squares is unaffected by conjugation
of one of the squares. For quantum Latin cubes, an analogous result holds.

Lemma 3.9. Three quantum Latin cubes Φ, Ψ and Υ are orthogonal, if and only if Φ∗, Ψ
and Υ or Φ∗, Ψ∗ and Υ are orthogonal.

See appendix F for the proof of lemma 3.9.
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3.3. Direct product construction

In this subsection, we will provide a direct product construction of mutually orthogonal
quantum Latin cubes. In particular, we will give a method to construct mutually orthogonal
non-classical quantum Latin cubes from mutually orthogonal classical Latin cubes with
property (B).

The following direct product construction is similar to the construction described in
section 2.3, and we will not give the proof here.

Construction 3.10. (Direct product construction). If there exists a 3-MOQLC(d1) and a
3-MOQLC(d2), then there exists a 3-MOQLC(d1d2).

Corollary 3.11. Let l " 2. If there exists a tj-MOQLC(dj), for any 1 ! j ! l, then there exists
a t-MOQLC(d), where t = min{t1, t2, . . . , tl} and d = d1d2 . . . dl.

Construction 3.12. If there exists a 3-MOLC(d1) and a 3-MOLC(d2) both with property
(B), then there exists a 3-MOQLC(d1d2).

See appendix G for the proof of construction 3.12. Obviously, from the proof we cannot
choose τ s all being I or U, if we want to get a non-classical quantum Latin cubes.

Corollary 3.13. Let l " 2 and d = d1d2 . . . dl, with c(dj) " 3 for all 1 ! j ! l. Then there
exists a t-MOQLC(d) with t = min{c(d1), c(d2), . . . , c(dl)}.

Example 3.1. (Non-classical MOQLCs). There exists a 3-MOQLC(16).

See appendix K for the proof of example 3.1.
By lemma 3.2, corollaries 3.11 and 3.13, we !nally get the following theorem.

Theorem 3.14.

(a) Suppose that d = pr1
1 pr2

2 . . . prs
s , where s " 2, ri is a positive integer, pi is a prime and

pi &= pj for 1 ! i &= j ! s, then C(d) " min{pri
i − 2 : 1 ! i ! s}; if s = 1, r1 " 2, with

r1 = r′ + r′′, 0 < r′ ! r′′, then C(d) " pr′
1 − 2.

(b) Let d1, d2 be integers satisfying gcd(di, 4) &= 2 and gcd(di, 18) &= 3, i ∈ {1, 2}, then
C(d1d2) " 3.

4. Generalized orthogonality for QLSs and QLCs

In 2018, Goyeneche et al put forward the notion of quantum orthogonal array [17], which
allows to obtain a k-uniform state from a QOA. Moreover, they point out the close relation
between QOAs and mutually orthogonal quantum Latin squares (or cubes). In this section, we
elaborate on the notions in [17] of orthogonality among quantum Latin squares (cubes) whose
arrangements may be entangled. Furthermore, we show a one-to-one relationship between
them and QOAs of strength 2, 3 with minimal support, such that a family of k-uniform states
for k = 2, 3 can be derived by combining the results of the previous sections. The de!nition of
QOA here is the same as that of IQOA given in reference [13].

14
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Let (Cd)⊗N = Cd ⊗ Cd · · · ⊗ Cd , be the N-fold tensor product of Cd. The unit vectors
belonging to (Cd)⊗N represents pure quantum states of N parties having d internal levels each.

Definition 4.1. A quantum orthogonal array QOA(r, N, d, k) is an arrangement consisting
of r rows composed by N-partite pure quantum states |ϕi〉 ∈ (Cd)⊗N such that,

r−1∑

i, j=0

Trl1,...,lN−k (|ϕi〉〈ϕ j|) =
r
dk Idk . (8)

for every subset {l1, . . . , lN−k} of N − k parties.

Now we give a notion of generalized orthogonality for QLSs and QLCs which allows to
establish their equivalence to QOAs of strength 2, 3 with minimal support, i.e. r = dk.

Definition 4.2. Let t " 2. A set of d2 t-partite pure quantum states |ψi, j〉 ∈ (Cd)⊗t arranged
as

|ψ0,0〉 . . . |ψ0,d−1〉
...

...

|ψd−1,0〉 . . . |ψd−1,d−1〉

forms a set of generalized mutually orthogonal quantum Latin squares of dimension d, denoted
by t-GMOQLS(d), if the following properties hold:

(a) The d2 states |ψi, j〉 are orthogonal, i.e.

〈ψi, j|ψi′ , j′ 〉 = δii′δ j j′ . (9)
(b)

d−1∑

i=0

Trl1,l2,...,lt−1 |ψi, j〉〈ψi, j′ | = δ j j′Id, (10)

d−1∑

j=0

Trl1,l2,...,lt−1 |ψi, j〉〈ψi′, j| = δii′Id, (11)

for every subset {l1, l2, . . . , lt−1} of t − 1 parties.
(c)

d−1∑

i, j=0

Trl1,l2,...,lt−2 |ψi, j〉〈ψi, j| = Id2 , (12)

for every subset {l1, l2, . . . , lt−2} of t − 2 parties.

Remark 4.3. If a t-GMOQLS(d) is composed of fully separable states, i.e. |ψA1A2...At
i, j 〉 =

|ψA1
i, j 〉 ⊗ |ψA2

i, j 〉 ⊗ · · · ⊗ |ψAt
i, j〉 for every i, j ∈ [d], then the t-GMOQLS(d) is just a t-MOQLS(d).

In fact, property (c) implies property (a); property (b) is equivalent with arrangement {|ψAs
i, j 〉}

being a QLS for every s, 1 ! s ! t, according to de!nition 2.5; and property (b) and (c)
are equivalent with arrangements {|ψA1

i, j 〉}, {|ψA2
i, j 〉}, . . . , {|ψAt

i, j〉} being a set of t-MOQLS(d)
according to de!nition 2.8.

Proposition 4.4. A QOA(d2, t + 2, d, 2) generates a t-GMOQLS(d), and vice versa.
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Proof. Suppose that |Φ〉 is the sum of the d2 states in the QOA(d2, t + 2, d, 2). Since |Φ〉 can
produce a two-uniform state, we choose the !rst two subsystems, namely, i, j, then

|Φ〉 =
d−1∑

i, j=0

|i j〉 ⊗ |Φi, j〉. (13)

Actually, {|Φi, j〉} is a set of arrangements of t-GMOQLS(d), where i, j ∈ [d] are the
indexes of the rows and columns of the t-GMOQLS. To show this, we take an arbitrary subset
S ⊆ {1, 2, . . . , t + 2} with |S| = 2. Consider the following three cases: (a) |S ∩ {1, 2}| = 2; (b)
|S ∩ {1, 2}| = 1; (c) |S ∩ {1, 2}| = 0.

(a) When |S ∩ {1, 2}| = 2, we have

ρS = Tr3,4,...,t+2

∑

i, j,i′ , j′∈[d]

|i j〉 ⊗ |Φi, j〉〈i′ j′| ⊗ 〈Φi′ , j′ |

=
∑

i, j,i′, j′∈[d]

|i j〉〈i′ j′|〈Φi′, j′ |Φi, j〉.

Thus, ρS =
∑

i, j,i′, j′∈[d]|i j〉〈i′ j′|〈Φi′, j′ |Φi, j〉 = Id2 if and only if equation (9) holds.

(b) When |S ∩ {1, 2}| = 1. Suppose S ∩ {1, 2} = {1}, and {l1, l2, . . . , lt−1} ∩ {1, 2} = ∅,
then we have

ρS = Tr2,l1,l2,...,lt−1

∑

i, j,i′ , j′∈[d]

|i j〉 ⊗ |Φi, j〉〈i′ j′| ⊗ 〈Φi′, j′ |

=
∑

i,i′∈[d]

|i〉〈i′| ⊗
∑

j∈[d]

Trl1,l2,...,lt−1 |Φi, j〉〈Φi′, j|.

So, ρS =
∑

i,i′∈[d]|i〉〈i′| ⊗
∑

j∈[d] Trl1,l2,...,lt−1 |Φi, j〉〈Φi′, j| = Id2 if and only if equation (11)
holds. One the other hand, suppose S ∩ {1, 2} = {2}, then ρS =

∑
j, j′∈[d]| j〉〈 j′| ⊗∑

i∈[d] Trl1,l2,...,lt−1 |Φi, j〉〈Φi, j′ | = Id2 if and only if equation (10) holds.

(c) When |S ∩ {1, 2}| = 0, we have

ρS = Tr1,2,l1,l2,...,lt−2

∑

i, j,i′ , j′∈[d]

|i j〉 ⊗ |Φi, j〉〈i′ j′| ⊗ 〈Φi′, j′ |

=
∑

i, j∈[d]

Trl1,l2,...,lt−2 |Φi, j〉〈Φi, j|.

Thus, ρS = Id2 if and only if equation (12) holds. #
Example 4.1. Consider the following quantum orthogonal array consisting of !ve columns
[17]:

QOA(4, 3C + 2Q, 2, 2) =





|0〉 |0〉 |0〉 |Φ+〉
|0〉 |1〉 |1〉 |Ψ+〉
|1〉 |0〉 |1〉 |Ψ−〉
|1〉 |1〉 |0〉 |Φ−〉



 , (14)
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where |Φ±〉 = (|00〉 ± |11〉)/
√

2 and |Ψ±〉 = (|01〉 ± |10〉)/
√

2 are the Bell basis. We can see
that the !rst three columns are separable (classical) and the last two columns are entangled
(quantum). From proposition 4.4, let the !rst and second columns be the address of a triple of
generalized mutually orthogonal quantum Latin squares. Then we get

(15)

Definition 4.5. Let t " 3. A set of d3 t-partite pure quantum states |ψi, j,k〉 ∈ (Cd)⊗t arranged
as

forms a set of generalized mutually orthogonal quantum Latin cubes of dimension d, denoted
by t-GMOQLC(d), if the following properties hold:

(a) The d3 states {|ψi, j,k〉} are orthogonal, i.e.

〈ψi, j,k|ψi′, j′ ,k′ 〉 = δii′δ j j′δkk′ . (16)

(b)

d−1∑

i=0

Trl1,l2,...,lt−1 |ψi, j,k〉〈ψi, j′ ,k′ | = δ j j′δkk′ Id, (17)

d−1∑

j=0

Trl1,l2,...,lt−1 |ψi, j,k〉〈ψi′ , j,k′ | = δii′δkk′ Id, (18)

d−1∑

k=0

Trl1,l2,...,lt−1 |ψi, j,k〉〈ψi′ , j′ ,k| = δii′δ j j′Id, (19)

for every subset {l1, l2, . . . , lt−1} of t − 1 parties.
(c)

d−1∑

i, j=0

Trl1,l2,...,lt−2 |ψi, j,k〉〈ψi, j,k′ | = δkk′Id2 , (20)
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d−1∑

j,k=0

Trl1,l2,...,lt−2 |ψi, j,k〉〈ψi′, j,k| = δii′Id2 , (21)

d−1∑

i,k=0

Trl1,l2,...,lt−2 |ψi, j,k〉〈ψi, j′ ,k| = δ j j′Id2 , (22)

for every subset {l1, l2, . . . , lt−2} of t − 2 parties.
(d)

d−1∑

i, j,k=0

Trl1,l2,...,lt−3 |ψi, j,k〉〈ψi, j,k| = Id3 . (23)

for every subset {l1, l2, . . . , lt−3} of t − 3 parties.

Remark 4.6. If a t-GMOQLC(d) is composed of fully separable states, i.e. |ψA1A2...At
i, j,k 〉 =

|ψA1
i, j,k〉 ⊗ |ψA2

i, j,k〉 ⊗ · · · ⊗ |ψAt
i, j,k〉 for every i, j, k ∈ [d], then the t-GMOQLC(d) is just a t-

MOQLC(d). In fact, property (d) implies property (a); property (b) implies that the arrangement
{|ψAs

i, j,k〉} is a QLC, for every s, 1 ! s ! t, according to de!nition 3.3; property (c) implies that

for each corresponding planes of any two cubes from |ψA1
i, j,k〉, |ψ

A2
i, j,k〉, . . . , |ψAt

i, j,k〉 form a pair of
orthogonal quantum Latin squares, which is consistent with property (b) of de!nition 3.6; and
property (d) implies that the ‘superimposed’ elements of any three cubes form an orthonormal
basis of (Cd)⊗3, which is consistent with property (a) of de!nition 3.6.

Proposition 4.7. A QOA(d3, t + 3, d, 3) generates a t-GMOQLC(d), and vice versa.

See appendix H for the proof of proposition 4.7. Here we give an example to show the
relation between QOA and GMOQLC.

Example 4.2. A 4-GMOQLC(7) can be obtained from a QOA(343, 4C + 3Q, 7, 3).

Proof. Let

QOA(343, 4C + 3Q, 7, 3) =





|Φ0,0,0〉
|Φ0,0,1〉

...
|Φ6,6,6〉




, (24)

where |Φi, j,k〉= |i, k, i+ j+k, i+2 j+4k〉 ⊗ |φi, j,k〉, |φi, j,k〉= 1√
7

∑6
l=0 ωil|l+ j, l+2 j+5k, l〉,

0 ! i, j, k ! 6, and ω = e
2π

√
−1

7 . In the same way as in proposition 4.7, let the !rst
three columns be the address of a four-tuple of generalized mutually orthogonal quan-
tum Latin cubes, then we get a 4-GMOQLC(7) from the last four systems of the QOA
(343, 4C + 3Q, 7, 3). #

So far, plenty of two- and three-uniform states have been obtained such as two-uniform
states for any d " 2, N " 4, except for d = 2, N = 4 [16, 21, 28, 35, 40–42, 49]; three-uniform
states for any d " 2, N " 6 except for d ≡ 2 (mod 4), N = 7 [20, 22, 28, 35, 40, 48]; especially,
AME(4, d) for d &= 2, AME(5, d) for any d, AME(6, d) for any d and AME(7, d) for d &≡ 2
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(mod 4) [22, 23, 28, 35, 40, 42]. Strikingly, Pang et al constructed the two- and three-uniform
states for almost any N and d, especially on AME(N, d) for N = 4, 5, 6, by a special kind of
orthogonal arrays [35]. From propositions 4.4 and 4.7, we see that the MOQLSs and MOQLCs
de!ned in sections 2 and 3 also have equivalent relations with QOAs when they have columns
of fully separable states, with k = 2, 3 respectively, exactly like the classical ones in lemmas
2.3 and 3.1. Therefore, from these relations we immediately obtain a method for constructing
two- and three-uniform states with minimal-support which are not locally equivalent to the
ones obtained from classical orthogonal arrays in [35].

5. Conclusions

A generalization of classical combinatorial arrangements to quantum information has been
established. Musto and Vicary gave the notions of quantum Latin squares and the orthogonality
on them [30, 31]. Then Goyeneche et al put forward the concepts of quantum Latin cubes and
the orthogonality on them [17].

In this article, we elaborated on the notion of mutually orthogonal quantum Latin cubes.
Since the arrangements of MOQLSs and MOQLCs may be entangled, we came up with the
notions of generalized mutually orthogonal quantum Latin squares and generalized mutu-
ally orthogonal quantum Latin cubes. In particular, MOQLSs and MOQLCs are extreme
cases of them with columns of fully separable states. Furthermore, we established one-to-one
relationships between those GMOQLSs and QOAs, as well as GMOQLCs and QOAs. Mean-
while, we provided explicit construction methods of MOQLSs and MOQLCs by direct prod-
uct and by !lling in holes, which in turn produce multipartite entangled k-uniform states for
k = 2, 3.

A necessary condition for the existence of k-uniform states is k ! "N/2#. From theorems
2.21, 2.27 and 3.14, we get new information on the properties of multipartite entanglement
in k-uniform states and in particular on AME states. These are given by the following three
theorems which represent the main conclusions of this work.

Theorem 5.1.

(a) Suppose that d = pr1
1 pr2

2 . . . prs
s , where s " 2, ri is a positive integer, pi is a prime such that

pri
i " 3 for all 1 ! i ! s, and pi &= pj for 1 ! i &= j ! s. Then there exists a two-uniform

state of min{pri
i + 1 : 1 ! i ! s} subsystems with dimension d;

moreover, if s = 1, r1 " 2, with r1 = r′ + r′′, 0 < r′ ! r′′, then there is a two-uniform state
of pr′

1 + 1 subsystems.

(b) If d /∈ E2, there is an AME(4, d).
(c) If d /∈ E2 ∪ E3, there is an AME(5, d).
(d) If d /∈ E2 ∪ E3 ∪ E4, then there is a two-uniform state of 6 subsystems with dimension d.

Here E2, E3 and E4 are the sets de!ned in theorem 2.21.

Theorem 5.2. If d1, d2 " 4, then there is an AME(4, d1d2), different from the one in theorem
5.1, except possibly for dimension 36.
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Theorem 5.3.

(a) Suppose that d = pr1
1 pr2

2 . . . prs
s , where s " 2, ri is a positive integer, pi is a prime such that

pri
i " 5, for all 1 ! i ! s, and pi &= pj for 1 ! i &= j ! s. Then there is a three-uniform

state of min{pri
i + 1 : 1 ! i ! s} subsystems with dimension d;

moreover, if s = 1, r1 " 2, with r1 = r′ + r′′, 0 < r′ ! r′′, then there is a three-uniform
state of pr′

1 + 1 subsystems with dimension d.

(b) Let d1, d2 be integers satisfying gcd(di, 4) &= 2 and gcd(di, 18) &= 3, i ∈ {1, 2}. Then there
is an AME(6, d1d2).

In this article, we have given explicit construction methods of two- and three-uniform states
from MOQLSs and MOQLCs which can also be used to construct unitary error bases and
mutually unbiased bases. Recently, Peng constructed k-uniform states starting from QOAs [39]
whose rows consist of entangled states, which are different from the ones exhibited here. As a
matter of fact, as shown in this work, establishing alternative construction methods of GMO-
QLSs, GMOQLCs and QOAs has interesting and immediate applications in entanglement
theory and in quantum information science.
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Appendix A. Proof of construction 2.19
Proof. Suppose Cd1 = span{|0〉, |1〉, . . . , |d1 − 1〉} and Cd2 = span{|0〉, |1〉, . . . , |d2 − 1〉}.
Then Cd1d2 ,Cd1 ⊗Cd2 = span{|i〉 ⊗ | j〉 : i ∈ [d1], j ∈ [d2]} = span{|0〉, |1〉, . . . , |d1d2 − 1〉}.

Let l1 = (l1i, j)d1×d1 , l2 = (l2i, j)d1×d1 be a 2-MOLS(d1) and k1 = (k1
m,n)d2×d2 , k2 = (k2

m,n)d2×d2

be a 2-MOLS(d2). Then put L1 = {|l1i, j〉 : i, j ∈ [d1]}, L2 = {|l2i, j〉 : i, j ∈ [d1]}, K1 = {|k1
m,n〉 :

m, n ∈ [d2]}, and K2 = {|k2
m,n〉 : m, n ∈ [d2]} to be the corresponding classical quantum Latin

squares as follows.

(A.1)
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(A.2)

Assume U0, U1, . . . , Ud1−1 are unitary matrices of order d2 different from the identity
matrix. De!ne a unitary matrix U of order d1d2:

U =
∑

i∈[d1]

|i〉〈i| ⊗ Ui. (A.3)

Let I be the identity matrix of order d1d2:

I =
∑

i∈[d1]

|i〉〈i| ⊗ Ii, (A.4)

where I0, . . . , Id1−1 are the identity matrices of order d2.
De!ne

Φ = (|Φ(i,m),( j,n)〉) = (τ |l1i, j〉 ⊗ |k1
m,n〉) = (|l1i, j〉 ⊗ τl1i, j

|k1
m,n〉), (A.5)

Ψ = (|Ψ(i,m),( j,n)〉) = (τ |l2i, j〉 ⊗ |k2
m,n〉) = (|l2i, j〉 ⊗ τl2i, j

|k2
m,n〉), (A.6)

where τ ∈ {I, U}. Then Φ, Ψ can be written as the following squares:

(A.7)

(A.8)

Any block τ |lsi, j〉 ⊗ Ks =
∑

i∈[d1]|i〉〈i| ⊗ τi(|lsi, j〉 ⊗ Ks) = |lsi, j〉 ⊗ τlsi, j
Ks = {|lsi, j〉 ⊗ τlsi, j

|ks
m,n〉 :

m, n ∈ [d2]}, where τi ∈ {Ii, Ui}. Here, for each block in Φ and Ψ, the choice of τ from {I, U}
is independent.

It is easy to check that Φ and Ψ are quantum Latin squares of dimension d1d2. Furthermore,
the set of vectors

{|Φ(i,m),( j,n)〉 ⊗ |Ψ(i,m),( j,n)〉 : i, j ∈ [d1], m, n ∈ [d2]}

forms an orthonormal basis of the space Cd1d2 ⊗ Cd1d2 , since

(|Φ(i,m),( j,n)〉 ⊗ |Ψ(i,m),( j,n)〉, |Φ(i′,m′),( j′,n′)〉 ⊗ |Ψ(i′,m′),( j′ ,n′)〉)
= ((|l1i, j〉 ⊗ τl1i, j

|k1
m,n〉) ⊗ (|l2i, j〉 ⊗ τl2i, j

|k2
m,n〉), (|l1i′, j ′ 〉 ⊗ τl1

i′ , j ′
|k1

m′ ,n′ 〉) ⊗ (|l2i′, j ′ 〉 ⊗ τl2
i′ , j ′

|k2
m′,n′ 〉))

= (|l1i, j〉 ⊗ τl1i, j
|k1

m,n〉, |l1i′, j ′ 〉 ⊗ τl1
i′ , j ′

|k1
m′,n′ 〉)(|l2i, j〉 ⊗ τl2i, j

|k2
m,n〉, |l2i′, j ′ 〉 ⊗ τl2

i′ , j ′
|k2

m′ ,n′ 〉)

= 〈l1i, j|l1i′, j ′ 〉〈k
1
m,n|τ

†
l1i, j
τl1

i′ , j ′
|k1

m′,n′ 〉〈l2i, j|l2i′ , j ′ 〉〈k
2
m,n|τ

†
l2i, j
τl2

i′ , j ′
|k2

m′ ,n′ 〉

= 〈k1
m,n|τ

†
l1i, j
τl1

i′ , j ′
|k1

m′ ,n′ 〉〈k2
m,n|τ

†
l2i, j
τl2

i′ , j ′
|k2

m′ ,n′ 〉δii′δ j j ′ = 〈k1
m,n|k1

m′ ,n′ 〉〈k2
m,n|k2

m′ ,n′ 〉δii′δ j j ′
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= δii′δ j j′δmm′δnn′ .

So Φ,Ψ is a pair of 2-MOQLS(d1d2). #

Appendix B. Proof of construction 2.26

Proof. Without loss of generality, suppose L is an HSOLS(dn
1) on Zd1n with holes

S0, S1, . . . , Sn−1, where Si = {id1, id1 + 1, . . . , (i + 1)d1 − 1} for any i ∈ [n]. Suppose K is
a SOLS(d1) on Zd1 . Let Ψ, Φ be the corresponding classical HSOQLS(dn

1) with hole
set V = {V0, V1, . . . , Vn−1} and classical SOQLS(d1) respectively, where the subspace
Vi = span{|id1〉, |id1 + 1〉, . . . , |(i + 1)d1 − 1〉} for any i ∈ [n]. Assume U0, U1, . . . , Un−1 are
unitary matrices of order d1 different from the identity matrix. De!ne a unitary matrix U of
order d1n as follows:

U =
∑

i∈[n]

|i〉〈i| ⊗ Ui. (B.1)

Filling each holes Vi with U(|i〉 ⊗ Φ) = |i〉 ⊗ UiΦ for any i ∈ [n], then the new square Ψ′

is a SOQLS(d1n). #

Appendix C. Proof of construction 2.28

Proof. Suppose Ψ1 = {|Ψ1
i, j〉} and Ψ2 = {|Ψ2

i, j〉} is a pair of HMOQLS(hn) with hole
set V = {V1, V2, . . . , Vn} on Chn and dim Vs = h for 1 ! s ! n. Without loss of general-
ity, assume the holes are in the diagonal line. Put Φ1 = {|Φ1

l,k〉} and Φ2 = {|Φ2
l,k〉} to be a

2-MOQLS(m) on Cm.
De!ne two squares Ψ and Φ on Chmn with the hole set V ′ = {V1 ⊗ Cm, V2 ⊗ Cm, . . . , Vn ⊗

Cm}. And let Ψ = {|Ψ(i,l),( j,k)〉} = {|Ψ1
i, j〉 ⊗ |Φ1

l,k〉} and Φ = {|Φ(i,l),( j,k)〉} = {|Ψ2
i, j〉 ⊗ |Φ2

l,k〉}.
It is clear that Ψ and Φ are both PIQLS(hm)ns with the hole set V ′. In addition, Ψ and Φ
are orthogonal. Since for any elements |Ψ(i,l),( j,k)〉 and |Φ(i,l),( j,k)〉 in Ψ and Φ, {|Ψ(i,l),( j,k)〉 ⊗
|Φ(i,l),( j,k)〉 : i, j ∈ [hn], l, k ∈ [m]} is the orthonormal basis set of (Chmn ⊗ Chmn)\

⊕n
i=1((Vi ⊗

Cm) ⊗ (Vi ⊗ Cm)). In fact, for any i, j, i′, j′ ∈ [hn], l, k, l′, k′ ∈ [m],

(|Ψ(i,l),( j,k)〉 ⊗ |Φ(i,l),( j,k)〉, |Ψ(i′ ,l′),( j′,k′)〉 ⊗ |Φ(i′,l′),( j′,k′)〉)
= ((|Ψ1

i, j〉 ⊗ |Φ1
l,k〉) ⊗ (|Ψ2

i, j〉 ⊗ |Φ2
l,k〉), (|Ψ1

i′, j ′ 〉 ⊗ |Φ1
l′,k′ 〉) ⊗ (|Ψ2

i′, j ′ 〉 ⊗ |Φ2
l′,k′ 〉))

= (|Ψ1
i, j〉 ⊗ |Ψ2

i, j〉, |Ψ1
i′, j ′ 〉 ⊗ |Ψ2

i′, j ′ 〉)(|Φ
1
l,k〉 ⊗ |Φ2

l,k〉, |Φ1
l′,k′ 〉 ⊗ |Φ2

l′ ,k′ 〉)
= δii′δ j j′δll′δkk′ .

Besides, if Ψ1 = {|Ψ1
i, j〉}, Ψ2 = {|Ψ2

i, j〉} is a pair of classical HMOQLS(hn), and
Φ1 = {|Φ1

l,k〉}, Φ2 = {|Φ2
l,k〉} is a pair of non-classical 2-MOQLS(m). Then there exist some
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(l1, k1), (l2, k2) satisfying |〈Φ1
l1,k1

|Φ1
l2,k2

〉| &= 0 or &=1, where l1, l2, k1, k2 ∈ [m]. Thus for any
i, j ∈ [hn], |〈Ψ(i,l1),( j,k1)|Ψ(i,l2),( j,k2)〉| = |〈Ψ1

i, j|Ψ1
i, j〉〈Φ1

l1,k1
|Φ1

l2,k2
〉| = |〈Φ1

l1,k1
|Φ1

l2,k2
〉| &= 0 or &=1,

so Ψ is a non-classical incomplete quantum Latin square, and the same with Φ. #

Appendix D. Proof of construction 2.30

Proof. Here we just prove that Φ de!ned by equation (6) is orthogonal with its conjugate
transpose. In other words, {|Φ(i,l),( j,k)〉 ⊗ |Φ( j,k),(i,l)〉∗ : i, j ∈ [hn], l, k ∈ [m]} is the orthonormal
basis set of (Chmn ⊗ Chmn)\

⊕n
i=1((Vi ⊗ Cm) ⊗ (Vi ⊗ Cm)). In fact, for any elements |Φ(i,l),( j,k)〉

and |Φ(i′,l′),( j′,k′)〉 in Φ, assume i ! j, and i′ ! j′, then

(|Φ(i,l),( j,k)〉 ⊗ |Φ( j,k),(i,l)〉∗, |Φ(i′,l′),( j′ ,k′)〉 ⊗ |Φ( j′,k′),(i′,l′)〉∗)
= ((|Ψi, j〉 ⊗ |Φ1

l,k〉) ⊗ (|Ψ j,i〉∗ ⊗ |Φ2
l,k〉), (|Ψi′, j ′ 〉 ⊗ |Φ1

l′,k′ 〉) ⊗ (|Ψ j ′ ,i′ 〉∗ ⊗ |Φ2
l′,k′ 〉))

= (|Ψi, j〉 ⊗ |Ψ j,i〉∗, |Ψi′, j ′ 〉 ⊗ |Ψ j ′ ,i′ 〉∗)(|Φ1
l,k〉 ⊗ |Φ2

l,k〉, |Φ1
l′,k′ 〉 ⊗ |Φ2

l′ ,k′ 〉)
= δii′δ j j′δll′δkk′ .

In the same way, for any i ! j and i′ > j′, i > j and i′ ! j′, or i > j and i′ > j′, we always
get (|Φ(i,l),( j,k)〉 ⊗ |Φ( j,k),(i,l)〉∗, |Φ(i′,l′),( j′,k′)〉 ⊗ |Φ( j′,k′),(i′,l′)〉∗) = δii′δ j j′δll′δkk′ . #

Appendix E. Proof of lemma 3.1

Proof. Let {Ls : 1 ! s ! t} be a set of t-MOLC(d) with property (B) on Zd . De!ne a
d3 × (t + 3) array A = (ai jk) with rows (i, j, k, L1

i, j,k, L2
i, j,k, . . . , Lt

i, j,k) for i, j, k ∈ [d]. Then A is
an orthogonal array OA(d3, t + 3, d, 3). This process can be reversed to recover t MOLS of
order d with property (B) from an OA(d3, t + 3, d, 3), by choosing the !rst three columns of
the OA to index the rows, columns and !les of the t cubes. To show this more easily, we start
with the OA.

Take any three columns s1, s2, s3 of A except for the !rst three columns and s1 < s2 <
s3. We consider the following three cases: (1) |{s1, s2, s3} ∩ {1, 2, 3}| = 2; (2) |{s1, s2, s3} ∩
{1, 2, 3}| = 1; (3) |{s1, s2, s3} ∩ {1, 2, 3}| = 0.

Case 1. When |{s1, s2, s3} ∩ {1, 2, 3}| = 2. Then (i, j, Ls3
i, j,k), ( j, k, Ls3

i, j,k) or (i, k, Ls3
i, j,k) run

through the full triples of Z⊗3
d if and only if for any !xed i and j, j and k, or i and k, the

corresponding Ls3
i, j,k must run through the elements of Zd , i.e. Ls3 is a Latin cube for any

1 ! s3 ! t.
Case 2. When |{s1, s2, s3} ∩ {1, 2, 3}| = 1. Then (i, Ls2

i, j,k, Ls3
i, j,k), ( j, Ls2

i, j,k, Ls3
i, j,k) or

(k, Ls2
i, j,k, Ls3

i, j,k) run through the full triples of Z⊗3
d if and only if for any !xed i, j, or k, the

corresponding tuple (Ls2
i, j,k, Ls3

i, j,k) run through the full tuples of Z⊗2
d , i.e. every corresponding

planes of Ls2 , Ls3 are orthogonal for any 1 ! s2 < s3 ! t.
Case 3. When |{s1, s2, s3} ∩ {1, 2, 3}| = 0. Then (Ls1

i, j,k, Ls2
i, j,k, Ls3

i, j,k) run through the full
triples of Z⊗3

d if and only if Ls1 , Ls2 , Ls3 are orthogonal for any 1 ! s1 < s2 < s3 ! t. #
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Appendix F. Proof of lemma 3.9

Proof. Suppose Φ, Ψ and Υ are orthogonal quantum Latin cubes. Then 〈Φi, j,k|Φi′ , j′,k′ 〉
〈Ψi, j,k|Ψi′ , j′,k′ 〉〈Υi, j,k|Υi′, j′,k′ 〉 = δii′δ j j′δkk′ by de!nition 3.6(a). Thus 〈Φi, j,k|Φi′ , j′,k′ 〉 = 0,
〈Ψi, j,k|Ψi′ , j′,k′ 〉 = 0, or 〈Υi, j,k|Υi′, j′,k′ 〉 = 0, for any (i, j, k) &= (i′, j′, k′), else 〈Φi, j,k|Φi, j,k〉 =
〈Ψi, j,k|Ψi, j,k〉 = 〈Υi, j,k|Υi, j,k〉 = 1. Since 〈Φ∗

i, j,k|Φ∗
i′, j′ ,k′ 〉 = 〈Φi, j,k|Φi′, j′ ,k′ 〉∗, 〈Ψ∗

i, j,k|Ψ∗
i′, j′,k′ 〉 =

〈Ψi, j,k|Ψi′ , j′,k′ 〉∗ and 0, 1 ∈ R, so 〈Φ∗
i, j,k|Φ∗

i′ , j′,k′ 〉〈Ψi, j,k|Ψi′, j′ ,k′ 〉〈Υi, j,k|Υi′, j′,k′ 〉 = δii′δ j j′δkk′ and
〈Φ∗

i, j,k|Φ∗
i′, j′ ,k′ 〉〈Ψ∗

i, j,k|Ψ∗
i′, j′ ,k′ 〉〈Υi, j,k|Υi′, j′,k′ 〉 = δii′δ j j′δkk′ hold.

On the other hand, for each !xed i, j or k, the corresponding planes of any two cubes coming
from Φ∗,Ψ and Υ or Φ∗,Ψ∗ and Υ can form pairs of orthogonal quantum Latin squares. Here
we !x i and consider Φ, Ψ, then 〈Φi, j,k|Φi, j′,k′ 〉〈Ψi, j,k|Ψi, j′ ,k′ 〉 = δ j j′δkk′ by de!nition 3.6(b). So
〈Φ∗

i, j,k|Φ∗
i, j′ ,k′ 〉 〈Ψi, j,k|Ψi, j′ ,k′ 〉 = δ j j′δkk′ and 〈Φ∗

i, j,k|Φ∗
i, j′ ,k′ 〉 〈Ψ∗

i, j,k|Ψ∗
i, j′ ,k′ 〉 = δ j j′δkk′ . Moreover it

is true for other cases.
Thus, Φ∗, Ψ and Υ as well as Φ∗, Ψ∗ and Υ are two triples of orthogonal quantum Latin

cubes. The converse then follows since (Φ∗)∗ = Φ, (Ψ∗)∗ = Ψ. #

Appendix G. Proof of construction 3.12

Proof. Suppose Cd1 = span{|0〉, |1〉, . . . , |d1 − 1〉} and Cd2 = span{|0〉, |1〉, . . . , |d2 − 1〉}.
Then Cd1d2 ,Cd1 ⊗ Cd2 = span{|i〉 ⊗ | j〉 : i ∈ [d1], j ∈ [d2]} = span{|0〉, |1〉, . . . , |d1d2 −1〉}.

Let ls = (lsi, j,k)d1×d1×d1 and ks = (ks
f ,g,h)d2×d2×d2 , 1 ! s ! 3, are 3-MOLC(d1) and 3-

MOLC(d2) with the property (B) respectively. Then put Ls = {|lsi, j,k〉 : i, j, k ∈ [d1]},
Ks = {|ks

f ,g,h〉 : f , g, h ∈ [d2]} to be the corresponding classical quantum Latin cubes of ls and
ks, 1 ! s ! 3. De!ne a unitary matrix U and identity matrix I of order d1d2 as equations (A.3)
and (A.4).

Let

Φ = (|Φ(i, f ),( j,g),(k,h)〉) = (τ |l1i, j,k〉 ⊗ |k1
f ,g,h〉) = (|l1i, j,k〉 ⊗ τl1i, j,k

|k1
f ,g,h〉),

Ψ = (|Ψ(i, f ),( j,g),(k,h)〉) = (τ |l2i, j,k〉 ⊗ |k2
f ,g,h〉) = (|l2i, j,k〉 ⊗ τl2i, j,k

|k2
f ,g,h〉),

Υ = (|Υ(i, f ),( j,g),(k,h)〉) = (τ |l3i, j,k〉 ⊗ |k3
f ,g,h〉) = (|l3i, j,k〉 ⊗ τl3i, j,k

|k3
f ,g,h〉),

where τ ∈ {I, U}, τi ∈ {Ii, Ui}, i, j, k ∈ [d1] and f , g, h ∈ [d2]. Here we choose τ from {I, U}
for each block independently in Φ, Ψ or Υ.

It is easy to see Φ, Ψ and Υ are quantum Latin cubes. Moreover, they are orthogonal.
(1) The set of vectors

{|Φ(i, f ),( j,g),(k,h)〉 ⊗ |Ψ(i, f ),( j,g),(k,h)〉 ⊗ |Υ(i, f ),( j,g),(k,h)〉 : i, j, k ∈ [d1], f , g, h ∈ [d2]}

forms an orthonormal basis of the space Cd1d2 ⊗ Cd1d2 ⊗ Cd1d2 . By the de!nition of orthogonal
classical Latin cube, we get

(|Φ(i, f ),( j,g),(k,h)〉 ⊗ |Ψ(i, f ),( j,g),(k,h)〉 ⊗ |Υ(i, f ),( j,g),(k,h)〉, |Φ(i′, f ′),( j′,g′),(k′,h′)〉 ⊗
|Ψ(i′, f ′),( j′ ,g′),(k′,h′)〉 ⊗ |Υ(i′, f ′),( j′ ,g′),(k′,h′)〉)
= 〈Φ(i, f ),( j,g),(k,h)|Φ(i′ , f ′),( j′,g′),(k′ ,h′)〉〈Ψ(i, f ),( j,g),(k,h)|Ψ(i′, f ′),( j′,g′),(k′,h′)〉

〈Υ(i, f ),( j,g),(k,h)|Υ(i′ , f ′),( j′,g′),(k′,h′)〉
= 〈l1i, j,k|l1i′, j′,k′ 〉〈k1

f ,g,h|τ
†
l1i, j,k

τl1
i′ , j′ ,k′

|k1
f ′,g′,h′ 〉〈l2i, j,k|l2i′, j′,k′ 〉〈k2

f ,g,h|τ
†
l2i, j,k

τl2
i′ , j′ ,k′

|k2
f ′,g′,h′ 〉
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〈l3i, j,k|l3i′ , j′,k′ 〉〈k3
f ,g,h|τ

†
l3i, j,k

τl3
i′ , j′ ,k′

|k3
f ′,g′,h′ 〉

= 〈k1
f ,g,h|τ

†
l1i, j,k

τl1
i′ , j′ ,k′

|k1
f ′,g′ ,h′ 〉〈k2

f ,g,h|τ
†
l2i, j,k

τl2
i′ , j′ ,k′

|k2
f ′,g′,h′ 〉〈k3

f ,g,h|τ
†
l3i, j,k

τl3
i′ , j′ ,k′

|k3
f ′,g′,h′ 〉δii′δ j j′δkk′

= 〈k1
f ,g,h|k1

f ′,g′,h′ 〉〈k2
f ,g,h|k2

f ′,g′,h′ 〉〈k3
f ,g,h|k3

f ′,g′,h′ 〉δii′δ j j′δkk′

= δii′δ j j′δkk′δ f f ′δgg′δhh′ .

(2) For each !xed (i, f ), ( j, g) or (k, h), the corresponding planes of any two cubes coming
from Φ,Ψ and Υ form pairs of orthogonal quantum Latin squares. Here we !x (k, h), and
show that the two corresponding planes of Φ and Ψ is a pair of orthogonal quantum Latin
squares. That is to say for !xed (k, h), the set of vectors {|Φ(i, f ),( j,g),(k,h)〉 ⊗ |Ψ(i, f ),( j,g),(k,h)〉 : i, j ∈
[d1], f , g ∈ [d2]} forms an orthonormal basis of the space Cd1d2 ⊗ Cd1d2 . It is true, because by
the property (B) in lemma 3.1, we get

(|Φ(i, f ),( j,g),(k,h)〉 ⊗ |Ψ(i, f ),( j,g),(k,h)〉, |Φ(i′ , f ′),( j′,g′),(k,h)〉 ⊗ |Φ(i′, f ′),( j′,g′),(k,h)〉)
= 〈Φ(i, f ),( j,g),(k,h)|Φ(i′ , f ′),( j′,g′),(k,h)〉〈Ψ(i, f ),( j,g),(k,h)|Ψ(i′, f ′),( j′,g′),(k,h)〉
= 〈l1i, j,k|l1i′, j′,k〉〈k1

f ,g,h|τ
†
l1i, j,k

τl1
i′ , j′ ,k

|k1
f ′,g′,h〉〈l2i, j,k|l2i′, j′ ,k〉〈k2

f ,g,h|τ
†
l2i, j,k

τl2
i′ , j′ ,k

|k2
f ′,g′,h〉

= 〈k1
f ,g,h|τ

†
l1i, j,k

τl1
i′ , j′ ,k

|k1
f ′,g′,h〉〈k2

f ,g,h|τ
†
l2i, j,k

τl2
i′ , j′ ,k

|k2
f ′,g′,h〉δii′δ j j′

= 〈k1
f ,g,h|k1

f ′,g′,h〉〈k2
f ,g,h|k2

f ′,g′,h〉δii′δ j j′

= δii′δ j j′δ f f ′δgg′ .

Moreover it is true for other cases. So Φ, Ψ and Υ is a triple of orthogonal quantum Latin
cubes. #

Appendix H. Proof of proposition 4.7

Proof. Suppose that |Φ〉 is the sum of the d3 states in the QOA(d3, t + 3, d, 3). Since |Φ〉 can
produce a three-uniform state, we choose the !rst three subsystems, namely, i, j, k, then

|Φ〉 =
d−1∑

i, j,k=0

|i jk〉 ⊗ |Φi, j,k〉. (H.1)

Actually, {|Φi, j,k〉} is the set of arrangements of t-GMOQLC(d), where i, j, k ∈ [d] are
the indexes of the rows, columns and !les of the t-GMOQLC(d). To show this, we take an
arbitrary subset S ⊆ {1, 2, . . . , t + 3} with |S| = 3. Consider the following four cases: (1)
|S ∩ {1, 2, 3}| = 3; (2) |S ∩ {1, 2, 3}| = 2; (3) |S ∩ {1, 2, 3}| = 1; (4) |S ∩ {1, 2, 3}| = 0.

Case 1. When |S ∩ {1, 2, 3}| = 3, we have

ρS = Tr4,5,...,t+3

∑

i, j,k,i′ , j′,k′∈[d]

|i jk〉 ⊗ |Φi, j,k〉〈i′ j′k′| ⊗ 〈Φi′, j′ ,k′ |

=
∑

i, j,k,i′ , j′ ,k′∈[d]

|i jk〉〈i′ j′k′|〈Φi′, j′ ,k′ |Φi, j,k〉.

So, ρS =
∑

i, j,k,i′ , j′ ,k′∈[d]|i jk〉〈i′ j′k′|〈Φi′, j′ ,k′ |Φi, j,k〉 = Id3 if and only if equation (16) holds.
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Case 2. When |S ∩ {1, 2, 3}| = 2. Suppose S ∩ {1, 2, 3} = {1, 2}, and {l1, l2, . . . , lt−1} ∩
{1, 2, 3} = ∅, then we have

ρS = Tr3,l1,l2,...,lt−1

∑

i, j,k,i′ , j′,k′∈[d]

|i jk〉 ⊗ |Φi, j,k〉〈i′ j′k′| ⊗ 〈Φi′, j′ ,k′ |

=
∑

i, j,i′ , j′∈[d]

|i j〉〈i′ j′| ⊗
∑

k∈[d]

Trl1,l2,...,lt−1 |Φi, j,k〉〈Φi′ , j′,k|.

So,
∑

i, j,i′, j′∈[d]|i j〉〈i′ j′| ⊗
∑

k∈[d] Trl1,l2,...,lt−1 |Φi, j,k〉〈Φi′, j′ ,k| = Id3 if and only if equation (19)
holds. If S ∩ {1, 2, 3} = {1, 3}, or S ∩ {1, 2, 3} = {2, 3}, in that case, they hold true if and
only if equation (18) or (17) holds true, respectively.

Case 3. When |S ∩ {1, 2, 3}| = 1. Suppose S ∩ {1, 2, 3} = {1}, and {l1, l2, . . . , lt−2} ∩
{1, 2, 3} = ∅, then we have

ρS = Tr2,3,l1,l2,...,lt−2

∑

i, j,k,i′ , j′,k′∈[d]

|i jk〉 ⊗ |Φi, j,k〉〈i′ j′k′| ⊗ 〈Φi′, j′ ,k′ |

=
∑

i,i′∈[d]

|i〉〈i′| ⊗
∑

j,k∈[d]

Trl1,l2,...,lt−1 |Φi, j,k〉〈Φi′, j,k|.

So, ρS =
∑

i,i′∈[d]|i〉〈i′| ⊗
∑

j,k∈[d] Trl1,l2,...,lt−1 |Φi, j,k〉〈Φi′, j,k| = Id3 if and only if equation (21)
holds. If S ∩ {1, 2, 3} = {2}, or S ∩ {1, 2, 3} = {3}, they hold true if and only if equation (22)
or (20) holds, respectively.

Case 4. When |S ∩ {1, 2, 3}| = 0, we have

ρS = Tr1,2,3,l1,l2,...,lt−3

∑

i, j,k,i′ , j′,k′∈[d]

|i jk〉 ⊗ |Φi, j,k〉〈i′ j′k′| ⊗ 〈Φi′, j′ ,k′ |

=
∑

i, j,k∈[d]

Trl1,l2,...,lt−2 |Φi, j,k〉〈Φi, j,k|.

So, ρS = Id3 if and only if equation (23) holds. #

Appendix I. Proof of example 2.4

Proof. De!ne

U =
∑

i∈[4]

|i〉〈i| ⊗ Ui,
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where

U0 =
1
2





1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1





, U1 =





1
4

−
√
−3
4

−
√
−3
4

−3
4√

3
4

√
−1
4

−3
√
−1

4

√
3

4√
3

4
−3

√
−1

4

√
−1
4

√
3

4
3
4

√
−3
4

√
−3
4

−1
4





,

U2 =





1
2

√
−1
2

√
−1
2

−1
2√

−1
2

1
2

−1
2

√
−1
2√

−1
2

−1
2

1
2

√
−1
2

−1
2

√
−1
2

√
−1
2

1
2





, U3 =





√
2

4

√
−2
4

−
√
−6
4

√
6

4√
−2
4

√
2

4

√
6

4
−
√
−6
4√

6
4

√
−6
4

√
−2
4

−
√

2
4√

−6
4

√
6

4
−
√

2
4

√
−2
4





.

(I.1)

Let Ψ be a classical HSOQLS(44) with holes Vi = span{|4i〉, |4i + 1〉, |4i + 2〉, |4i + 3〉}
on C16, i ∈ [4], as follows.
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Here is a classical SOQLS(4) on C4:

By the process in the proof of construction 2.26, let Φi = U(|i〉 ⊗ Φ) = |i〉 ⊗ UiΦ ∈ C16,
i ∈ [4]. We get a SOQLS(16) Ψ′ by !lling the holes Vi with Φi in Ψ.

Furthermore,Ψ′ is a non-classical quantum Latin square, since |〈Ψ′
0,8|Ψ′

4,5〉| = |〈4|U|5〉| =

|−
√
−3

4 | &= 0 or &=1, where we set |4〉 = |1〉 ⊗ |0〉 and |5〉 = |1〉 ⊗ |1〉. #
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Appendix J. Proof of example 2.5

Proof.

#

Appendix K. Proof of example 3.1

Proof. Let C4 = span{|0〉, |1〉, |2〉, |3〉}. Then C16 , C4 ⊗ C4 = span{|i〉 ⊗ | j〉 : i, j ∈
[4]} = span{|0〉, |1〉, . . . , |15〉}. De!ne U =

∑
i∈[4]|i〉〈i| ⊗ Ui, where Ui, i ∈ [4], is the same

as in equation (I.1).
Let L j and K j, 1 ! j ! 3, be the same triple of orthogonal classical quantum Latin cubes

of dimension 4 as below.
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where Ri, Si and Ti, 1 ! i ! 4, are respectively the four planes of classical quantum Latin cubes
L1, L2 and L3 or K1, K2 and K3 in one direction, the remaining eight planes from other two
directions also can be drawn from L j or K j, 1 ! j ! 3. Then the following Φ, Ψ and Υ is a set
of 3-MOQLC(16).
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Here Φil, Ψil and Υil, 1 ! i, l ! 4, are respectively the sixteen planes of Φ, Ψ and Υ in one
direction. And in some small blocks, such as | j〉 ⊗ U jRi, U jRi means that U j acts on every
elements of Ri.

Further, Φ, Ψ and Υ are non-classical quantum Latin cubes. For Φ, let us take |3〉 ⊗ U3R1

and |3〉 ⊗ R1 in the plane Φ11.

For instance, in the 1st row, 3rd column of the left table and the 1st row, 2nd column of
the right table, we have |〈3|3〉〈2|U†

3|1〉| = |
√

6
4 | &= 0 or &= 1. Thus Φ is a non-classical quantum

Latin cube. The same holds for Ψ and Υ. #
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combinatorial designs Phys. Rev. A 97 062326
[18] Hayashi A, Horibe M and Hashimoto T 2005 Mean king’s problem with mutually unbiased bases

and orthogonal Latin squares Phys. Rev. A 71 052331
[19] Hedayat A S, Sloane N J A and Stufken J 1999 Orthogonal Array: Theory and Applications (Berlin:

Springer)
[20] Helwig W, Cui W, Latorre J I, Riera A and Lo H K 2012 Absolute maximal entanglement and

quantum secret sharing Phys. Rev. A 86 052335
[21] Higuchi A and Sudbery A 2000 How entangled can two couples get? Phys. Lett. A 273 213–7
[22] Huber F, Gühne O and Siewert J 2017 Absolutely maximally entangled states of seven qubits do

not exist Phys. Rev. Lett. 118 200502
[23] Huber F and Wyderka N Table of absolutely maximally entangled states https://tp.nt.uni-siegen.de/

+fhuber/ame.html (accessed 04 May 2020).
[24] Jozsa R and Linden N 2003 On the role of entanglement in quantum-computational speed-up Proc.

R. Soc. A 459 2011–32
[25] Ji L and Yin J 2010 Constructions of new orthogonal arrays and covering arrays of strength three J.

Comb. Theory A 117
[26] Lamken E R 1991 The existence of 3 orthogonal partitioned incomplete Latin squares of type tn

Discrete Math. 89 231–51
[27] Latorre J I and Sierra G 2015 Holographic codes (arXiv:1502.06618)
[28] Li M S and Wang Y L 2019 N-uniform quantum states arising from orthogonal arrays Phys. Rev. A

99 042332
[29] Lo H-K, Curty M and Qi B 2012 Measurement-device-independent quantum key distribution Phys.

Rev. Lett. 108 130503
[30] Musto B 2017 Constructing mutually unbiased bases from quantum Latin squares Electron. Proc.

Theor. Comput. Sci. 236 108

32

https://doi.org/10.1103/physrevlett.68.3121
https://doi.org/10.1103/physrevlett.68.3121
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1016/s0304-0208(08)72876-7
https://doi.org/10.1016/s0304-0208(08)72876-7
https://doi.org/10.1016/s0304-0208(08)72876-7
https://doi.org/10.1016/s0304-0208(08)72876-7
https://doi.org/10.1007/bf02558468
https://doi.org/10.1007/bf02558468
https://doi.org/10.1007/bf02558468
https://doi.org/10.1007/bf02558468
https://doi.org/10.1214/aoms/1177729331
https://doi.org/10.1214/aoms/1177729331
https://doi.org/10.1214/aoms/1177729331
https://doi.org/10.1214/aoms/1177729331
https://doi.org/10.1090/aac3705s2-9904-1974-13379-3
https://doi.org/10.1090/aac3705s2-9904-1974-13379-3
https://doi.org/10.1090/aac3705s2-9904-1974-13379-3
https://doi.org/10.1090/aac3705s2-9904-1974-13379-3
https://doi.org/10.1214/aoms/1177729387
https://doi.org/10.1214/aoms/1177729387
https://doi.org/10.1214/aoms/1177729387
https://doi.org/10.1214/aoms/1177729387
https://doi.org/10.1016/0012-365x(83)90055-9
https://doi.org/10.1016/0012-365x(83)90055-9
https://doi.org/10.1016/0012-365x(83)90055-9
https://doi.org/10.1016/0012-365x(83)90055-9
https://doi.org/10.1007/s11128-020-02799-y
https://doi.org/10.1007/s11128-020-02799-y
https://doi.org/10.4171/rlm/532
https://doi.org/10.4171/rlm/532
https://doi.org/10.4171/rlm/532
https://doi.org/10.4171/rlm/532
https://doi.org/10.1103/physreva.77.060304
https://doi.org/10.1103/physreva.77.060304
https://doi.org/10.1103/physreva.90.022316
https://doi.org/10.1103/physreva.90.022316
https://doi.org/10.1103/physreva.97.062326
https://doi.org/10.1103/physreva.97.062326
https://doi.org/10.1103/physreva.71.052331
https://doi.org/10.1103/physreva.71.052331
https://doi.org/10.1103/physreva.86.052335
https://doi.org/10.1103/physreva.86.052335
https://doi.org/10.1016/s0375-9601(00)00480-1
https://doi.org/10.1016/s0375-9601(00)00480-1
https://doi.org/10.1016/s0375-9601(00)00480-1
https://doi.org/10.1016/s0375-9601(00)00480-1
https://doi.org/10.1103/physrevlett.118.200502
https://doi.org/10.1103/physrevlett.118.200502
https://tp.nt.uni-siegen.de/&tnqx25;2520+fhuber/ame.html
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1016/0012-365x(91)90117-k
https://doi.org/10.1016/0012-365x(91)90117-k
https://doi.org/10.1016/0012-365x(91)90117-k
https://doi.org/10.1016/0012-365x(91)90117-k
https://arxiv.org/abs/1502.06618
https://doi.org/10.1103/physreva.99.042332
https://doi.org/10.1103/physreva.99.042332
https://doi.org/10.1103/physrevlett.108.130503
https://doi.org/10.1103/physrevlett.108.130503
https://doi.org/10.4204/eptcs.236.8
https://doi.org/10.4204/eptcs.236.8


J. Phys. A: Math. Theor. 54 (2021) 505204 Y Zang et al

[31] Musto B and Vicary J 2016 Quantum Latin squares and unitary error bases Quantum Inf. Comput.
16 1318

[32] Musto B and Vicary J 2019 Orthogonality for quantum Latin isometry squares Electron. Proc. Theor.
Comput. Sci. 287 253–66

[33] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:
Cambridge University Press)

[34] Paczos J, Wierzbinski M, Rajchel-Mieldzioc G, Burchardt A and Zyczkowski K 2021 Genuinely
quantum SudoQ and its cardinality (arXiv:2106.02967)

[35] Pang S Q, Zhang X, Lin X and Zhang Q J 2019 Two and three-uniform states from irredundant
orthogonal arrays npj Quantum Inf. 5 1–10

[36] Pang S Q Zhang R N and Zhang X Quantum frequency arrangements, quantum mixed orthogonal
arrays and entangled states IEICE Trans. Fundam E103 1674
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