Basic/Essential Course Information	
Course title	Interacting Quantum Fields
Degree Course title	Physics
ECTS	6
Compulsory attendance	No
Course teaching language	ENGLISH

Teacher	Antonio Marrone	antonio.m	arrone@uniba.it
ECTS Details	Disciplinary area/broad field:	SSD	ECTS
		FIS/02	6
Time management and	Period	Year	lesson type

teaching activity type	i eriod	i eai	lesson type
	2nd semester	I	Lessons (55h)

Time management	Total hours	in-class/in-lab study hours	out-of-class study hours
	175	55	120

Course calendar	Starting date	Ending date
	First week of March	Fourth week of May

Syllabus		
Prerequisites	Free Quantum Field Theory and Mathematics knowledge	
Expected learning outcomes	Knowledge and understanding:	
(according to Dublin	Understanding the concept of interactions between fields	
Descriptors)	Applying knowledge and understanding:	
	Implementation of field interactions in different physical models	
	Making judgements:	
	Ability to proceed autonomously in the study of quantum field theories	
	Communication:	
	Ability to express the acquired knowledge properly	
	Lifelong learning skills:	
	Ability to study independently from texts and scientific literature	
Course contents summary	Knoledge of basic concepts of Quantum Field Theories. Applications	
	of this knowledge to physical models	
detailed syllabus	The S-Matrix expansion - Wick's Theorem – Feynman diagrams in	
-	configuration space - Feynman diagrams in momentum space -	
	Feynman rules for QED – QED processes in lowest order – Bhabha	
	scattering – Compton scattering – Scattering by an external field –	
	Bremsstrahlung – The infrared divergence – The second-order	
	radiative corrections – The photon self-energy – The electron self-	
	energy – External line renormalization – The vertex modification –	
	Regularization - Applications	

books	F. Mandl, G. Shaw, Quantum Field Theory, Wiley; 2 edition
	A1
	Also
	J.D.Bjorken, S.D. Drell, Relativistic Quantum Fields, Mcgraw-Hill
	College
notes	
Teaching methods	Lessons on the board
Assessment % of final mark	Oral test (100%)
Evaluation criteria	Adequate comprehension and global knowledge of concepts and
	arguments described throughout the course.