Basic/Essential Course Information	
Course title	Physics Applications of Group Theory
Degree Course title	Physics
ECTS	4
Compulsory attendance	No
Course teaching language	ENGLISH

Teacher	Antonio Marrone	antonio.marrone@uniba.it
---------	-----------------	--------------------------

ECTS Details	Disciplinary area/broad field:	SSD	ECTS
		FIS/02	4

Time management and	Period	Year	lesson type
teaching activity type			
	lst semester	2	Lessons (32h)

Time management	Total hours	in-class/in-lab study hours	out-of-class study hours
	100	32	68

Course calendar	Starting date	Ending date
	First week of October	Third week of December

Syllabus		
Prerequisites	Basic Pysics and Mathematics knowledge	
Expected learning outcomes (according to Dublin Descriptors)	Knowledge and understanding: Understanding the concept of symmetry in physicsApplying knowledge and understanding: Implementation of a symmetry in physical modelsMaking judgements: Ability to proceed autonomously in the study of physical symmetriesCommunication: Ability to express the acquired knowledge properlyLifelong learning skills: Ability to study independently from texts and scientific literature	

Course contents summary	Knowledge of basic concepts of Group Theory and Lie Algebras. Applications of this knowledge to physical models
detailed syllabus	Introduction to Symmetry in Physics; Groups and Representations
	Definitions and examples
	Group of Permutations Sn
	General properties of groups
	Conjugation classes
	Subgroups. Normal subgroups. Homomorphisms.
	Group representations
	Schur Lemmas. Orthogonality theorem. Characters. Character table. Direct product and decomposition
	Symmetric group Sn and its representations. Young tableaux. Irreps of SU(N) and Sn. Tensorial method.
	Lie groups.
	SO(2),SO(3) and SU(2).
	SU(N)
	Young tableaux.
	Lie Algebras
	Simple Lie Algebras. Killing form. Root quantization. Dynkin diagrams. Weights and representations.
books	 H.F. Jones, Groups, Representations and Physics, Taylor & Francis; 2 edition H. Georgi, Lie Algebras In Particle Physics: from Isospin To Unified Theories (Frontiers in Physics), Westview Press; 2 edition (October 22, 1999)
	F. Stancu, <i>Group Theory in Subnuclear Physics</i> , Oxford Studies in Nuclear Physics
notes	
Teaching methods	Lessons on the board
Assessment % of final mark	Oral test (100%)
Evaluation criteria	Adequate comprehension and global knowledge of concepts and arguments described throughout the course.