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Motivations
highly isolated = little decoherence 

highly tunable = dimensionality, interactions 
highly versatile = equilibrium+nonequilibrium

Cold atoms:

Superfluid Mott

Superfluid



Quantum quench

Paradigmatic  
protocol:

Calabrese, Cardy (’06)

local or global

istantaneous

H(�0) ! H(�1)

Different qualitative 
 behaviors?

Dynamical crossover  
or transitions

Characterization:
Expectation values of observables 

Entanglement evolution 
Statistics of observables



Dynamical transitions

Sudden change in the dynamical behavior of observables as a 
function of quench parameters

Predicted in a variety of models, mostly at mean field 2
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FIG. 1. a) Cartoon of the dynamical transition at the mean-field level.
From top to bottom: quench above (a), at (t) and below (b) the dy-
namical transition. b) |rt | for a quench within the unbroken symmetry
phase (thick blue line) and at the dynamical transition (thin red line).
In the second case, rt decays faster than 1/t.

where the parallel index has been used for the n = 1 Keldysh
correlation function and the perpendicular one for all the oth-
ers (which are equal by symmetry). The initial condition at
t = 0 is given by the value of the field φ and the equal time
(t = t′ = 0) Keldysh correlation function in the ground state
corresponding to the value of the mass ri0. See the EPAPS
for more details. Since this problem is not exactly solvable,
we integrated numerically the equations for a large value of
N = 106 [17] (note that the average field scales as

√
N). Al-

though the dynamics of the field φt and correlationsGnn
ptt′ look

superficially similar to a free field evolution, the time depen-
dence of the effective mass rt has dramatic effects as we shall
show.
Let us first recall the main result of mean-field theory, which
corresponds to neglecting all the feedback of correlations on
the dynamics of φt in (1) [18]. The motion of the field is qual-
itatively represented in Fig. 1a, where various quenches with
different initial mass ri0 and with same final mass r f0 are de-
picted. (This means that the potential V(φ) after the quench is
the same. The initial condition instead depends on the value of
φ in the ground state before the quench, i.e. on ri0). Above the
transition [case (a)] the field oscillates symmetrically around
zero and, consequently, is characterized by a zero time aver-
age φ = limT→∞(1/T )

∫ T
0 dt φt. Below the transition [case (b)]

the field oscillates around one minimum of the potential and,
hence, is characterized by a non-zero φ. In between, at the dy-
namical transition when r f0 = r

f (d)
0 [case (t)] the field relaxes

exponentially to zero, i.e. to the maximum of the potential at
φ = 0. The phenomenology of this mean-field transition is
identical to the one found in other mean-field models [7, 8].
For example, the time averaged value of the field has a loga-
rithmic singularity at the dynamical transition: φ ∝ 1/ ln |∆|,
where ∆ is the relative distance to the dynamical critical point:

∆ =
[

r f0 − r
f (d)
0

]

/r f (d)
0 (5)

Our goal is to determine the impact of fluctuations at first or-
der in 1/N on this scenario. The numerical analysis of the
evolution eqs.(1-4) shows that the system always reaches a
steady state at long times [19]. This is the first difference
with respect to mean-field theory, in which oscillations instead
persist even at long times. We show in Fig. 1b, as an exam-
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FIG. 2. a) Long time averages, φ/
√
N and rt, as a function of the

relative distance to the critical point ∆ (in %). b) Critical length
ξ∗ versus ∆ the distance from the dynamical transition. Notice that
despite the different definitions below and above the transition, ξ∗
diverges as d/

√
∆ on both sides of the transition, with da and db two

different constants.

ple, the evolution of the mass for two different quenches: we
find that oscillations are damped and rt converges toward an
asymptotic value. Similar results are found for the field. By
studying quenches for several values of the final and initial
mass, we find that the dynamical transition continues to take
place, as it was already mentioned in contexts related to cos-
mology [20]. In the following, we study its critical features.
Like in mean-field theory, the transition happens for quenches
within the regime of broken symmetry: ri0 < r

c
0 → r f (d)

0 < rc0
and corresponds to a singularity in the asymptotic value (or
equivalently the time averaged value) of the field. We show
in Fig. 2a φ and the average mass as a function of ∆. Be-
low the transition, the field relaxes to a nonzero asymptotic
value and rt vanishes. Above the transition, the field relaxes
to zero, whereas the mass converges to a positive value. The
critical behavior is different from the mean-field one, since in-
stead of a logarithmic singularity the average field vanishes as
φ ∼ |∆|1/4 approaching the transition from below (∆ → 0+),
whereas the asymptotic value of rt vanishes as ∆ for ∆ → 0−
[21]. After having established the existence of a critical point
let us now study its properties, i.e. focus on the physical be-
havior after quenches right at ∆ = 0. We find that the dynam-
ics is divided in two stages. First, the field relaxes to zero on
a timescale T smaller than the one characterizing the evolu-
tion of |rt |. In the second stage, G⊥ptt increases exponentially,
as Gp00e2

√
−p2−rtt, for all momenta below a cutoff Λ2 = |rt=0|.

This leads to a growth of the effective mass rt, which even-
tually stabilizes around zero, with a slow, oscillating, power
law decay shown in Fig. 1b. This in turn stabilizes the growth
of G⊥ptt. At large times, the low momentum modes enter a
remarkable two-times dynamic scaling regime:

G⊥ptt′ ≃
A
p2F

(

ptz,
t
t′
)

(6)

F
(

pt,
t
t′
)

∼ cos
(

pt
(

1 − t
′

t

))

− cos
(

pt
(

1 + t
′

t

))

(7)

with a dynamical exponent z = 1 and A a nonuniversal con-
stant. The parallel mode G∥ follows the same scaling law.
The real space counterpart of eq. (7) reads G⊥rtt′ ∼

1
rΘ(|r| −

Sciolla, Biroli, 2012



O(N) model

H =
NX

a=1

1

2

Z
ddx


⇧a⇧a + (~r�a)(~r�a) + r0�a�a +

�

12N
(�a�a)

2
�

N ! 1 model exactly solvable=quadratic theory

Equilibrium 
QPT:

paramagnetic ferromagnetic
h�ai = 0 h�ai = 0

Quenches from paramagnetic phase:

Dynamical phase  
transition

Same critical properties 
as finite temperature



Statistics of excitations

Double 	

quench:
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Strong signature in  
the fluctuations

Suitable for cold atoms  
experiments


