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Entanglement

A B

Otherwise it is ENTANGLED!.

If one can write the state in a factorized form

Consider a quantum system in a pure state 

Consider two subsystems A and B

then the state is SEPARABLE.|η� = |ψ�A|φ�B |ψ�A ∈ HA |φ�B ∈ HB

|η�

Structure of the quantum state at fixed value of bipartite entanglement?

S

Simulation of 
quantum (many-
body) systems

Entanglement for: communication, cryptography, quantum many-body systems... 



A

BSvN(�λ) = −trA(�A ln �A) = −
N�

k=1

λk lnλk

H = HA ⊗HB dimH = N2dimHA = dimHB = N

von Neumann Entropy of �A

A measure of the amount of bipartite entanglement between A and B

�A =





1 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0





Global system in a product state: 
no entanglement

Global system in a maximally 
bipartite entangled state

�A =
1
N





1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1




0 ≤ SvN ≤ lnN

Reduced density matrix of subsystem A: �A = trB |ψ��ψ|

λk ≥ 0,
�

k

λk = 1�λ = (λ1, . . . ,λN ) Eigenvalues of �A



u < uc � 0.26 Deformed Wigner’s 
semicircle law 

SvN = lnN − u

towards max entanglement ∝
�

(λ+ − λ)(λ− λ−)

Previous work on “Purity” and “Rényi entropy”
Facchi et al. PRL2008, DePasquale et al. PRA2010, Nadal et al. PRL2010
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FIG. 2. (Color online) β vs u from (22).

See Fig. 1. In particular, notice that, for β = 0, b = 4, the
deformation in the spectral density (19) vanishes, and one
recovers the classical Marčenko-Pastur law,

σMP(λ) = 1
2π

√
4 − λ

λ
. (21)

The von Neumann entropy at the typical entanglement
spectrum (5) has a distance u from its maximal value that
is given, in the limit N → ∞, by the first equation in (11). By
plugging (16) and (19) into it, one gets

u(β) =
{

ln
(
1 − 1

2β

)
+ 1

β
, β > 3

2 ,

− ln γ+1
2 − γ

2β
+ 1 + 1

2β
, 0 ! β ! 3

2 ,
(22)

where γ =
√

1 + 2β. The inverse of this function β = β(u)
is plotted in Fig. 2 and enables us to express everything in
terms of the amount of bipartite entanglement as measured by
the von Neumann entropy SvN = ln N − u. In particular, we
notice the maximal value u(0) = 1/2, which is the average
value (4), and the critical value,

uc = u
( 3

2

)
= ln 2

3 + 2
3 % 0.26, (23)

at which the entanglement spectrum changes its physiognomy
through a continuous phase transition. The entanglement
spectrum σ (λ) is displayed for a few values of u in Figs. 3(a)
and 3(b).

One can extend the analysis to the case of u > 1/2 towards
separable vectors with &λ % (1,0, . . . ,0). In the statistical-
mechanics model, this would correspond to negative tem-
peratures β < 0. By setting λ1 = µ = O(1), for large N , the
saddle-point equations (8) and (9) reduce to

µ ln N = u,
∑

j"2

λj = 1 − µ, (24)

2
N2

∑

j"2

′ 1
λj − λk

+ ξ = 0 (k " 2), (25)

and −ξ = β ln N = β̃. By means of the empirical distribu-
tion,

σ̃ (λ) = 1
N − 1

∑

j"2

δ

(
λ − N − 1

1 − µ
λj

)
, (26)
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FIG. 3. (Color online) Entanglement spectra σ (λ) for various
values of von Neumann entropy SvN = ln N − u: Entanglement
decreases as u increases. (a) 0 ! u ! uc % 0.26, (b) uc ! u ! 1/2,
and (c) 1/2 < u ! ln N .

they become

∫
λσ̃ (λ)dλ = 1, 2P

∫
σ̃ (λ′)
λ′ − λ

dλ′ − β̃(1 − µ) = 0. (27)

They are equal to (11) and (12) with β = 0 and ξ =
−β̃(1 − µ). Therefore, besides the eigenvalue µ, the spectrum
of the reduced density matrix is made of a sea of eigenvalues
whose distribution σ̃ (λ) = σMP(λ) is given by (21). See
Fig. 3(c).

Finally, by evaluating the density function at the typical
spectrum &λ, one gets

pN (&λ) ∝ eN2s , (28)
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u > uc � 0.26

SvN = lnN − u

Deformed Marchenko-Pastur law 

u > 1/2

towards separable states
�λ � (1, 0, . . . , 0)

λ1 = µ = O(1)

|ψ� = |uA� ⊗ |vB�

|ψ� �= |uA� ⊗ |vB�
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FIG. 3. (Color online) Entanglement spectra σ (λ) for various
values of von Neumann entropy SvN = ln N − u: Entanglement
decreases as u increases. (a) 0 ! u ! uc % 0.26, (b) uc ! u ! 1/2,
and (c) 1/2 < u ! ln N .

they become

∫
λσ̃ (λ)dλ = 1, 2P

∫
σ̃ (λ′)
λ′ − λ

dλ′ − β̃(1 − µ) = 0. (27)

They are equal to (11) and (12) with β = 0 and ξ =
−β̃(1 − µ). Therefore, besides the eigenvalue µ, the spectrum
of the reduced density matrix is made of a sea of eigenvalues
whose distribution σ̃ (λ) = σMP(λ) is given by (21). See
Fig. 3(c).

Finally, by evaluating the density function at the typical
spectrum &λ, one gets

pN (&λ) ∝ eN2s , (28)

052324-3



Merry Christmas!!!!


