Entropy-driven phase transitions of entanglement

Giuseppe Florio

Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi" & Dipartimento Interateneo di Fisica ''M. Merlin'' & Istituto Italiano di Fisica Nucleare

In collaboration with:

- P. Facchi, S. Pascazio (Bari)
- G. Parisi (Rome)
- K.Yuasa (Waseda University, Tokyo)

Centro Studi e

Based on:

• Physical Review A 87, 052324 (2013)

Bari Xmas Workshop 2013

Entanglement

Consider a quantum system in a pure state $|\eta
angle$

Consider two subsystems A and B

If one can write the state in a factorized form

$ \eta angle =$	$ \psi\rangle_A$	$ \phi\rangle_B$	
-----------------	------------------	------------------	--

$$|\psi\rangle_A \in \mathcal{H}_A \quad |\phi\rangle_B \in \mathcal{H}_B$$

then the state is **SEPARABLE**

Entanglement for: communication, cryptography, quantum many-body systems...

Structure of the quantum state at fixed value of bipartite entanglement?

A measure of the amount of bipartite entanglement between A and B

Previous work on "Purity" and "Rényi entropy" Facchi et al. PRL2008, DePasquale et al. PRA2010, Nadal et al. PRL2010

$$S_{\rm vN} = \ln N - u$$

 $u > u_c \simeq 0.26$
eformed Marchenko-Pastur law

1

 $|\psi\rangle \neq |u_A\rangle \otimes |v_B\rangle$

towards separable states $\vec{\lambda} \simeq (1, 0, \dots, 0)$

$$\lambda_1 = \mu = O(1)$$

 $|\psi\rangle = |u_A\rangle \otimes |v_B\rangle$

Merry Christmas!!!!

