

# **Quantum simulation of decay with Bose-Einstein condensates**

#### Francesco Pepe

Bari Xmas Theory Workshop 2013

## **Decay of an unstable state**

 $P(t) \sim \exp(-\gamma t)$  only at intermediate times



## **Feshbach molecules**



C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

## **Feshbach molecules**



#### WHY STUDIYNG DECAY OF FESHBACH MOLECULES?

- Easy tunability of the parameters (external magnetic field)
- Molecules are bosons! --> At low temperature, condensation in the same single-particle state occurs
- Large decay times
- Different observable decay regimes

### Time evolution: "unusual" decay

<sup>6</sup>Li,  $B_{\rm res} = 543.25 \, {\rm G}$ 



Deviations from the exponential becomes larger and more extended in time as the system approaches the resonance

#### **Stretched exponential regime**



#### Observed also in RELAXATION DYNAMICS OF GLASS-LIKE SYSTEMS

[see e.g. L. Berthier and G. Biroli, Rev. Mod. Phys 83, 587 (2011)]