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“Mache	 die	 Dinge	 einfach	 wie	 möglich-aber	 nicht	 einfacher”
“Make	 things	 as	 easy	 as	 possible	 -but	 not	 easier”

(A.	 Einstein)

What do we need to describe 
all these phenomena? 



• Fermi surface properties 
(nesting, pockets)

• Strong correlation 
 (MIT, nonFL, exchange)

• Multi orbitals 
 (Hund’s J, orbital selective)  
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Main	 players

other	 players	 (what	 is	 their	 role?)

• Spin-orbit coupling? 

• Phonons? 

• Lattice details? 

• Disorder and   impurities? 
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Example 3d Hubbard 
model AF transition: 

in	 medio	 stat	 virtus?	 

Very strong coupling:

J=t2/U

new emerging energy scale:
exchange interaction

equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V! defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by !i ¼ 1; . . . ; N. The function V! is thus approxi-
mated by OðN3Þ interpatch couplings V!ð!1;!2;!3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number !4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V!ð!1;!2;!3Þ then has fewer symmetries; for instance,
V!ð!1;!2;!3Þ ! V!ð!2;!1;!4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with
the frequency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard
model, the flow is run from !0 down to a characteristic scale
!$, where the largest coupling reaches some multiple " of the
bandwidth. The choice of " varies widely in the literature;
the discussion here is based on the comparably cautious
choice " ¼ 2 or 3, as well as on the consistency check that
the results do not change drastically as " is changed. The
characteristic scale !$ corresponds to a temperature T$. If T
is clearly above T$, the flow can be integrated to scale zero
without any instabilities. T$ is only an upper bound for the
temperature where ordering can set in because of order
parameter fluctuations at scales below !$. In two dimensions
they are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,
or ordering in a related system with a small coupling in the
third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly
smeared-out step function as cutoff on k (no cutoff on the
frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and # ¼ 0, the band is half filled, and the Fermi
surface is a perfect square. Every vector connecting parallel
sides of the Fermi surface is a nesting vector, and r$k ¼ 0 at
ð%; 0Þ and ð0;%Þ. This strongly enhances particle-hole terms
at wave vector Q ¼ ð%;%Þ. A random-phase approximation
summation of these bubbles results in a divergent static spin
susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-
density wave (SDW), in accordance with mean-field studies
(Fulde, 1991). The basic RG results at low T are shown for
U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along
the Fermi surface can be read off Fig. 10(a). Figure 10(b)
shows V! as a function of the patch indices !1 and !2, at
!$ % 0:16t and with !3 ¼ 1 [i.e., k3 near ð&%; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at
!2 ¼ 24 (i.e., for k2 & k3 ¼ Q), almost !1 independent, and
as a horizontal line at !1 ¼ 24 (corresponding to k1 & k3 ¼
Q) with only a weak dependence on !2, roughly half as large
as the vertical feature. In an extrapolation where the regular
profiles are narrowed down to delta functions with an appro-
priate prefactor J, V!ð!1;!2;!3Þ ¼ ðJ=4Þð2&k2&k3;Q þ
&k1&k3;QÞ, corresponding to a mean-field AF-spin interaction

Hamiltonian J
P

hi;jie
iQ(ðRi&RjÞSi ( Sj, with Si ¼ 1

2 c
þ
i !ci. The

effective Hamiltonian consisting of the low-scale hopping
term and this interaction exhibits AF long-range order at
sufficiently low T. An analysis of the flow of susceptibilities
(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as
described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone
for the one-band Hubbard model on the 2D square lattice. The
colored region is a patch in which the coupling function is approxi-
mated as a constant.
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(quasi-)nesting can support 
different instabilities 

Weak coupling (BCS mean field)
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I. INTRODUCTION

A. Motivation

The Coulomb interaction between electrons in solids
leads to a virtually unlimited variety of phenomena,
such as magnetic correlations and magnetic order, high-
temperature superconductivity, metal-insulator transi-
tions, phase separation and stripes, and the formation of
exotic quantum liquid phases. The latter include Lut-
tinger liquids, quantum critical points, and fractional
quantum Hall states.
Interacting electron systems usually exhibit very dis-

tinct behavior on different energy scales. Composite ob-
jects and collective phenomena emerge at scales far be-
low the bare energy scales of the microscopic Hamilto-
nian. For example, in cuprate high-temperature super-
conductors one bridges three orders of magnitude from
the highest scale, the bare Coulomb interaction, via the
intermediate scale of short-range magnetic correlations,
down to the lowest scale of d-wave superconductivity and
other ordering phenomena (see Fig. 1). This diversity of
scales is a major obstacle to a straightforward numerical
solution of microscopic models, since the most interest-
ing phenomena emerge only at low temperatures and in
systems with a large size. It is also hard to deal with by
conventional many-body methods, if one tries to treat all
scales at once and within the same approximation, for
example by summing a subclass of Feynman diagrams.
Perturbative approaches which do not separate different
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FIG. 1 (Color online) Important energy scales in high-
temperature superconductors of the cuprate family. Magnetic
interactions and superconductivity are generated from the ki-
netic energy (hopping) and the Coulomb repulsion.

scales are plagued by infrared divergences, and are there-
fore often inapplicable even at weak coupling, especially
in low dimensions.
It is thus natural to treat degrees of freedom with dif-

ferent energy scales successively, descending step by step
from higher to lower scales. This is the main idea behind
the renormalization group (RG).

B. RG for interacting Fermi systems

Renormalization group methods have a long tradition
in the theory of interacting Fermi systems. Already in
the 1970s, various versions of the RG have been used to
deal with infrared singularities arising in one-dimensional
Fermi systems (Sólyom, 1979). Naturally, the RG was
also applied to (mostly bosonic) effective field theories
describing critical phenomena at continuous classical or
quantum phase transitions in interacting Fermi systems
(Fradkin, 1991; Sachdev, 1999).
Renormalization group approaches dealing with inter-

acting fermions in arbitrary dimensions d have been de-
veloped much later. Due to the extended (not point-like)
geometry of the Fermi surface singularity in dimensions
d > 1, the renormalization group flow cannot be reduced
to a finite number of running couplings. However, the
main reason for the delayed development of a compre-
hensive RG approach for interacting Fermi systems in
higher dimensions was probably not this difficulty, but
rather a lack of motivation. The few infrared singulari-
ties appearing in three-dimensional Fermi systems could
usually be handled by simple resummations of pertur-
bation theory (Abrikosov et al., 1963; Nozières, 1964).
Triggered by the issue of non-Fermi liquid behavior in
two-dimensional systems, and the related discussion on
the validity of perturbation theory, systematic RG ap-
proaches to interacting Fermi systems in arbitrary di-
mensions have been developed by various groups in the
early 1990s.
Aiming at a mathematical control of interacting

A	 problem	 of	 energy	 scales

Unscreened! 

One band: exchange only
J=t2/U

AF
 

More bands:
(good old fashioned) 

Hund’s exchange (~0.5 eV) 
FM

Multiple FS pockets  
 

Interplay between the bands 
plays a major role

is believed to be due to a form factor that was not fully
resolved there.

3. Charge instabilities

The effective interaction develops a pronounced momen-
tum dependence also in the charge sector. In the forward
scattering channel, this amounts to the formation of nonuni-
form contributions to the Landau interaction. If strong
enough, the latter can lead to a Pomeranchuk instability
(Pomeranchuk, 1959), that is, a symmetry-breaking deforma-
tion of the Fermi surface.

In particular, the antiferromagnetic peak drives the combi-
nation of couplings V!

c ð!1;!2;!3Þ ¼ 2V!ð!1;!2;!3Þ $
V!ð!2;!1;!3Þ at certain Q ¼ k3 $ k1. Near to Q % 0 and
Q % ð";"Þ,

V!
c ð!1;!2;!3Þ % $fdðk1Þfdðk2ÞVdðk3 $ k1Þ; (113)

where fdðkÞ has the same symmetries as dðkÞ ¼ coskx $
cosky, but is more strongly peaked near the saddle points. For

Q ¼ ð";"Þ the corresponding mean-field state is the
d-density wave state, which breaks time-reversal invariance
(Chakravarty et al., 2001) and gaps the single-particle states,

except at nodal points on the Brillouin zone diagonal. For
forward scattering, Q ¼ 0, the mean-field state breaks only
the lattice rotational symmetry of the electronic dispersion
and hence of the Fermi surface. This tendency to form a
nematic state (Fradkin et al., 2010) via a d-wave
Pomeranchuk instability driven by forward scattering inter-
actions was discovered using functional RG (Halboth and
Metzner, 2000b). Although the Pomeranchuk instability is
not leading in the flow for the Hubbard model (Honerkamp,
Salmhofer, and Rice, 2002), a nematic state can coexist with
the superconducting state (Neumayr and Metzner, 2003;
Yamase and Metzner, 2007), and it may get less suppressed
by fluctuations since it breaks no continuous symmetry. The
d-wave Pomeranchuk instability has been investigated as a
possible source of nematicity of the electronic state in relation
with experiments on various correlated electron systems
(Honerkamp, 2005; Yamase and Metzner, 2006; Yamase,
2009; Metlitski and Sachdev, 2010c; Okamoto et al., 2010).

4. Flows with self-energy effects

We briefly summarize functional RG studies where the
self-energy has been included. If a frequency-independent
vertex function V! is directly inserted in the right-hand side
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FIG. 11 (color online). Leading instabilities as found by N-patch functional RG in the t-t0-Hubbard model. Left upper plot: T& vs # for
band filling larger than unity, at t0 ¼ $0:3t and U ¼ 3t. There is a high-energy-scale AF-SDW instability with a weaker dx2$y2 -wave pairing

instability when the AF-SDW is cut off. From Honerkamp, 2001. Right upper plot: Data for the same t0 and U on the ‘‘hole-doped’’ side with
band fillings smaller than 1. From Honerkamp et al., 2001. Now there is a broad crossover ‘‘saddle point regime’’ between the nesting-driven
AF-SDW instability and the dx2$y2 -wave pairing regime. Lower left plot: T& vs t

0 at the van Hove filling where the Fermi surface contains the

points ð"; 0Þ and ð0;"Þ. For large t0 one finds a ferromagnetic instability. From Honerkamp and Salmhofer, 2001a, 2001b, obtained with the
T flow. Right lower plot: "& vs t

0 at van Hove filling, now obtained with the simplified vertex parametrization of Husemann and Salmhofer
(2009) and with a soft frequency regulator ".
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My	 small	 garden	 fRG	 &	 DMFT

 
Renormalization group 

enhanced perturbation theory 
 

Uno,	 nessuno	 e	 centomila:

having many nearest neighbors is 
like having none! 

mapping on an impurity site

 

Local strong coupling physics
 

Can we combine them?
 CT et al. arXiv:1307.3475 

Buon	 Natale	 
(a	 casa!)


