Bari, 23/12/13

# Constraints on very light sterile vs from reactor experiments



# Antonio Palazzo MPI für Physik (München)





## The standard 3v framework

### **Beyond three neutrino families**

### Constraints on very light sterile neutrinos

Conclusions



# The 3v mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}$$

$$\begin{split} \Gamma_{\delta} &= \operatorname{diag}(1, 1, e^{+i\delta}) & \operatorname{Dirac} CP - \operatorname{violating phase } \delta \\ \sigma &\in [0, 2\pi] \end{split} \\ \begin{array}{l} \mathbf{Explicit} \\ \text{form} \end{array} & U &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \begin{array}{l} \mathbf{\theta}_{23} \sim \mathbf{41}^{\circ} & \mathbf{\theta}_{13} \sim \mathbf{9}^{\circ} & \mathbf{\theta}_{12} \sim \mathbf{34}^{\circ} \end{split}$$

Weak preference (< 2 $\sigma$ ) for  $\delta \in [\pi, 2\pi]$  (i.e., sin $\delta$  < 0)

# Beyond three neutrino families

Introducing a very light sterile neutrino (VLSv)



 $\Delta m_{14}^2 \in [10^{-3}, 10^{-1}] \text{ eV}^2$ 

4v

Small mixing of active flavors with the  $4^{th}$  state I will focus on the electron neutrino mixing  $U_{e4}$ 

# Motivations for investigating VLSvs

In the recent years most of the attention attracted by "heavier" sterile neutrinos (mass ~ 1 eV) because of a few anomalies recorded at very short baseline experiments.

However, the latest cosmological data present features which cannot be explained by a new particle with mass of  $\sim 1 \text{ eV}$ . Differently, particles with a smaller mass can explain them.

Theory does not provide solid information on  $v_s$  mass-mixing. These parameters should be investigated without prejudice.

For the first time new reactor experiments, born for other purposes (to measure  $\theta_{13}$ ) allow us to probe small values of  $\Delta m_{14}^2$  opening a new window in the search of sterile neutrinos.

## New trends in cosmological data



Haman and Hasenkamp [1306.3255 astro-ph

Similar findings in: Wyman et al. [1307.7715 hep-ph] Giunti et al. [1309.3192 astro-ph]

## A VLSv provides both features

- 1) Contribution to the absolute v mass in the sub-eV range
- 2) Only partial thermalization is expected to occur:

 $0 < \Delta N_{eff} < 1$  for  $\Delta m_{14}^2 \in [10^{-3}, 10^{-1}] \text{ eV}^2$  and  $U_{e4}^2 < 10^{-2}$ 



### Constraining VLSvs with reactor experiments

Reactor experiments are sensitive to the mixing of the electron (anti-)neutrino with the sterile species ( $|U_{e4}|^2 = \sin^2\theta_{14}$ )



Non zero  $\theta_{14}$  induces a "leakage" of  $\overline{v}_e$ 's

Existing constraints limited to  $\Delta m_{14}^2 > few \times 10^{-2} eV^2$ due to baselines' limitations (L<100 m)

New experiments with longer baselines are now operating and make it possible to probe smaller values of  $\Delta m_{14}^2$ 

# $\theta_{13}$ -dedicated reactor experiments

Double CHOOZ



#### Daya Bay



#### RENO



#### Observed far/near deficit implies $\theta_{13}$ is different from zero

$$P_{ee} \simeq 1 - 4|U_{e3}|^2(1 - |U_{e3}|^2)\sin^2\frac{\Delta m_{13}^2L}{4E}$$
  
$$4|U_{e3}|^2(1 - |U_{e3}|^2) \equiv \sin^2 2\theta_{13}$$

Figure from Bezerra et al., Phys Lett. B 725 (2013) 271

## 4v formulae valid at $\theta_{13}$ -experiments

Neglecting terms  $\propto |U_{e3}|^2 |U_{e4}|^2$  or  $\propto \Delta m_{sol}^2$  we have

$$P_{ee} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E_{\nu}}\right) - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{14}^2 L}{4E_{\nu}}\right) \,.$$

where

$$\frac{\Delta m_{14}^2 L}{4E_{\nu}} \simeq 1.267 \left(\frac{\Delta m_{14}^2}{10^{-2} \text{ eV}^2}\right) \left(\frac{L}{400 \text{ m}}\right) \left(\frac{4 \text{ MeV}}{E_{\nu}}\right)$$

Sizable effects expected both at near (few hundreds m) and far (1-2 km) detectors

# Numerical examples

 $3_{V}: (\theta_{13} \neq 0, \theta_{14} = 0)$ 

**4**v:  $(\theta_{13} \neq 0, \theta_{14} \neq 0)$ 



Figures from Esmaili et al., Phys. Rev. D 88, 073012 (2013)

#### Far/near ratios are expected to provide information on VLSvs

## 4-flavor analysis performed at fixed $\theta_{13}$



A.P. JHEP 1310 (2013) 172

All the three experiments exclude a lobe around the atm. splitting (far site sees the oscillating phase, at near site negligible effects)

All the three experiments exclude a second lobe around 10<sup>-2</sup> eV<sup>2</sup> (at far site oscillations averaged, near site sees oscillating phase)

D-Chooz used Bugey-4 (15 m) as an anchor, limits up to  $10^{-1} \text{ eV}^2$ 

### 4-flavor analysis performed for free $\theta_{13}$



General degradation of sensitivity in each of the three experiments

Entire lobes disappear due to strong degeneracies among  $\theta_{13}$  and  $\theta_{14}$ Noticeable synergy in the global combination 14

### Estimate of $\theta_{13}$ in a 4-flavor framework



A.P. JHEP 1310 (2013) 172

Standard 3v estimate is robust provided that  $\Delta m_{14}^2 > 6 \times 10^{-3} \text{ eV}^2$ No lower bound for smaller  $\Delta m_{14}^2$  due to degeneracy of  $\theta_{13}$  and  $\theta_{14}$ However, in this region lower bound by T2K (4v effects negligible)

## Conclusions

The 3v scheme may not constitute the ultimate description of the v oscillatory phenomena. Sterile vs may alter the standard picture

Very light sterile neutrinos with  $\Delta m^2 \sim [10^{-3}, 10^{-1}] eV^2$  offer an option for cosmo hints (dark radiation and hot-dark-matter)

First constraints on VLSvs obtained with  $\theta_{13}$ -dedicated experiments

Further information on VLSvs can be gained by spectral analysis and from LBL accelerator experiments and atmospheric neutrinos

Not unreasonable to think that several sterile vs can co-exist and explain some observations: (SBL,eV), solar spectrum ( $10^{-3}$  eV), dark radiation (sub-eV), DM (keV), leptogenesis (TeV), small v mass (GUT)

ALL MASS SCALES SHOULD BE PROBED WITHOUT PREJUDICES!