

Random States and typicality in Hilbert spaces Theory Xmas Workshop 2012

Fabio Deelan Cunden

Università degli Studi di Bari Dipartimento di Matematica

December 20, 2012

Introduction and Motivations

When something is too complicated...you can use a random object to mimic it. Random Matrix Theory

Founding fathers: Wishart, Wigner, Dyson

RMT in Physics:

Quantum Mechanics Statistical Mechanics

- *H* random hamiltonian
- U random evolution
- ho random density matrix
- $\partial^2 V$ random landscape

RMT in Math:

Probability and Statistics Geometry Linear Algebra and Numerical Analysis

 Σ random covariances Ax = b random linear system

This is a rich and attractive area for physicists. Especially for a student!

Random States ↔

Random Matrix Theory, universality and concentration phenomena

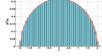
Universality of the spectral statistics of random matrices

For random matrices a kind of Central Limit Theorem holds. In fact, many CLT's! The behaviour of a function $f(X_1, \ldots, X_N)$ of iid random variables X_1, \ldots, X_N for N large does not depend very much on the actual distribution of the X_i . An idea inherited from Statistical Mechanics.

Example: Wigner's semicircle law

For a large class of hermitian random matrices, the spectral distribution $p(\lambda)$ tends to the semicircle distribution (analogue of the Gaussian distribution in a noncommutative setting).

Concentration of measure phenomenon


Some properties are shared by an overwhelming majority of the states. A high dimensional effect, or a property of a large number of variables, for which many observables are almost constant and close to their mean value.

A basic feature in Statistical Mechanics.

Example: Levy's lemma

Nice functions f on a high dim sphere \mathbb{S}^n are almost constant: $f = \langle f \rangle$ with overwhelming probability, in the sense that $\mathbf{Pr}\left(\left|f(X) - \langle f \rangle\right| \geq \epsilon\right) \leq e^{-Cn\epsilon^2}$

Matrix Theory, universality and concentration p

Random Quantum States: an overview

Examples of random states: $|\psi
angle \sim p(\psi) \mathrm{d}\psi$ (random unit vectors)

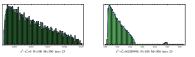
Unbiased ensemble A quantum system with a cutoff Λ on the energy H. A crude approach: the probability measure is uniform: $\mathbf{Pr}(|\psi\rangle) = \mathbf{Pr}(U|\psi\rangle)$.

Any physical system obeys some constraint: conservation laws. The accessible portion of the Hilbert space is a submanifold.

Fixed "energy" ensemble equal prob. to states with the same energy: $\langle \psi | H | \psi \rangle = E$. Hard problem. In the large dimensional limit one want to recover the Gibbs measure. The typical local states ρ must be canonical $e^{-\beta H}/Z$ (according to Statistical Mechanics)

Fixed "entanglement" ensemble: states of composite systems $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$.

Explore the isoentangled surfaces $S(|\psi\rangle_{AB}) = s$. Hard because the geometry of quantum states is not fully understood.



Random Quantum States: my work.

Typical local properties of bipartite systems via Coulomb gas method and orthogonal poly. (preprint: FDC, P.Facchi, G.Florio, S.Pascazio)

Random states with fixed entanglement: unitarily invariant measure interacts nicely with the superposition principle.

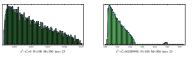
New polarized ensembles: isoentangled ensemble and phase transitions.

(preprint: FDC, P.Facchi, G.Florio)

Locally invariant ensembles: the Hilbert space of a bipartite quantum system is foliated in manifolds of equal Schmidt rank.

On each leave, by projecting the unbiased measure we obtain a family of pdfs. (*work in progress*)

Typicality in Hilbert spaces: random states and the foundations of Statistical Mechanics.


The thermodynamical limit $\frac{\dim system}{\dim bath} = O(1)$. Quantum Information: random states and ensemble preparation. (work in progress)

Random Quantum States: my work.

Typical local properties of bipartite systems via Coulomb gas method and orthogonal poly. (preprint: FDC, P.Facchi, G.Florio, S.Pascazio)

Random states with fixed entanglement: unitarily invariant measure interacts nicely with the superposition principle.

New polarized ensembles: isoentangled ensemble and phase transitions.

(preprint: FDC, P.Facchi, G.Florio)

Locally invariant ensembles: the Hilbert space of a bipartite quantum system is foliated in manifolds of equal Schmidt rank.

On each leave, by projecting the unbiased measure we obtain a family of pdfs. (*work in progress*)

Typicality in Hilbert spaces: random states and the foundations of Statistical Mechanics.

The thermodynamical limit $\frac{\dim ysystem}{\dim bath} = O(1)$. Quantum Information: random states and ensemble preparation. (work in progress)

Merry Xmas!