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Entanglement

A B

Otherwise it is ENTANGLED.

If one can write the state in a factorized form

Consider a quantum system in a pure state 

Consider two subsystems A and B

then the state is SEPARABLE.|η� = |ψ�A|φ�B |ψ�A ∈ HA |φ�B ∈ HB

|η�

We consider a system composed of n subsystems described by a Hilbert space

HS :=
�

i∈S

hi
hi � h

with

S = {1, 2, . . . , n}
h = C2

qubit

h = L2(R)
continuous variables 

S

or



By definition, Gaussian states (important for applications in quantum optics) are described by a 
gaussian Wigner function:

W(n)(X) =
1

(2π)n
�

det(V)
exp

�
−1

2
(X−X0)V−1(X−X0)T

�

X = (X1, . . . X2n) := (q1, p1, . . . qn, pn)

Vlm = �(Xl − �Xl�)(Xm − �Xm�)�

Covariance matrix (CM)

Gaussian states
Let us consider a collection of n bosonic oscillators with canonical variables {qk, pk}k=1,...n

ρ(n)The state of the system can be described by the density operator           or, in the phase-space, by  
the so-called Wigner function.        

X0 = �X�

Phase-space coordinate vector

�f(X)� :=
�

f(X)W(n)(X)d2nX
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Multipartite entanglement in multimode Gaussian states
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Ideal minimumχ = 1

Increasing the value of N 
we observe a saturation 

effect

This is possible only for 
N=0: the vacuum 

(separable)

In general we have 
frustration!

�q2
k + p2

k�
2

≤ N +
1
2
, for k = 1, . . . n

Energy constraint: we do not allow more 
than N mean excitations for each bosonic 
mode:

χ
Measure of entanglement:
Normalized potential of multipartite entanglement 

Dependence of the minimum (maximum 
multipartite entanglement) of number of modes 

and mean number of excitations per mode



Sampling of Gaussian states

9.1. Schemes to realize extremally entangled states in experimental settings 161
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Figure 9.1. Optical generation of two-mode squeezed states (twin-beams) by

superimposing two single-mode beams, independently squeezed of the same

amount r in orthogonal quadratures, at a 50:50 beam-splitter. The two oper-

ations (individual squeezings plus beam-splitter), taken together, correspond

to acting with the twin-beam transformation Eq. (2.28) on two vacuum beams.

The average number of thermal photons ni is given by Eq. (2.32),

ni =
1

exp (�ωi/kBT )− 1
in terms of the frequencies of the modes ωi and of the temperature of the reservoir

T . It can be easily verified that the CM Eq. (9.1) defines a two-mode thermal

squeezed state, generally nonsymmetric (for n1 �= n2). However, notice that the

entanglement of such a state cannot persist indefinitely, because after a given time

inequality (4.30) will be violated and the state will evolve into a disentangled two-

mode squeezed thermal state. We also notice that the relevant instance of pure loss

(n1 = n2 = 0) allows the realization of symmetric GMEMS.

9.1.2. GLEMS state engineering

Concerning the experimental characterization of minimally entangled Gaussian

states (GLEMS), defined by Eq. (4.39), one can envisage several explicit experi-

mental settings for their realization. For instance, let us consider (see Fig. 9.2) a

beam-splitter with transmittivity τ = 1/2, corresponding to a two-mode rotation

of angle π/4 in phase space, Eq. (2.26).
Suppose that a single-mode squeezed state, with CM σ1r = diag ( e2r, e−2r)

(like, e.g., the result of a degenerate parametric down conversion in a nonlinear

crystal), enters in the first input of the beam-splitter. Let the other input be an

incoherent thermal state produced from a source at equilibrium at a temperature

T . The purity µ of such a state can be easily computed in terms of the temperature

T and of the frequency of the thermal mode ω,

µ =
exp (�ω/kBT )− 1
exp (�ω/kBT ) + 1

. (9.2)

|TMSV� = exp
�
r(ab− a†b†)

�
|0�

Two-modes squeezed vacuum states (twin-”beams”)

|ψG� =
nA�

k=1

exp
�
rk(akbk − a†kb

†
k)
�
|0�

nA = |A|Bipartite 
system:

(A,B) nA + nB = n 1 ≤ nA ≤ nB

dµḠ = K̄n,nA

nA�

h<k=1

(νh − νk)
2

nA�

j=1

(νj − 1)nB−nA dν dµ(ᾱA) dµ(ᾱB) dθ

ak, a
†
k , k = 1, . . . , nA

bk, b
†
k , k = 1, . . . , nB

Invariant measure of Gaussian states generated in 
nonlinear optical parametric processes

rk ≥ 0

νk = cosh 2rk , k = 1, . . . , nA

How do we sample Gaussian states?

Symplectic 
eigenvalues

non-local degrees of freedoom



Merry Christmas!!!!


