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Why large neutrino detectors?

Many thanks to R. Svoboda, T. Kobayashi and M. Shiozawa for contributions.

With the discovery of neutrino oscillations, there is a clear sign for physics beyond 
the Standard Model. 

There are still open questions to complete our knowledge on fundamental neutrino
properties and to understand neutrino mixing in detail: 13, CP-violation, mass
hierarchy, absolute mass scale, nature of the neutrino.

Strong interest and growing effort for large-volume neutrino detectors in Europe, 
US, and Asia.

Complementary to LHC:
LHC: Higgs mechanism, SUSY, rare decays
LAGUNA: Proton decay, neutrino astronomy, CP violation in leptons

GUT

proton decay

baryon/
anti-baryon
asymmetry leptogenesis



• current limits in most channels dominated by Super-
Kamiokande. Want to improve at least factor of 10.

• observation would be de-facto discovery of Grand 
Unification

Search for proton decay
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CP violation in the leptonic sector

If there does exist a RH heavy partner for the LH neutrinos, and if such a 
partner violates CP in its decay, it could influence the baryon/anti-baryon 
symmetry of the universe (leptogenesis).
CP violation in the light neutrinos does not prove that neutrinos have a heavy 
CP-violating partner, but it is strong circumstantial evidence.

Search for CP violation with the channels e / e 

in long baseline neutrino experiments by looking for a difference between

e/ e appearance probability

-> size of observable effect is depending on sin 13

-> sensitive to any mechanism that creates nu/anti-nu asymmetry,
separation of non-CPV effects needed



Why large neutrino detectors?

• Galactic Supernova Burst
• Diffuse Supernova Neutrino Background
• Solar Neutrinos
• Geo neutrinos
• Reactor neutrinos
• Neutrino oscillometry
• Atmospheric Neutrinos
• Dark Matter



• Water Cherenkov detector

• Liquid Argon TPC

• Liquid Scintillator detector

Detector technologies under discussinon



IMB
3 ktons

Kamiokande
1 kton

Super-Kamiokande
22 ktonsSNO

1 kton

Water Cherenkov detectors

Large and useful experience: 
performance, calibration
and operation are well 
established.



• basic techology is well established

• aim is to go to 0.5-1 Megaton

• good tracking especially at 1 GeV or less

• good PID capability at low energy

• energy resolution for e and µ ~3% (SK)

• for long-baseline beam experiment:
good at low E (< 1GeV) narrow band beam

• technique is still evolving: e.g. better efficiency for muon decay electrons

Water Cherenkov technique

• huge amount of photosensors needed (~200.000 for 40% coverage as SK). 
Reduction by a factor of 2 works well for high energy applications (beam 
and proton decay). To what extent is additional reduction possible?

• very large underground cavities needed
• cost implied by these two points

Challenges:

see T. Kajita



• electronic "bubble chamber", detailed event topology

• brilliant energy reconstruction and track resolution of every particle, 
capable up to higher energies

• PID with dE/dx and separation of tracks possible

• basically background-free for many applications

• aim at O(100kt)

• "complicated" detector technology

• huge number of channels (depending on position resolution)

• limited drift length leads to large span of the cavity

• staged R&D program: prototypes detecting cosmics and beam,
ICARUS T600 @ Gran Sasso, ArgoNeuT @Fermilab, KEK 250lt

Liquid Argon TPC

see P. Sala, O. Palamara

Challenges:



• mature technology (Borexino, KamLAND, SNO+)

• good energy and position resolution, very low energy
threshold

• aim at 50kt

Challenges:

• cavity excavation (size comparable to SuperK)

• improvement for PMs and electronics needed

• keep Borexino purity in larger volume (surface-to-
volume ratio is advantageous)
-> relevant for sub-MeV neutrino detection

Liquid Scintillator technology

see L. Oberauer



electrons  muons

e/µ discrimination and tracking

CERN 
770km

CNGS neutrino induced muons in Borexino.



• Japan

• U.S.

• Europe

World-wide efforts to realize a huge detector



Japan: Hyper-Kamiokande



Okinoshima

658km

0.8deg. Off-axis

Kamioka
Korea

1000km

1deg. Off-axis

295km

2.5deg. Off-axis

Japan:
Three possible scenarios
under discussion

JPARC

Hyper-K
Hyper-K

100kt LAr

see T. Kobayashi



Scenario JPARC-HK (540kt, 295 km,1.66 MW) as an example:





Hyper-K near-future plans



U.S.



Large Cavities

Lab Modules

Ross ShaftYates ShaftDavis Cavern

Existing Drifts

Access Drifts
at 4850L

Excavation Plans

October 09

New Winze 
to 7400L

Excavation Drifts
at 5040L

#6 Winze 

DUSEL Excavation Plan



Large Cavity, Water Cerenkov Detector
Water: 53m Dia. x 54m vertical, 

Fiducial Volume: 50m Dia. x 51m vertical

Large Cavity 

Utility Rooms 

Water Level 

Conceptual design parameters:

• PMT coverage: 6(3) p.e./Mev
for LE(HE) option. 

• Could achieve with 40k to  
80k 25 cm HQE PMT’s

• veto: top only or “thin” 
option being studied.

• cavern size/shape

• gadolinium loading option

• Initial costing going well

LBNE Science Collaboration 



Sensitivity to mass hierarchy and CP violation

LBNE Water Cherenkov

3

700 kW, 8+8 years
2x107 s/yr, 120 GeV



LBNE Schedule

• Initial design and costing complete by Fall, 2010

• Detector(s) choice for FD/Science Program 
defined by Science Collaboration: end of 2010 

• DOE CD-1,  late 2010 or early 2011

• National Science Board, Summer 2011

• Preliminary Design (~CD-2), end of 2012

• DUSEL construction start, end of 2013

• LBNE construction, 2015-2019 (this could be 
earlier depending on DUSEL lab readiness)

for more on the DUSEL program, see C. Mariani



Europe



LAGUNA Collaboration
Consortium composed of 21 beneficiaries in 9 countries

9 university entities (ETHZ, Bern, Jyväskylä, OULU, TUM, UAM, UDUR, USFD, UA)

8 research organizations (CEA, IN2P3, MPG, IPJ PAN, KGHM CUPRUM, GSMiE PAN,
LSC, IFIN-HH)

4 private companies (Rockplan, Technodyne, AGT, Lombardi)

Additional university participants (IPJ Warsaw, Silesia, Wroclaw, Granada)

Europe: LAGUNA



Europe: LAGUNA



Europe: LAGUNA



Europe: LAGUNA

Design Study (EU FP7 funded): 2008 - 2010

Interim safety, socio-economic,
environmental report: finished
Interim geotechnical reports
on the seven sites:         finished

Prioritize the sites and down-select:    2010

Final LAGUNA general meeting in Modane these days!



MEMPHYS

As a Water Cherenkov detector,  suited for low energy (<1 GeV) beam
-> original concept in connection with beta-beam from CERN
-> connects this detector type in Europe presumably to the Fréjus site



GLACIER

≈70 m

h =20 m

Max drift length



LENA

Low-Energy
Neutrino

Astronomy

see L. Oberauer



Simulated energy spectrum of

20000 proton decay events into

Kaon channel (light yield 180 

p.e./MeV)

Two peaks:

• Kaon + Muon ~ 257 MeV

• Kaon + Pions    ~ 459 MeV

Energy-cut efficiency E=99.5%,

bound protons of 12C included.

Sensitivity to proton decay p → K+ν

Variety of other channels can be tested.



(inverse beta decay)

Diffuse Supernova Neutrino Background



A galactic SN in LENA

 Antielectron spectrum with high precision

 Electron flux with ~ 10 % precision

 Total flux via neutral current reactions

 Separation of SN models

 independent from (collective) oscillations in NC reactions 

ca 15.000 events
for a galactic SN

high statistics

energy dispersive

time dispersive

flavour resolving

A galactic SN in LENA



Detect anti-neutrinos of the U, Th

decay chains (inverse -decay

energy threshold on proton is 1.8 

MeV).

Within the discussed detector

options, only LS is able to

determine the geoneutrino flux.

LENA
Expected event rate at Pyhäsalmi :

300-3000 events/year in 50 kt
Background from reactors:

240 events/year in 50 kt
in the relevant energy window

determine U/Th ratio

disentangle continental/oceanic

crust with more than one

detector location (e.g. HanoHano)

separation of geological models

Geo neutrinos



CERN - Pyhäsalmi 2288 km

5 years nu + 5 years anti-nu

1st maximum @ 4.2 GeV

Wide band beam 1 – 6 GeV, 1.5 MW

Study CERN-LENA@Pyhäsalmi



Conclusions
Strong physics case for large-volume neutrino detectors.

Baryon asymmetry
nucleon stability

fundamental neutrino properties
CP violation in the lepton sector

Growing community for the realization of large-volume underground detectors.

New laboratories planned world-wide. Site and excavation studies with
encouraging result for the feasibility of such labs. Site selection in US, in Europe 
with the LAGUNA final report priorization and down-selection of proposed sites,
in Japan study scenarios until mid-2011.

3 detector technologies. Broad R&D program on all 3 technologies, progress
towards realization.


