The MAJORANA Experiment

Vincente E. Guiseppe
University of South Dakota

for the
MAJORANA Collaboration

NOW 2010
Outline

• Double-Beta Decay
• The MAJORANA Experiment
• The Initial MAJORANA Module
• Detectors
• Backgrounds and Background Rejections
• Recent Progress and Plans
Neutrinoless Double-Beta Decay

- No neutrinos emitted
- Discovery provides:
 - Neutrino is its own antiparticle (Majorana)
 - Lepton number violation
 - A measure of the effective neutrino mass

\[^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- \]

\[n \rightarrow p + e^- + \bar{\nu}_e \quad (RH \bar{\nu}_e) \]
\[(LH \nu_e) \quad \nu_e + n \rightarrow p + e^- \]

Exchange of a virtual neutrino
How $\beta\beta$ relates to the Neutrino

Observe double-beta decay by collecting the energy of the 2 e$^-$ in a detector

$$\Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 \langle m^2_\nu \rangle$$

Measure decay rate of to get neutrino absolute mass scale

- G are calculable phase space factors
- M are nuclear physics matrix elements
- m_ν is the effective Majorana mass

Energy $Q = 2.039$ MeV
The MAJORANA Approach to $\beta\beta$ Detection

Ge crystal

Array inside cryostat

Low mass mount

Shield
MAJORANA Favors ^{76}Ge

^{76}Ge offers an excellent combination of capabilities & sensitivities.

- **Ge is the source & detector**
 - maximizes source to total mass ratio
 - Well-understood technologies
 - Excellent energy resolution: 0.16% at 2.039 MeV, 4-keV ROI
 - Advantage for improving signal to background
 - Existing, well-characterized large Ge arrays
- **Demonstrated ability to enrich 7.44% to 86%**
- **Favorable nuclear matrix element**
 - e.g. $<M_{0\nu}> = 3.9$ [Rodin et al. 2005, erratum], 2.6 [Caurier et al. 2007]
- **Slow 2$\nu\beta\beta$ rate ($T_{1/2} = 1.4 \times 10^{21}$ y)**
- **Powerful background rejection technologies**
 - Segmentation, granularity, timing, pulse shape discrimination
- **Best current limit on 0$\nu\beta\beta$ used Ge**
 - IGEX & Heidelberg-Moscow $T_{1/2} > 1.9 \times 10^{25}$ y
MAJORANA Collaboration Goals

Actively pursuing R&D aimed at a ~1 tonne scale 76Ge $0\nu\beta\beta$-decay experiment

- **Technical Goal**: Demonstrate background low enough to justify building a ton-scale experiment

- **Science Goal**: Build a prototype module to test the recent claim of an observation of $0\nu\beta\beta$

- Work cooperatively with the GERDA Collaboration to prepare for a single international ton-scale Ge experiment that combines the best technical features of MAJORANA and GERDA

- Pursue longer term R&D to minimize costs and optimize the schedule for a ton-scale experiment
Goal is to achieve ultra-low backgrounds of less than 1 count per ton of material per year in the Region of Interest (ROI) about the $\beta\beta(0\nu)$ Q-value energy.
Evaluate MAJORANA Design with Initial Module

The MAJORANA DEMONSTRATOR

- Up to 40 kg of Ge crystals
 - Up to 30 kg of 86% enriched ^{76}Ge crystals
 - Detector Technology: P-type, point contact
- 2 independent cryostat
 - Ultra-clean, electro-formed Cu cryostats
 - 20 kg of detectors per cryostat
 - Naturally scalable
- Compact Shield
 - Low-background passive Cu and Pb shield with active muon veto
- Located underground at 4850’ level (4200 m.w.e) at Sanford Lab/DUSEL
- Background goal in the 0νββ peak region of interest (4 keV at 2039 keV) is ~ 1 count/ROI/t-y after analysis cuts and scaled to a 1-tonne experiment.
Prototype Module Probes to 200 meV

- **Expected Sensitivity to 0νββ**
 - for 30 kg enriched material, running 3 years, or 0.09 t-yr of 76Ge exposure
 - $T_{1/2} \geq 1.0 \times 10^{26}$ y (90% CL) Sensitivity to $\langle m_\nu \rangle < 140$ meV (90% CL) [Rod06 erratum] RQRPA NME

![Graph showing expected sensitivity to 0νββ]
MAJORANA Backgrounds

- **Goal:** \(\leq 1 \) event / ton-year in 4 keV ROI
- **Backgrounds:**
 - Natural isotope chains: \(^{232}\text{Th}, \, ^{235}\text{U}, \, ^{238}\text{U}, \text{Rn}\)
 - Cosmic Rays:
 - Activation at surface creates \(^{68}\text{Ge}, \, ^{60}\text{Co}.\)
 - Hard neutrons from cosmic rays in rock and shield.
 - \((n,n'\gamma)\) in Pb, Ge, Cu
 - \(2\nu\beta\beta\)-decays.
- Need factor \(\sim100\) reduction over what has been demonstrated.
- Monte Carlo estimates of acceptable levels

Most backgrounds are multi-site. Signal is single-site.
Background Model

<table>
<thead>
<tr>
<th>Component</th>
<th>Isotope</th>
<th>Gross Rate per Module, 1.9-3 MeV [c/month]</th>
<th>ROI Background (DEMONSTRATOR) [c/ROI/t/y]</th>
<th>ROI Background (tonne scale) [c/ROI/t/y]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium Crystals (enriched)</td>
<td>^{68}Ge</td>
<td>47 (7.6)</td>
<td>0.38</td>
<td>negligible</td>
</tr>
<tr>
<td></td>
<td>^{60}Co</td>
<td>4.2</td>
<td>0.03</td>
<td>negligible</td>
</tr>
<tr>
<td></td>
<td>U/Th</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Cryostat, Inner Cu Shield (EFCu)</td>
<td>$^{208}\text{Tl, 214Bi}$</td>
<td>2.1</td>
<td>0.91</td>
<td>0.48</td>
</tr>
<tr>
<td>Outer Cu Shield</td>
<td>$^{208}\text{Tl, 214Bi}$</td>
<td>0.8</td>
<td>0.40</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>^{60}Co</td>
<td>2.0</td>
<td>0.02</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>Pb Shield</td>
<td>$^{208}\text{Tl, 214Bi}$</td>
<td>0.5</td>
<td>0.40</td>
<td>negligible</td>
</tr>
<tr>
<td>Prompt Cosmogenics</td>
<td>$(n,^8\text{B})$</td>
<td>-</td>
<td>~1</td>
<td>negligible</td>
</tr>
<tr>
<td>All Others</td>
<td></td>
<td>1.2</td>
<td>0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>Totals:</td>
<td></td>
<td>57.8 (18.5)</td>
<td>3.81</td>
<td>1.07</td>
</tr>
</tbody>
</table>
• A solid p-type detector: simpler to fabricate, easier handle, instrument, very low capacitance (~1pF).

• The longer drift distance in the PPC stretches the pulse leading to a clear indication of a multiple site event.

• Advantage of segmented detectors, without extra complexity and backgrounds.

• Low energy threshold permits additional physics applications: e.g. Dark Matter, Axions
P-type Point Contact Detectors

Rising edge
“stretched” in time
⇒ improved PSA

PPC detectors have extremely low energy threshold

Typical coaxial HPGe

PPC

- Cu K-shell BE (65Zn EC)
 - 8.98 keV
 - (50% involve E = 1115 keV)

- Ga K-shell BE (68,71Ge EC)
 - 10.36 keV

- Zn K-shell BE (65,67,68Ga EC)
 - 9.66 keV

- Ge K-shell BE (73As EC)
 - 11.10 keV

Mostly Multiple Site Interaction

Single Site (DEP) Interaction

- Raw Th spectrum
- After TFA peak count + width cut

- V. E. Guiseppe

Barbeau et al., JCAP 09 (2007) 009
arXiv:0807.0879v4 CoGeNT Collaboration

NOW 2010
Front End Electronics and Cables

- Requires materials very low in radioactive impurities
- Trace proximity of traces provides ~ 1 pF
- Silica or sapphire substrate provides thermal control
- Amorphous Ge resistor: deposit in H gives proper resistance at low temperature

Custom Parylene coated wires

1 mm
String and Detector Mount Testing

Single Detector Test with PPC

- Parylene Cable
- Front End Board

Thermal Testing
Pb excitations

- Specific Pb gamma rays are problematic backgrounds
 - 206Pb has a 2041-keV γ ray
 - 207Pb has a 3062-keV γ ray
 - 208Pb has a 3060-keV γ ray

- The DEP of the \sim3062 keV γ ray is a single site energy deposit at $\beta\beta$ Q-value

- Neutron interactions in Pb can excite these levels

- Cross sections unknown
Measured gamma-ray production cross sections from a Pb target in a neutron beam at LANSCE

\[\text{natPb}(n,\gamma)\text{Pb}^{206} \text{Pb} \text{ 2041 keV} \]

\[\text{natPb}(n,\gamma)\text{Pb}^{207,208} \text{Pb} \text{ 3062 keV} \]

Other cross sections in Cu and Ge being measured

V.E. Guisepppe et al. (2009) PRC 79, 054604
Cosmic Activation of 76Ge

Activation rate measured by placing a 76Ge sample and a HPGe detector in a high-intensity neutron beam (LANSCE)

S. R. Elliott et al, arXiv:0912.3748
Electroforming Cu
MAJORANA Lab Space

Design of underground space at Sanford Lab 4850’ level Davis Campus

Clean Machine Shop

Electroforming

Detector Hall
MAJORANA Status

Funded by DOE Nuclear Physics & NSF Particle and Nuclear Astrophysics

- **Progress towards DEMONSTRATOR Module**
 - 20-kg of $^{\text{nat}}$Ge modified BEGe p-type, point contact (10 kg in-hand and remaining on order and arriving)
 - Variety of PPC prototypes underground
 - Detector string prototypes being tested
 - Assay and selection of materials
 - Interim electro-forming facility at 4850’ level of Sanford Lab and underground facility at PNNL
 - DEMONSTRATOR Lab excavated
 - Ge refinement laboratory being established in Oak Ridge, TN
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter

Duke University, Durham, North Carolina, and TUNL
Matthew Busch, James Esterline, Mary Kidd, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusey, Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley
Mark Amman, Marc Bergevin, Yuen-Dat Chan, Jason Detwiler, Brian Fujikawa, James Loach, Paul Luke, Ryan Martin, Alan Poon, Gersende Prior, Jing Qian, Kai Vetter, Harold Yaver, Sergio Zimmerman

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Steven Elliott, Victor M. Gehman, Andrew Hime, Kieth Rielage, Larry Rodriguez, Harry Salazar, David Steele

North Carolina State University, Raleigh, North Carolina and TUNL
Henning Back, Lance Leviner, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Fred Bertrand, Greg Capps, Ren Cooper, Kim Jeskie, David Radford, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji

Pacific Northwest National Laboratory, Richland, Washington
Craig Aalseth, James Ely, Jim Fast, Erin Fuller, Eric Hoppe, Todd Hossbach, Marty Keillor, Jeremy Kephart, Richard T. Kouzes, Harry Miley, John Orrell

Queen’s University, Kingston, Ontario
Art McDonald

South Dakota School of Mines and Technology, Rapid City, South Dakota
Xinhua Bai, Haiping Hong, Stanley Howard, Dana Medlin, Vladimir Sobolev

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of Chicago, Chicago, Illinois
Juan Collar, Nicole Fields

University of North Carolina, Chapel Hill, North Carolina and TUNL
Padraic Finnerty, Graham Giovanetti, Reyco Henning, Mark Howe, Sean MacMullin, David Phillips II, Jacquie Strain, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Richard Cresswick, Horatio A. Farach, Leila Mizouni

University of South Dakota, Vermillion, South Dakota
Vince Guiseppe, Tina Keller, Thomas Keenan, Dongming Mei, Wenchang Xiang, Chao Zhang

University of Tennessee, Knoxville, Tennessee
William Bugg, Yuri Efremenko

University of Washington, Seattle, Washington
Tom Burritt, Jonathon Diaz, Peter J. Doe, Greg Harper, Robert Johnson, Andreas Knecht, Michael Marino, Mike Miller, David Peterson, R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel, Bret Wolfe

Note: Red text indicates students
P-PCs can study additional physics

• Low energy threshold of \(\sim 100\) eV provides sensitivity to:
 - DM (light/slow WIMPs, Q-balls), CvNS (Reactor, SN \(\nu\ldots\)), axions, e-decay

arXiv:0807.0879v4 CoGeNT Collaboration
Neutrino Hierarchy
Majorana Mass

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

- No mixing

\[\left\langle m_{\beta\beta} \right\rangle = m_{\nu_e} = m_1\]

- With mixing

\[\left\langle m_{\beta\beta} \right\rangle = \sum_{i=1}^{3} |U_{ei}|^2 m_i \varepsilon_i\]

- Beta decay

\[\left\langle m_\beta \right\rangle = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}\]

- Cosmology

\[\sum m_i = \sum m_i\]
Heidelberg-Moscow

47.7 kg y: $T_{1/2}^{2ν} = [1.55 \pm 0.01 \text{(stat)}^{+0.19}_{-0.15} \text{(syst)}] \times 10^{21}$ y

Slide from: J. Detwiler
SORMA West 2008
Heidelberg-Moscow

$35.5 \, \text{kg y}: \quad T_{1/2}^{0\nu} > 1.9 \times 10^{25} \, \text{y} \, (90\% \, \text{CL})$

Slide from:
J. Detwiler
SORMA West 2008

IGEX

116.75 mole year - 8.87 kg·year in 76Ge

Complete data set: $T_{1/2}(0\nu) > 1.13 \times 10^{25}$ yr (90% CL)

Reduced data set: $T_{1/2}(0\nu) > 1.57 \times 10^{25}$ yr (90% CL)

Slide from:
J. Detwiler
SORMA West
2008
71.7 kg y
71.7 kg y

\[T_{1/2}^{0\nu} = 1.2 \pm 0.3 \times 10^{25} \text{ y} \]

\[<m_{\nu}> = 0.44 \pm 0.14 \text{ eV} \]

significance: 4.2\sigma

Slide from:
J. Detwiler
SORMA West
2008
Future Data Requirements

• Why wasn’t this claim sufficient to avoid controversy?

• Low statistics of claimed signal - hard to repeat measurement

• Background model uncertainty

• Unidentified lines

• Insufficient auxiliary handles

• Result needs confirmation or repudiation
Background modeling
- Simulated major background sources for detector components using MaGe
- Calculated total backgrounds individually for each detector technology under consideration
- Cu purity of ~0.3 Bq/kg is required; sizeable contribution from 208Tl in the cryostat and shield.
- Higher rejection of segmented designs is roughly balanced by extra readout components.
- P-PC appears to achieve the best backgrounds with minimal readout complexity.