Neutrino Oscillation Workshop

Conca Specchiulla (Otranto, Lecce, Italy) September 4-11, 2010

Leptogenesis and Neutrino Masses

Enrico Nardi

INFN – Laboratori Nazionali di Frascati, Italy

September 5, 2010

Baryogenesis: explaining one single experimental number

$$\eta \equiv \frac{n_B - \bar{n}_B}{n_{\gamma}} = (6.21 \pm 0.16) \times 10^{-10},$$
$$Y_{\Delta B} \equiv \frac{n_B - \bar{n}_B}{s} = (8.75 \pm 0.23) \times 10^{-11}$$

[WMAP, BAO, SN-IA]

 $4.7 \times 10^{-10} \le \eta \le 6.5 \times 10^{-10}, \\ 0.017 \times \le \Omega_B h^2 \le 0.024$

[BBN: Light Elements Abundances]

Baryogenesis: explaining one single experimental number

$$\eta \equiv \frac{n_B - \bar{n}_B}{n_{\gamma}} = (6.21 \pm 0.16) \times 10^{-10},$$
$$Y_{\Delta B} \equiv \frac{n_B - \bar{n}_B}{s} = (8.75 \pm 0.23) \times 10^{-11}$$

[WMAP, BAO, SN-IA]

$$4.7 \times 10^{-10} \le \eta \le 6.5 \times 10^{-10}, \\ 0.017 \times \le \Omega_B h^2 \le 0.024$$

[BBN: Light Elements Abundances]

Particle physics models for baryogenesis relate $Y_{\Delta B}$ to other observables.

Leptogenesis: is a class of scenarios where the Universe baryon asymmetry $(Y_{\Delta B})$ is produced from a lepton asymmetry $(Y_{\Delta L})$ generated in the decays of the heavy SU(2) singlet *seesaw* Majorana neutrinos.

Baryon Asymmetry ⇔ Neutrino Physics

THE SM WITH THE SEESAW

Minimal extension of the SM: add n = 3 singlet neutrinos

$$-\mathcal{L} = \frac{1}{2} M_{N_i} \overline{N}_i^c N_i^c + \lambda_{i\alpha} \overline{N}_i \ell_\alpha \widetilde{H}^\dagger + h_\alpha \overline{e}_\alpha \ell_\alpha H^\dagger + \text{h.c.}$$

Basis: $M_N = \text{diag}(M_1, M_2, M_3)$; diagonal charged lepton Yukawas h_{α}

This explains nicely the suppression of ν masses: $\mathcal{M}_{\nu} = -\lambda^T \frac{\langle H \rangle^2}{M_N} \lambda$

THE SM WITH THE SEESAW

Minimal extension of the SM: add n = 3 singlet neutrinos

$$-\mathcal{L} = \frac{1}{2} M_{N_i} \overline{N}_i^c N_i^c + \lambda_{i\alpha} \overline{N}_i \ell_\alpha \widetilde{H}^\dagger + h_\alpha \overline{e}_\alpha \ell_\alpha H^\dagger + \text{h.c.}$$

Basis: $M_N = \text{diag}(M_1, M_2, M_3)$; diagonal charged lepton Yukawas h_{α}

This explains nicely the suppression of ν masses: $\mathcal{M}_{\nu} = -\lambda^T \frac{\langle H \rangle^2}{M_N} \lambda$

In terms of the diagonal light ν mass-matrix: $m_{\nu} \equiv \text{diag}(m_1, m_2, m_3)$:

$$\lambda_{j\alpha} = \frac{1}{\langle H \rangle} \left[\sqrt{M_N} \cdot R \cdot \sqrt{m_\nu} \cdot U^{\dagger} \right]_{j\alpha} \quad \text{(where } R^T R = 1 \text{ and } UU^{\dagger} = 1\text{)}$$
[Casas Ibarra NPB618 (2001)]

The seesaw model has 18 independent parameters (3 M_i plus 3 + 3 from complex angles in R; 3 m_{ν_i} plus 3 angles and 3 phases in U). 3+6 parameters can be measured (in principle) at low energy, 3+6 are confined to high energy.

- 2. CP: The complex Yukawa couplings $\lambda_{i\alpha}$ induce CP violation in the interference between tree level and loop decay amplitudes.

- 2. CP: The complex Yukawa couplings $\lambda_{i\alpha}$ induce CP violation in the interference between tree level and loop decay amplitudes.

3. Deviations from thermal equilibrium: If $\tau_N \sim t_U(T \sim M_N)$ the *N*'s decay out-of-equilibrium. And since $t_U \sim H^{-1}$ the condition is: $\Gamma_N \sim H|_{T \sim M_N}$.

- 2. CP: The complex Yukawa couplings $\lambda_{i\alpha}$ induce CP violation in the interference between tree level and loop decay amplitudes.

3. Deviations from thermal equilibrium: If $\tau_N \sim t_U(T \sim M_N)$ the *N*'s decay out-of-equilibrium. And since $t_U \sim H^{-1}$ the condition is: $\Gamma_N \sim H|_{T \sim M_N}$.

Whether leptogenesis can explain the baryon asymmetry of the Universe, is basically a quantitative question.

No asymmetry can be generated in thermal equilibrium

[S. Weinberg, PRL42 (1979), p.850 (2009)]

Consider the one-family SM: $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, u, d, \ell = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, e, H, N$

We can have 6 chemical potentials: $Q \equiv \mu_Q = \mu_{u_L} = \mu_{d_L}; u \equiv \mu_{u_R}; \dots$ since for Majorana neutrinos the chempot vanishes: $M_N \neq 0 \Rightarrow \mu_N = 0$

Yukawa reactions can give 3 chemical equilibrium conditions:

$$Q + H = u \qquad \qquad Q - H = d \qquad \qquad \ell - H = e$$

Plus 1 from sphaleron chemical equilibrium (effective operator $\mathcal{O}_{EW} = QQQ\ell$)

$$(B+L)_{SU(2)} = 0 \qquad \Rightarrow \qquad 3Q+\ell = 0$$

Plus 1 constraint from hypercharge conservation (global neutrality):

$$\mathcal{Y}_{\text{tot}} = \sum_{\phi} \Delta n_{\phi} y_{\phi} = \text{const} \qquad \Rightarrow \qquad \sum_{f} g_{\phi} \mu_{\phi} y_{\phi} = 0$$

No asymmetry can be generated in thermal equilibrium

[S. Weinberg, PRL42 (1979), p.850 (2009)]

Consider the one-family SM: $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, u, d, \ell = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, e, H, N$

We can have **6** chemical potentials: $Q \equiv \mu_Q = \mu_{u_L} = \mu_{d_L}; u \equiv \mu_{u_R}; \dots$ since for Majorana neutrinos the chempot vanishes: $M_N \neq 0 \Rightarrow \mu_N = 0$

Yukawa reactions can give 3 chemical equilibrium conditions:

$$Q + H = u \qquad \qquad Q - H = d \qquad \qquad \ell - H = e$$

Plus 1 from sphaleron chemical equilibrium (effective operator $\mathcal{O}_{EW} = QQQ\ell$)

$$(B+L)_{SU(2)} = 0 \qquad \Rightarrow \qquad 3Q+\ell=0$$

Plus 1 constraint from hypercharge conservation (global neutrality):

$$\mathcal{Y}_{\text{tot}} = \sum_{\phi} \Delta n_{\phi} y_{\phi} = \text{const} \qquad \Rightarrow \qquad \sum_{f} g_{\phi} \mu_{\phi} y_{\phi} = 0$$

Adding *N* Yukawa chemical equilibrium:

$$\ell + H = 0 \Rightarrow Q, u, d, \ell, e, H = 0!$$

No asymmetry can be generated in thermal equilibrium

[S. Weinberg, PRL42 (1979), p.850 (2009)]

Consider the one-family SM:
$$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, u, d, \ell = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, e, H, N$$

We can have **6** chemical potentials: $Q \equiv \mu_Q = \mu_{u_L} = \mu_{d_L}; u \equiv \mu_{u_R}; \dots$ since for Majorana neutrinos the chempot vanishes: $M_N \neq 0 \Rightarrow \mu_N = 0$

Yukawa reactions can give 3 chemical equilibrium conditions:

$$Q + H = u \qquad \qquad Q - H = d \qquad \qquad \ell - H = e$$

Plus 1 from sphaleron chemical equilibrium (effective operator $\mathcal{O}_{EW} = QQQ\ell$)

$$(B+L)_{SU(2)} = 0 \qquad \Rightarrow \qquad 3Q+\ell = 0$$

Plus 1 constraint from hypercharge conservation (global neutrality):

$$\mathcal{Y}_{\text{tot}} = \sum_{\phi} \Delta n_{\phi} y_{\phi} = \text{const} \qquad \Rightarrow \qquad \sum_{f} g_{\phi} \mu_{\phi} y_{\phi} = 0$$

Chemical equilibrium \Leftrightarrow conservation law: $h_e \rightarrow 0 \quad \Leftrightarrow \quad \Delta n_e = 0$ $\Gamma_{sphal} \rightarrow 0 \quad \Leftrightarrow \quad \Delta B = 0$

At each temperature, one chempot (ℓ) is sufficient to describe the asymmetries.

Open parenthesis: Supersymmetric Leptogenesis

[C.S. Fong, M.C. Gonzalez-Garcia, EN, J. Racker, arXiv:1009.0003]

Leptogenesis can only proceed at temperatures $T \gg 10^8 \,\mathrm{GeV}$ where:

$$\begin{split} \Gamma_{m_{\tilde{g}}} &\sim m_{\tilde{g}}^2/T \ll H \quad \Rightarrow \quad m_{\tilde{g}} \to 0 \quad \Rightarrow \quad \tilde{g} \neq 0, \\ \Gamma_{\mu} &\sim \ \mu^2/T \ll H \quad \Rightarrow \ \mu_{H_u H_d} \to 0 \quad \Rightarrow \quad H_u + H_d \neq 0, \end{split}$$

Open parenthesis: Supersymmetric Leptogenesis

[C.S. Fong, M.C. Gonzalez-Garcia, EN, J. Racker, arXiv:1009.0003]

Leptogenesis can only proceed at temperatures $T \gg 10^8 \,\mathrm{GeV}$ where:

$\Gamma_{m_{\tilde{g}}} \sim m_{\tilde{g}}^2/T \ll H$	$\Rightarrow m_{\tilde{g}} \to 0$	\Rightarrow	$ ilde{g} eq 0$,
$\Gamma_{\mu} \sim \mu^2 / T \ll H$	$\Rightarrow \mu_{H_uH_d} \rightarrow 0$	\Rightarrow	$H_u + H_d \neq 0$,

Both these new symmetries have mixed SU(2) and SU(3) anomalies: [Ibañez & Quevedo: PLB 283, 261 (1992)]

 $\mathcal{O}_{EW} \Rightarrow \widetilde{\mathcal{O}}_{EW} = \Pi_{\alpha} (QQQ\ell_{\alpha}) \tilde{H}_{u} \tilde{H}_{d} \tilde{W}^{4} \qquad \mathcal{A}(R_{3}) = \mathcal{A}(R - 3PQ) = 0$ $\mathcal{O}_{QCD} \Rightarrow \widetilde{\mathcal{O}}_{QCD} = \Pi_{i} (QQu^{c}d^{c})_{i} \tilde{g}^{6} \qquad \mathcal{A}(R_{2}) = \mathcal{A}(R - 2PQ) = 0$

Open parenthesis: Supersymmetric Leptogenesis

[C.S. Fong, M.C. Gonzalez-Garcia, EN, J. Racker, arXiv:1009.0003]

Leptogenesis can only proceed at temperatures $T \gg 10^8 \,\mathrm{GeV}$ where:

$\Gamma_{m_{\tilde{g}}} \sim m_{\tilde{g}}^2 / T \ll H$	$\Rightarrow m_{\tilde{g}} \to 0$	\Rightarrow	$ ilde{g} eq 0$,
$\Gamma_{\mu} \sim \mu^2 / T \ll H$	$\Rightarrow \mu_{H_uH_d} \to 0$	\Rightarrow	$H_u + H_d \neq 0$,

Both these new symmetries have mixed SU(2) and SU(3) anomalies: [Ibañez & Quevedo: PLB 283, 261 (1992)]

 $\mathcal{O}_{EW} \quad \Rightarrow \quad \widetilde{\mathcal{O}}_{EW} = \Pi_{\alpha}(QQQ\ell_{\alpha}) \ \widetilde{H}_{u}\widetilde{H}_{d}\widetilde{W}^{4}$ $\mathcal{A}(R_3) = \mathcal{A}(R - 3PQ) = 0$ $\mathcal{O}_{QCD} \Rightarrow \widetilde{\mathcal{O}}_{QCD} = \prod_i (QQu^c d^c)_i \tilde{q}^6$ $\mathcal{A}(R_2) = \mathcal{A}(R - 2PQ) = 0$

We end up with a leptogenesis picture quite different from the usual one:

- Particle sparticle non-superequilibration:
- $\Delta \mathcal{R} = 0$ • A new global charge neutrality condition $(\mathcal{R} = \frac{5}{3}B - L + R_2)$
- The sneutrino density asymmetry $\Delta_{\tilde{N}} = n_{\tilde{N}} - n_{\tilde{N}*}$ joins the leptonic asymmetries $\Delta_{\alpha} = \frac{B}{3} - L_{\alpha}$ as a new independent quantity [...admittedly, with no striking numerical consequences ...]

 $\mu_{ ilde{\psi}} = \mu_{\psi} \pm \widetilde{g}$

Coming back to neutrino masses ...

<u>Sakharov III:</u> The *N* lifetime Γ_N^{-1} should be of the order of the Universe lifetime H^{-1} at the time when $T \sim M$.

Does this require a specific choice of parameters ? Of course !

Coming back to neutrino masses ...

<u>Sakharov III:</u> The *N* lifetime Γ_N^{-1} should be of the order of the Universe lifetime H^{-1} at the time when $T \sim M$.

Does this require a specific choice of parameters ? Of course !

$$\begin{split} \Gamma_N &= \frac{M}{16\pi} \left(\lambda \lambda^{\dagger} \right)_{11} \quad \text{by rescaling} \quad \widetilde{m} \equiv 16\pi \frac{v^2}{M^2} \times \Gamma_N = \frac{v^2}{M} \left(\lambda \lambda^{\dagger} \right)_{11} \\ H &= \sqrt{\frac{8\pi G_N \rho}{3}} \simeq 1.7 \sqrt{g_*} \frac{T^2}{M_P} \quad m_* \equiv 16\pi \frac{v^2}{M^2} \times H(M) \approx 10^{-3} \text{eV} \\ \widetilde{m}(\geq m_1) \approx \sqrt{\Delta m_{\odot}^2}, \sqrt{\Delta m_{\oplus}^2} \quad \text{is of the optimal size to realize Sakharov III} \end{split}$$

Coming back to neutrino masses ...

<u>Sakharov III:</u> The *N* lifetime Γ_N^{-1} should be of the order of the Universe lifetime H^{-1} at the time when $T \sim M$.

Does this require a specific choice of parameters ? Of course !

150

125

100

75

50

25

 $\widetilde{m} \equiv 16\pi \frac{v^2}{M^2} \times \Gamma_N = \frac{v^2}{M} \left(\lambda \lambda^{\dagger}\right)_{11}$ $\Gamma_N = rac{M}{16\pi} \left(\lambda\lambda^\dagger
ight)_{11}$ by rescaling $H = \sqrt{\frac{8\pi G_N \rho}{3}} \simeq 1.7 \sqrt{g_*} \frac{T^2}{M_P}$ $m_* \equiv 16\pi \frac{v^2}{M^2} \times H(M) \approx 10^{-3} \text{eV}$ $\widetilde{m}(\geq m_1) \approx \sqrt{\Delta m_{\odot}^2}, \sqrt{\Delta m_{\oplus}^2}$ is of the optimal size to realize Sakharov III No. of papers containing ' leptogenesis' in the title (tot.: 387) No. of papers referring to Phys. Lett. B174, 45 (1986) (tot.: 1058) Experimental confirmation of $m_{\nu} \neq 0$ in the correct mass range for LeptoG: \implies burst of lepto-papers around Y2K.

NOW 2010 – Leptogenesis and neutrino masses – p. 7

Do we have a limit on m_{ν} from LeptoG ? The DI bound:

[S. Davidson & A. Ibarra, PLB 535 (2002)]

[W. Buchmüller, P. Di Bari& M. Plümacher; S. Blanchet & P. Di Bari;] [T. Hambye, Y. Lin, A. Notari, M. Papucci & A. Strumia; ...]

Computation of $\epsilon_{\alpha} = \frac{\Gamma_{\ell_{\alpha}} - \Gamma_{\bar{\ell}_{\alpha}}}{\Gamma_{N}}$ (<u>vertex</u> + <u>self-energy</u>) yields :

 $D_5 \Rightarrow$ neutrino mass operator; $D_6 \Rightarrow$ non unitarity in lepton mixing; $D_7 \Rightarrow$ spoils the DI bound.

Do we have a limit on m_{ν} from LeptoG ? The DI bound:

[S. Davidson & A. Ibarra, PLB 535 (2002)]

[W. Buchmüller, P. Di Bari& M. Plümacher; S. Blanchet & P. Di Bari;] [T. Hambye, Y. Lin, A. Notari, M. Papucci & A. Strumia; ...]

Computation of $\epsilon_{\alpha} = \frac{\Gamma_{\ell_{\alpha}} - \Gamma_{\bar{\ell}_{\alpha}}}{\Gamma_{N}}$ (<u>vertex</u> + <u>self-energy</u>) yields :

 $D_5 \Rightarrow$ neutrino mass operator; $D_6 \Rightarrow$ non unitarity in lepton mixing; $D_7 \Rightarrow$ spoils the DI bound.

DI:
$$\left|\epsilon^{(D_5)}\right| = \left|\sum_{\alpha} \epsilon_{\alpha}^{(D_5)}\right| \le \frac{3}{16\pi} \frac{M_1}{v^2} (m_3 - m_1) \xrightarrow{m_3 \approx m_1} \left|\epsilon^{(D_5)}\right| \le \frac{3}{16\pi} \frac{\Delta m_{\oplus}^2}{2v^2} \frac{M_1}{m_3}$$

Do we have a limit on m_{ν} from LeptoG ? The DI bound:

[S. Davidson & A. Ibarra, PLB 535 (2002)]

[W. Buchmüller, P. Di Bari& M. Plümacher; S. Blanchet & P. Di Bari;] [T. Hambye, Y. Lin, A. Notari, M. Papucci & A. Strumia; ...]

Computation of $\epsilon_{\alpha} = \frac{\Gamma_{\ell_{\alpha}} - \Gamma_{\bar{\ell}_{\alpha}}}{\Gamma_{N}}$ (<u>vertex</u> + <u>self-energy</u>) yields :

 $D_5 \Rightarrow$ neutrino mass operator; $D_6 \Rightarrow$ non unitarity in lepton mixing; $D_7 \Rightarrow$ spoils the DI bound.

DI:
$$\left|\epsilon^{(D_5)}\right| = \left|\sum_{\alpha} \epsilon_{\alpha}^{(D_5)}\right| \le \frac{3}{16\pi} \frac{M_1}{v^2} (m_3 - m_1) \xrightarrow{m_3 \approx m_1} \left|\epsilon^{(D_5)}\right| \le \frac{3}{16\pi} \frac{\Delta m_{\oplus}^2}{2v^2} \frac{M_1}{m_3}$$

- Holds only for large hierarchies $M_1 \gg M_{2,3}$. (D_7 can dominate when $m_3 m_1 \approx 0$).
- Applies only in the unflavored regime $T\gtrsim 10^{12}\,{
 m GeV}$. (No DI for flavored ϵ_{lpha} .)
- Applies only if leptogenesis is N_1 dominated. (No DI for the heavier sneutrinos $\epsilon_{2,3}$.)

Still, if $m_{\nu}^{\text{obs}} > m_{\nu}^{\text{max}}$ (cosmology?) one of the above conditions is not realized.

What is the Limit? – (CP asymmetry and collision diagrams)

[L.A.Muñoz, EN & J.Noreña, unpublished]

Network of (unflavored) Boltzmann equations

1.
$$\dot{Y}_N = -\left(\frac{Y_N}{Y_N^{eq}} - 1\right) \left(\gamma_D + 2\gamma_{Ss} + 4\gamma_{St}\right),$$

2. $\dot{Y}_{\Delta L} = \left(\frac{Y_N}{Y_N^{eq}} - 1\right) \epsilon_1 \gamma_D - \left[2y_\ell + \left(y_t - y_{Q_3}\right) \left(\frac{Y_N}{Y_N^{eq}} + 1\right)\right] \gamma_{St}$
 $- \left(\frac{Y_N}{Y_N^{eq}} y_\ell + y_t - y_{Q_3}\right) \gamma_{Ss} - 2\left(y_\ell + y_H\right) \left(\gamma_{Ns} + \gamma_{Nt}\right) + \dot{Y}_{\Delta L}^{EW}$
3. $\dot{Y}_{\Delta B} = \dot{Y}_{\Delta B}^{EW}$ But sphalerons conserve $B - L$: $\dot{Y}_{\Delta B}^{EW} - \dot{Y}_{\Delta L}^{EW} = 0$

Eliminate the sources $Y_{L,B}^{EW}$ subtracting 2. from 3. and express all asymmetries in terms of B - L:

$$y_{\ell} \equiv -c_{\ell} \frac{Y_{B-L}}{Y^{eq}}$$
; $y_H \equiv -c_H \frac{Y_{B-L}}{Y^{eq}}$ using also: $y_t - y_{Q_3} = \frac{y_H}{2}$

$$\dot{Y}_{B-L} = -\left(\frac{Y_N}{Y_N^{eq}} - 1\right) \left[\epsilon_1 \gamma_D + \left(c_\ell \gamma_{Ss} + \frac{c_H}{2} \gamma_{St}\right) \frac{Y_{B-L}}{Y^{eq}}\right] - \left[\left(2 c_\ell + c_H\right) \left(\gamma_{St} + \frac{1}{2} \gamma_{Ss}\right) + 2 \left(c_\ell + c_H\right) \left(\gamma_{Ns} + \gamma_{Nt}\right)\right] \frac{Y_{B-L}}{Y^{eq}}$$

Network of (unflavored) Boltzmann equations

$$y_{\ell} \equiv -c_{\ell} \frac{Y_{B-L}}{Y^{eq}}; \qquad y_{H} \equiv -c_{H} \frac{Y_{B-L}}{Y^{eq}} \quad \text{using also:} \quad y_{t} - y_{Q_{3}} = \frac{y_{H}}{2}$$
$$\dot{Y}_{B-L} = -\left(\frac{Y_{N}}{Y_{N}^{eq}} - 1\right) \left[\epsilon_{1} \gamma_{D} + \left(c_{\ell} \gamma_{Ss} + \frac{c_{H}}{2} \gamma_{St}\right) \frac{Y_{B-L}}{Y^{eq}}\right] - \left[\left(2 c_{\ell} + c_{H}\right) \left(\gamma_{St} + \frac{1}{2} \gamma_{Ss}\right) + 2\left(c_{\ell} + c_{H}\right) \left(\gamma_{Ns} + \gamma_{Nt}\right)\right] \frac{Y_{B-L}}{Y^{eq}}$$

The leptogenesis limit on m_{ν_3} . (Relevance of Higgs effects)

[L.A.Muñoz, EN & J.Noreña, unpublished]

- Vertical axis: the lightest heavy neutrino mass M_1 (GeV);
- Horizontal axis: the "washout parameter" $\tilde{m}_1 = v^2 \frac{(\lambda \lambda^{\dagger})_{11}}{M_1}$ (GeV).

 M_1 - \tilde{m}_1 values yielding successful leptogenesis, for different values of m_{ν_3} (3- σ)

- Right picture: Effects of the Higgs asymmetry neglected $(c_H = 0)$. Small, medium, large points: $m_{\nu_3} = 0.161, 0.162, 0.163 \text{ eV}$.
- Left picture: Effects of the Higgs asymmetry included $(c_H = -1/3)$. Small, medium, large points: $m_{\nu_3} = 0.130, 0.131, 0.132 \text{ eV}$.

$$m_{\nu_3}^{\rm max} = 0.13 \,{\rm eV}$$

$$\widetilde{m}_1^{\max} = 0.28 \,\mathrm{eV}$$

Recap: Mass limits in Basic Leptogenesis (Seesaw type I):

- The One Flavor Regime ($T\gtrsim 10^{12}\,{
 m GeV}$): Constraints
 - ★ If N's are strongly hierarchical, the DI limit on the maximum CP asymmetry for N_1 holds, and $m_{\nu}^{\text{max}} = 0.13 \,\text{eV}$.
 - If light N's are only mildly hierarchical or degenerate, there is NO BOUND on m_{ν} from the requirement of successful leptogenesis!
- Leptogenesis with flavors:
 - Additional sources of CP violation: it can easily be $\epsilon_{\alpha} > \epsilon$.
 - We can have successful leptogenesis also for degenerate light neutrinos and for a wider range for the washout parameter \tilde{m}_1 .
 - There is NO BOUND on absolute scale of light neutrinos.
- Leptogenesis with heavy flavors N_2 and N_3 can be successful with:
 - \bigstar N_1 in the decoupled regime $\epsilon_1 \approx 0$, $\tilde{m}_1 \ll m_*$. $\epsilon_{2,3}$ dominate.
 - \clubsuit N₁ in a strongly coupled regime, if $\ell_{2,3}$ are strongly misaligned with ℓ_1 .
 - In both cases there is NO BOUND on absolute scale of light neutrinos.

Beyond SM + type 1 seesaw, and beyond the seesaw

SUSY Leptogenesis

- Alternative mechanisms: Soft Leptogenesis can be successful at much lower scale, because has new sources of CP.
- Alternative mechanisms: Affleck-Dine
- Different types of Seesaw:

 - Type I seesaw (standard: $SU(2)_L$ singlets Majorana neutrinos)
 - **Type II seesaw (** $SU(2)_L$ scalar triplet)
 - **Type III seesaw (** $SU(2)_L$ fermion triplet)
- Dirac Leptogenesis

Leptogenesis without lepton number violation

Leptogenesis: proving vs. disproving.

Direct tests: Produce *N*'s and measure the *CP* asymmetry in their decays

$$m_{\nu} \sim \frac{\lambda^2 v^2}{M_N} \sim \left(\frac{\lambda}{10^{-6}}\right)^2 \left(\frac{1 \text{ TeV}}{M_N}\right) \sqrt{\Delta m_{atm}^2}$$

Not possible!

Leptogenesis: proving vs. disproving.

Direct tests: Produce *N*'s and measure the *CP* asymmetry in their decays

$$m_{\nu} \sim \frac{\lambda^2 v^2}{M_N} \sim \left(\frac{\lambda}{10^{-6}}\right)^2 \left(\frac{1 \text{ TeV}}{M_N}\right) \sqrt{\Delta m_{atm}^2}$$
 Not possible !

A direct proof: At $T \gtrsim \Lambda_{EW}$ sphalerons relate *B* and *L*: $\Delta L \approx -2 \times \Delta B$

Baryogenesis: $\Delta B \Rightarrow \Delta L$ thus necessarily $\Delta L_e = \Delta L_\mu = \Delta L_\tau$ Leptogenesis. $\Delta L \Rightarrow \Delta B$: almost unavoidably $\Delta L_e \neq \Delta L_\mu \neq \Delta L_\tau$ ($T \gg m_\nu$)

However, for non-relativistic Majorana neutrinos the ΔL information is lost, and since today $T_{\nu} \sim 10^{-4} \,\mathrm{eV} \ll \Delta m_{atm,sol}^2 \dots$ Not possible ! Leptogenesis: proving vs. disproving.

Direct tests: Produce *N*'s and measure the *CP* asymmetry in their decays

$$m_{\nu} \sim \frac{\lambda^2 v^2}{M_N} \sim \left(\frac{\lambda}{10^{-6}}\right)^2 \left(\frac{1 \,\text{TeV}}{M_N}\right) \sqrt{\Delta m_{atm}^2}$$
 Not possible!

A direct proof: At $T \gtrsim \Lambda_{EW}$ sphalerons relate *B* and *L*: $\Delta L \approx -2 \times \Delta B$

Baryogenesis: $\Delta B \Rightarrow \Delta L$ thus necessarily $\Delta L_e = \Delta L_\mu = \Delta L_\tau$ *Leptogenesis.* $\Delta L \Rightarrow \Delta B$: almost unavoidably $\Delta L_e \neq \Delta L_\mu \neq \Delta L_\tau$ ($T \gg m_\nu$)

However, for non-relativistic Majorana neutrinos the ΔL information is lost, and since today $T_{\nu} \sim 10^{-4} \,\mathrm{eV} \ll \Delta m_{atm,sol}^2 \dots$ Not possible !

Indirect tests: Reconstruct the complete seesaw model 18 parameters vs. 9 observables : $3m_{\nu} + 3\theta_{ij} + \delta, \alpha_1, \alpha_2$ Not possible! **Can theory help?** *yes... if nature is kind to us*

- Neutrinos: The hierarchy is milder than for charged fermions (the spectrum could be quasi-degenerate)
- Two mixing angles are large and one maybe maximal.
- Are these hints for a non-Abelian flavor symmetry in the ν sector?

Can theory help? *yes... if nature is kind to us*

- Neutrinos: The hierarchy is milder than for charged fermions (the spectrum could be quasi-degenerate)
- Two mixing angles are large and one maybe maximal.
- Are these hints for a non-Abelian flavor symmetry in the ν sector?

Non-Abelian flavor symmetry

Large reduction in the number of (seesaw) parameters \downarrow New connections between LE observables and HE quantities \downarrow New information on crucial HE leptogenesis parameters

[See S. Morisi talk (Monday, Branch V)]

<u>Recent works:</u> Jenkins & Manohar; E. Bertuzzo, P. Di Bari, F. Feruglio, EN; Hagedorn, Molinaro & Petcov; D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo, S. Morisi,; Gonzalez Felipe & Serodio.

About future experiments? *We can hope for circumstantial evidences...*

by proving that (some of) the Sakharov conditions are (likely to be) satisfied:

1. <u>*L* violation</u>: Is provided by the Majorana nature of the N's: $\ell_{\alpha}\phi \leftrightarrow N \leftrightarrow \bar{\ell}_{\beta}\bar{\phi}$

Experimentally: we hope to see $0\nu 2\beta$ decays (requires IH or quasi degenerate ν 's) [lachiello & Giuliani talks, and afternoon's Branch I]

If $m_{
u}$ is measured $@~0.2\,{
m eV}$ (Cosmology? - Cooray, Melchiorri) and 0
u2eta is not seen?

Leptogenesis would be strongly disfavored (or ruled out)

by proving that (some of) the Sakharov conditions are (likely to be) satisfied:

1. <u>*L* violation</u>: Is provided by the Majorana nature of the *N*'s: $\ell_{\alpha}\phi \leftrightarrow N \leftrightarrow \bar{\ell}_{\beta}\bar{\phi}$

Experimentally: we hope to see $0\nu 2\beta$ decays (requires IH or quasi degenerate ν 's) [lachiello & Giuliani talks, and afternoon's Branch I]

If m_{ν} is measured @ $0.2 \,\text{eV}$ (Cosmology? - Cooray, Melchiorri) and $0\nu 2\beta$ is not seen? Leptogenesis would be strongly disfavored (or ruled out)

2. <u>*C* & *CP* violation:</u> Experimentally, we hope to see \mathcal{CP}_L (Dirac phase only) If \mathcal{CP}_L is observed: Circumstantial evidence for LG (not a final proof) If \mathcal{CP}_L is not observed: LG is not disproved: Small δ phase, small θ_{13} , etc... by proving that (some of) the Sakharov conditions are (likely to be) satisfied:

1. <u>*L* violation</u>: Is provided by the Majorana nature of the *N*'s: $\ell_{\alpha}\phi \leftrightarrow N \leftrightarrow \bar{\ell}_{\beta}\bar{\phi}$

Experimentally: we hope to see $0\nu 2\beta$ decays (requires IH or quasi degenerate ν 's) [lachiello & Giuliani talks, and afternoon's Branch I]

If m_{ν} is measured @ $0.2 \,\text{eV}$ (Cosmology? - Cooray, Melchiorri) and $0\nu 2\beta$ is not seen? Leptogenesis would be strongly disfavored (or ruled out)

- 2. <u>*C* & *CP* violation:</u> Experimentally, we hope to see \mathcal{CP}_L (Dirac phase only) If \mathcal{CP}_L is observed: Circumstantial evidence for LG (not a final proof) If \mathcal{CP}_L is not observed: LG is not disproved: Small δ phase, small θ_{13} , etc...
- 3. Out of equilibrium dynamics in the early Universe: (apparently the most difficult) We have seen that can be satisfied for $\tilde{m}_1 \sim 10^{-3} \div 10^{-1} \text{ eV}$ (optimal values) This could well be the first circumstantial evidence !

Conclusions and Outlook

- Leptogenesis is a very attractive scenario to explain $Y_{\Delta B}$.
- Recent developments have shown that *quantitative* and *qualitative* estimates of $Y_{\Delta B}$ have to take into account lepton flavors and the heavier Majorana neutrinos.
- Implications for neutrino masses $(m_{\nu} \lesssim 0.13 \,\text{eV})$ established in the one-flavor regime and for hierarchical N's do not hold in general.

Conclusions and Outlook

- Leptogenesis is a very attractive scenario to explain $Y_{\Delta B}$.
- Recent developments have shown that *quantitative* and *qualitative* estimates of $Y_{\Delta B}$ have to take into account lepton flavors and the heavier Majorana neutrinos.
- Implications for neutrino masses $(m_{\nu} \lesssim 0.13 \,\text{eV})$ established in the one-flavor regime and for hierarchical N's do not hold in general.
- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis but still not prove it.
- Failure of revealing CP_L will not disprove LG.
- If $m_{\nu} \gtrsim 0.1 \,\mathrm{eV}$ is established, failure of revealing $0\nu 2\beta$ -decays will seriously endanger the Majorana ν hypothesis and strongly disfavor LG.

Conclusions and Outlook

- Leptogenesis is a very attractive scenario to explain $Y_{\Delta B}$.
- Recent developments have shown that *quantitative* and *qualitative* estimates of $Y_{\Delta B}$ have to take into account lepton flavors and the heavier Majorana neutrinos.
- Implications for neutrino masses $(m_{\nu} \lesssim 0.13 \,\text{eV})$ established in the one-flavor regime and for hierarchical N's do not hold in general.
- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis but still not prove it.
- Failure of revealing CP_L will not disprove LG.
- If $m_{\nu} \gtrsim 0.1 \,\mathrm{eV}$ is established, failure of revealing $0\nu 2\beta$ -decays will seriously endanger the Majorana ν hypothesis and strongly disfavor LG.
- Finally, LHC + EDM experiments will be able to establish or falsify EWB. This will indirectly determine the relevance of future LG studies.

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

Casas-Ibarra parameterization for the *N* Yukawa couplings [NPB618 (2001)] $\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

Casas-Ibarra parameterization for the *N* Yukawa couplings [NPB618 (2001)] $\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$

The flavor asymmetry ϵ_{α} is prop. to the imaginary part of:

$$\lambda_{\alpha 1}^{*} \lambda_{\alpha K} \left(\lambda^{\dagger} \lambda\right)_{1K} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right) \left(\sum_{i,j} \sqrt{m_{\nu_{j}} m_{\nu_{i}}} R_{j1}^{*} R_{iK} U_{j\alpha} U_{i\alpha}^{*}\right)^{2}$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger} \lambda)_{1K}^{2} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right)^{2}$

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

Casas-Ibarra parameterization for the *N* Yukawa couplings [NPB618 (2001)] $\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$

The flavor asymmetry ϵ_{α} is prop. to the imaginary part of:

$$\lambda_{\alpha 1}^{*}\lambda_{\alpha K}\left(\lambda^{\dagger}\lambda\right)_{1K} = \frac{M_{1}M_{K}}{v^{4}}\left(\sum_{i}m_{\nu_{i}}R_{i1}^{*}R_{iK}\right)\left(\sum_{i,j}\sqrt{m_{\nu_{j}}m_{\nu_{i}}}R_{j1}^{*}R_{iK}U_{j\alpha}U_{i\alpha}^{*}\right)^{2}$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger}\lambda)_{1K}^{2} = \frac{M_{1}M_{K}}{v^{4}}\left(\sum_{i}m_{\nu_{i}}R_{i1}^{*}R_{iK}\right)^{2}$

Assuming that R is real
EN,Nir,Roulet,Racker,JHEP0601,20061: ϵ_{α} depends only on the ν -mix-matrix U !2: $[\epsilon = 0, \text{ but } \epsilon_{\alpha} \neq 0, \text{ and thus } Y_{\Delta B} \neq 0]$

Dedicated studies within this scenario: Branco et al.; Pastore et al.;

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

This can be written in a more simple way by choosing a specific basis

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \,\overline{\ell}_{\alpha} \, N_1 \, H_u + h_{\alpha} \,\overline{\ell}_{\alpha} \, e_{\alpha} \, H_d$$
$$-\mathcal{L}_{\text{Yukawa}} = \lambda_1^* \,\overline{\ell}_1 \, N_1 \, H_u + h_{i\alpha} \,\overline{\ell}_i \, e_{\alpha} \, H_d \quad (i=1, \perp_1, \perp_2)$$

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

This can be written in a more simple way by choosing a specific basis

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \,\overline{\ell}_{\alpha} \, N_1 \, H_u + h_{\alpha} \,\overline{\ell}_{\alpha} \, e_{\alpha} \, H_d$$
$$-\mathcal{L}_{\text{Yukawa}} = \lambda_1^* \,\overline{\ell}_1 \, N_1 \, H_u + h_{i\alpha} \,\overline{\ell}_i \, e_{\alpha} \, H_d \quad (i=1, \perp_1, \perp_2)$$

Different bases give different results. The approx. solution of the BE for LG:

$$\begin{split} Y_{\Delta B} &\approx 10^{-3} \times \eta_{\ell} \cdot \epsilon_{\ell} & \eta_{\ell} \sim \frac{m_{*}}{\tilde{m}_{\ell}} \text{ (strong washout); } \quad \tilde{m}_{\ell} \propto \lambda_{\ell 1}^{*} \lambda_{\ell 1} \\ Y_{\Delta B} &\approx 10^{-3} \times \begin{cases} \sum \eta_{\alpha} \cdot \epsilon_{\alpha} & \text{flavor regime} \\ \sum \eta_{\alpha} \cdot \sum \epsilon_{\alpha} &\equiv \eta \cdot \epsilon & \text{one flavor approximation} \end{cases} \end{split}$$

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

This can be written in a more simple way by choosing a specific basis

$$\begin{split} -\mathcal{L}_{\text{Yukawa}} &= \lambda_{\alpha 1}^* \ \bar{\ell}_{\alpha} \ N_1 \ H_u \ + \ h_{\alpha} \ \bar{\ell}_{\alpha} \ e_{\alpha} \ H_d \qquad \qquad \text{when } T \lesssim 10^{12} \, \text{GeV} \\ -\mathcal{L}_{\text{Yukawa}} &= \lambda_1^* \quad \bar{\ell}_1 \ N_1 \ H_u \qquad \qquad \qquad \text{when } T \gtrsim 10^{12} \, \text{GeV} \end{split}$$

Different bases give different results.

The approx. solution of the BE for LG:

$$\begin{split} Y_{\Delta B} &\approx 10^{-3} \times \eta_{\ell} \cdot \epsilon_{\ell} & \eta_{\ell} \sim \frac{m_{*}}{\tilde{m}_{\ell}} \text{ (strong washout); } \quad \tilde{m}_{\ell} \propto \lambda_{\ell 1}^{*} \lambda_{\ell 1} \\ Y_{\Delta B} &\approx 10^{-3} \times \begin{cases} \sum \eta_{\alpha} \cdot \epsilon_{\alpha} & \text{flavor regime} \\ \sum \eta_{\alpha} \cdot \sum \epsilon_{\alpha} &\equiv \eta \cdot \epsilon & \text{one flavor approximation} \end{cases} \end{split}$$

The physical basis is determined dynamically at each T by the h-reaction rates.

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_1 \ \bar{N}_1 \ell_1 \ H_u + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12}$ GeV, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12}$ GeV, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$ $T < 10^9$ GeV, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau_{\mu}}})$ $(n_f = 3)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12}$ GeV, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$ $T < 10^9$ GeV, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f = 3)$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $P_{\alpha} = |\langle \ell_{\alpha} | \ell_1 \rangle|^2 \left(\bar{P}_{\alpha} = |\langle \bar{\ell}_{\alpha} | \bar{\ell}'_1 \rangle|^2 \right)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12} \text{ GeV}$, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12} \text{ GeV}$, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$ $T < 10^9 \text{ GeV}$, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f = 3)$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $P_{\alpha} = |\langle \ell_{\alpha} | \ell_1 \rangle|^2 \left(\bar{P}_{\alpha} = |\langle \bar{\ell}_{\alpha} | \bar{\ell}'_1 \rangle|^2 \right)$

- With flavor *CP* asymmetries: $\epsilon_{\alpha} = \frac{\Gamma(N_1 \to \ell_{\alpha} H) \overline{\Gamma}(N_1 \to \overline{\ell_{\alpha}} \overline{H})}{\Gamma_{N_1}} = P_{\alpha} \epsilon$
- and flavor dependent washouts: $\tilde{m}_{\alpha} \sim P_{\alpha} \tilde{m}_{1}$
- the asymmetry is enhanced: $Y_{\Delta L} \propto \sum \frac{m_*}{\tilde{m}_{\alpha}} \epsilon_{\alpha} \approx n_f \left(\frac{m_*}{\tilde{m}_1} \epsilon \right)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12} \text{ GeV}$, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12} \text{ GeV}$, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$ $T < 10^9 \text{ GeV}$, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f = 3)$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $P_{\alpha} = |\langle \ell_{\alpha} | \ell_1 \rangle|^2 \left(\bar{P}_{\alpha} = |\langle \bar{\ell}_{\alpha} | \bar{\ell}'_1 \rangle|^2 \right)$

- With flavor *CP* asymmetries: $\epsilon_{\alpha} = \frac{\Gamma(N_1 \to \ell_{\alpha} H) \overline{\Gamma}(N_1 \to \overline{\ell_{\alpha}} \overline{H})}{\Gamma_{N_1}} = P_{\alpha}\epsilon + \frac{\Delta P_{\alpha}}{2}$
- and flavor dependent washouts: $\tilde{m}_{\alpha} \sim P_{\alpha} \tilde{m}_{1}$
- the asymmetry is enhanced: $Y_{\Delta L} \propto \sum \frac{m_*}{\tilde{m}_{\alpha}} \epsilon_{\alpha} \approx n_f \left(\frac{m_*}{\tilde{m}_1}\epsilon\right) + \frac{m_*}{\tilde{m}_1} \sum \frac{\Delta P_{\alpha}}{2P_{\alpha}}$

The most interesting effects are due to the different flavor composition of ℓ_1 , $\overline{\ell}'_1$:

$$CP(\bar{\ell}'_1) \neq \ell_1 \quad \Rightarrow \quad \Delta P_\alpha \equiv P_\alpha - \bar{P}_\alpha \neq 0$$

Two-flavor case: ℓ_{τ} , $\ell_{\perp_{\tau}}$ (10⁹ GeV < T < 10¹² GeV): $|Y_{\Delta(B-L)}|$ versus P_{τ}^{0}

 $|Y_{\Delta(B-L)}|$ (units of $10^{-5}|\epsilon|$) as a function of $P_{\tau}^0 \equiv |\langle \ell_{\tau}|\ell_1\rangle|^2$ in the 2-flavor regime. <u>Dashed:</u> special case in which $P_{\tau} = \bar{P}_{\tau}$. <u>Solid:</u> typical behavior when $P_{\tau} \neq \bar{P}_{\tau}$. The value of $\epsilon_1^{\tau}/\epsilon_1$ (that can be > 1) is marked on the upper *x*-axis.

Purely Flavored Leptogenesis ($\epsilon = 0$ **):** SM+seesaw

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

Purely Flavored Leptogenesis ($\epsilon = 0$ **):** SM+seesaw

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

The flavor asymmetry ϵ_{α} (leading term) \propto the imaginary part of:

$$\lambda_{\alpha 1}^{*} \lambda_{\alpha K} \left(\lambda^{\dagger} \lambda\right)_{1K} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right) \left(\sum_{i,j} \sqrt{m_{\nu_{j}} m_{\nu_{i}}} R_{j1}^{*} R_{iK} U_{j\alpha} U_{i\alpha}^{*}\right)$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger} \lambda)_{1K}^{2} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right)^{2}$

Purely Flavored Leptogenesis ($\epsilon = 0$ **):** SM+seesaw

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

The flavor asymmetry ϵ_{α} (leading term) \propto the imaginary part of:

$$\lambda_{\alpha 1}^{*} \lambda_{\alpha K} \left(\lambda^{\dagger} \lambda\right)_{1K} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right) \left(\sum_{i,j} \sqrt{m_{\nu_{j}} m_{\nu_{i}}} R_{j1}^{*} R_{iK} U_{j\alpha} U_{i\alpha}^{*}\right)$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger} \lambda)_{1K}^{2} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right)^{2}$

Assuming that *R* is real implies surprising results:

1: $\epsilon = 0$, but $\epsilon_{\alpha} \neq 0$, and thus $Y_{\Delta B} \neq 0$ 2: ϵ_{α} depends only on the ν -mix-matrix U !

Recent studies of this scenario: Pastore et al.; Branco et al.;

Purely Flavored Leptogenesis: Beyond the SM+seesaw

[D. Aristizabal, M. Losada, EN, PLB659 (2008)]

Assume a $U(1)_F$ (flavor) symmetry that forbids a direct $\bar{\ell}NH$ coupling, and that the flavor symmetry is still unbroken during LG: $\langle S \rangle = 0$.

$$\tilde{\lambda}_{\alpha K} = \left(h \frac{\langle S \rangle}{M_F} \lambda^{\dagger}\right)_{\alpha K};$$

 $\epsilon = \sum_{\alpha} \epsilon_{\alpha} = 0$

Purely Flavored Leptogenesis: Beyond the SM+seesaw

[D. Aristizabal, M. Losada, EN, PLB659 (2008)]

Assume a $U(1)_F$ (flavor) symmetry that forbids a direct $\overline{\ell}NH$ coupling, and that the flavor symmetry is still unbroken during LG: $\langle S \rangle = 0$.

$$\tilde{\lambda}_{\alpha K} = \left(h \frac{\langle S \rangle}{M_F} \lambda^{\dagger}\right)_{\alpha K};$$

$$\epsilon = \sum_{\alpha} \epsilon_{\alpha} = 0$$

$$\epsilon_{\alpha} = \frac{3}{128\pi} \frac{\mathbb{I}m \sum_{\beta} \left[\left(hr^2 h^{\dagger} \right)_{\beta\alpha} \tilde{\lambda}_{1\beta} \tilde{\lambda}_{1\alpha}^* \right]}{\left(\tilde{\lambda} \tilde{\lambda}^{\dagger} \right)_{11}} \sim \mathcal{O}(h^2);$$

$$\tilde{m}_{\alpha} \sim \mathcal{O}(\tilde{\lambda}^2); \quad m_{\nu} \sim \frac{\tilde{\lambda}^2 v^2}{M_N} \sim \mathcal{O}(\tilde{\lambda}^2)$$

By decoupling ϵ_{α} from \tilde{m}_{α} , m_{ν} the LG $_{10^{-16}}$ scale can be lowered: $M_N \sim$ few TeV.

NOW 2010 - Leptogenesis and neutrino masses - p. 23