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INTRODUCTION



Difficult calculation: Three

 

different scales

1.

 

Particle

 

physics
Weak Lagrangean, L
Transition operator inducing the decay

( ) ( ) ( , )bT p H p f m η=
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Nuclear

 

physics
Matrix elements 

(0 ) ( )M f H p iν =

3.

 

Atomic

 

physics
Kinematical factor
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coupling constants

masses

charge

Q-value



1. PARTICLE PHYSICS

The transition operator T(p)

 

depends on the model of 0νββ

 

decay.
Three scenarios have been considered ¶,§.
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T.Tomoda, Rep. Prog. Phys. 54, 53 (1991).
§

 

Šimkovic

 

et al., Phys. Rev. C60, 055502 (1999).

After the discovery of neutrino oscillations, attention has been

 

focused on the first 
scenario. [In our calculations, we have also considered the other two.]
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F. Šimkovic

 

et al., loc.cit.

Brief review of theory of T(p)
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To lowest order and in momentum space, H(p), can be written as

' '( ) [ ( ) ( ) ]F GT
n n n nH p h p h pτ τ σ σ+ += − + i

Higher order corrections (HOC) induce a tensor term, and modify the Fermi 
and Gamow-Teller terms, producing an operator §
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From the weak interaction Hamiltonian, H, and the weak nucleon current, Jμ

 

, 
one finds the transition operator, T(p), which, for scenario 1, can be written as 

with
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F. Šimkovic

 

et al., Phys. Rev. C60, 055502 (1999).

[The general formulation of Tomoda

 

¶

 

includes more terms, nine in all, 3GT, 
3F, 1T, one pseudoscalar

 

(P) and one recoil (R).]
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T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

and p q=



The form factors                     are given by:
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The finite nucleon size (FNS) is taken into account by taking the coupling 
constants, gV

 

and gA

 

, momentum dependent
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Short range correlations (SRC) are taken into account by convoluting the 
“potential”

 

v(p)

 

with the Jastrow

 

function j(p)

( ) ( ') ( ') 'u p v p p j p dp= −∫

Ã=closure energy=1.12A1/2(MeV)
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called neutrino “potential”, and            listed by Šimkovic

 

et al.

 

§( )h p
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F. Šimkovic, loc.cit.

[Note: Tomoda’s

 

form factors are slightly different from Šimkovic. His formulation is in 
coordinate space, i.e. the form factors are the Fourier transform of those given above.]



Calculation of the “nuclear matrix elements”

 

M(0ν)

Calculations up to 2008:
1.

 

Quasi-particle random phase approximation (QRPA).
Limitations: Cannot address strongly deformed nuclei, for example 150Nd, due to 
the instability of the QRPA equations for large deformations.

2.

 

Shell model (SM).
Limitations: Cannot address nuclei with many particles in the valence shells, for 
example 150Nd, due to the exploding size of the Hamiltonian matrices (>109).

Recent

 

advances

 

>2009:
3.

 

Development of a program to compute 0νββ

 

(and 2νββ) nuclear matrix 
elements in the closure

 

approximation

 

within the framework of the 
microscopic Interacting Boson Model (IBM-2). This approach can be used 
for any nucleus with mass A¥70.

2. NUCLEAR PHYSICS
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THE INTERACTING BOSON MODEL/
THE INTERACTING BOSON FERMION MODEL

A model of even-even nuclei in terms of correlated pairs of protons and neutrons

 

with 
angular momentum J=0,2 treated as bosons (sπ

 

,dπ

 

and sν,

 

,dν

 

), called IBM-2 ¶.
A model of odd-even or odd-odd nuclei in terms of correlated pairs (bosons) and 
unpaired particles, ajπ

 

and ajν

 

,

 

(fermions), called IBFM-2 §.

J=0 s-boson

J=2 d-boson

Unpaired fermions

¶

 

F. Iachello

 

and A. Arima, The Interacting Boson Model, Cambridge University Press, 1987.

§

 

F.Iachello

 

and P. Van Isacker, The Interacting Boson Fermion

 

Model, Cambridge University Press, 1991. 
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All matrix elements, F, GT and T, can be calculated at once using the compact 
expression:

In second quantized form:

Annihilates a pair of neutrons

 
with angular momentum J

Creates a pair of protons

 
with angular momentum J

EVALUATION OF MATRIX ELEMENTS IN IBM-2 ¶

¶

 

J. Barea

 

and F. Iachello, Phys. Rev. C79, 044301 (2009).
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The coefficients A, B are obtained by means of the so-called OAI mapping procedure §

The fermion

 

operator V

 

is then mapped onto the boson space by using: 

§

 

T. Otsuka, A. Arima

 

and F. Iachello, Nucl. Phys. A309, 1 (1978).
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'( ) ( , ') ( , ') ( , ')j j M M M M

B j j d C j j s s d D j j s d dπ π π π π π π π π ππ π× + +

[We have carried out the mapping to next to leading order (NLO)

However, the contribution of the 
additional terms appears to be rather 
small and henceforth neglected.]

Matrix elements of the mapped operators are then evaluated with realistic

 
wave functions of the initial and final nuclei either taken from

 

the literature, 
when available, or obtained from a fit to the observed energies and other 
properties.



RESULTS FOR THE MATRIX ELEMENTS (2009)

Ge

 

Se    Mo    Te     Te

 

Xe

 

Nd

 

Sm

IBM-2 from J. Barea

 

and F. Iachello, Phys. Rev. C79, 044301 (2009), gA

 

=1.25, Jastrow

 

SRC.
QRPA from F. Šimkovic, A Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C77, 045503 
(2008), with gA

 

=1.25, Jastrow

 

SRC.
SM from E. Caurier, J. Menendez, F. Nowacki, and A. Poves, Phys. Rev. Lett. 100, 052503 (2008).

Matrix elements in dimensionless units.



Enhancement in IBM-2 due to pairing

 

correlations

 

(the same correlations 
that make double beta decay at all possible). 

e
e
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A-2

A-2

n n

p p

sν

 

,dν

sπ

 

,dπ

[Also note that since the neutrino is almost massless, the 
“potential”

 

H(r12

 

) is a long range potential, almost 
Coulomb-like. For this reason, it is convenient to calculate 
the matrix elements in momentum space, Horie

 

method §.] 

§

 

H. Horie

 

and K. Sasaki, Prog. Theor. Phys. 25, 475 (1961).
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Estimated sensitivity to input

 

parameter

 

changes:
1.

 

Single-particle energies ¶,§

 

10%
2.

 

Strength of surface delta interaction

 

5%
3.

 

Oscillator parameter

 

5%
4.

 

Closure energy

 

5%

ERROR ANALYSIS

Estimated sensitivity to model

 

assumptions:
1.

 

Truncation to S, D space 1% (spherical nuclei)-10% (deformed nuclei)
2.

 

Isospin

 

purity 1%(GT)-20%(F)-1%(T)

Estimated sensitivity to operator

 

assumptions:
1.

 

Form of the operator

 

5%
2.

 

Finite nuclear size (FNS)

 

2%
3.

 

Short range correlations (SRC)

 

2%

¶

 

This point has been emphasized by J. Suhonen

 

and O. Civitarese, Phys. Lett. B668, 277 (2008).
§

 

New experiments are being done to check the single particle levels in Ge, Se and Te, 
J.P. Schiffer

 

et al., Phys. Rev. Lett. 100, 112501 (2008). 



SIMPLE FEATURES OF IBM-2 CALCULATIONS

1. Mass

 

dependence

(0 ) 2 /389M Aν −≅

Mass dependence of the input parameters:

Strength of the Surface Delta Interaction
Oscillator size
Radius
Closure energy

1
1

1/ 3 2

1/ 3

1/ 2

25 ( )

0.994 ( )
1.2 ( )
1.12 ( )

A A MeV

A fm
R A fm
A A MeV

ν

−

− −

=

=

=

=

Very

 

mild

 

dependence



2. Shell

 

effects

(0 ) 1 1M N N N Nν
π ν π ν π π ν να α≅ + Ω − Ω − +

Neutron number dependence

Simple formula to estimate shell effects: 

0.186
0.114

π ν

π ν

α α
α α

=
=

28-50 shell
50-82 shell

(0 ) 128

(0 ) 130

( ) 1.11
( )

M Te
M Te

ν

ν = IBM-2: 1.11
QRPA: 1.13

This is a major effect: The matrix 
elements are small at the closed shells



3. Deformation

 

effects

Estimated from comparison between a GS calculation (only S pairs) and a 
full IBM-2 calculation (S and D pairs).

76Ge        -19%
128Te

 

-26%
154Sm

 

-32%

Deformation effects always decrease

 

the matrix elements:



76Ge

 

2.479
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1.247
100Mo

 

0.419
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3.243
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0.395
154Sm

 

0.021
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[In some cases, the matrix elements are large. 
Although the kinematical factor hinders the decay 
to the excited state, large matrix elements offer the 
possibility of a direct detection, by looking at the 
g-ray de-exciting the 0+

 

level.]

0+

0+

1.122

0.559

0

11ps

0.5632

12.3ps

76
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MATRIX ELEMENTS TO FIRST EXCITED 0+

 

STATE



RECENT RESULTS (2010)

96Zr 110Pd 116Cd 136Xe 148Nd

76Ge 82Se 100Mo 128Te 130Te 150Nd 154Sm



(i) While QRPA calculations are within our estimated error, 25%,

 

SM 
calculations are not.
Understanding why there is this discrepancy is of crucial

 

importance

 

for 
extracting the average neutrino mass (in case 0νββ

 

would be seen) §.
A study is under way to find the origin of the discrepancy.

(ii) Although we cannot be absolutely confident that the absolute scale is 
correct, we are very confident that the relative values are correct. It is 
very important therefore to do experiments in several nuclei ¶.

COMMENTS

§

 

This point has been emphasized by J. N. Bahcall, H. Murayama, and C. Peña-Garay, Phys. 
Rev. D70, 033012 (2004).
¶

 

This point has been emphasized by E. Fiorini, in Proc. Int. School “Enrico

 

Fermi”, Course 
CLXIX,

 

ed. by A. Covello

 

et al.(IOS

 

Press, Amsterdam, 2008), p.477. 



THE NEXT IMPORTANT PROBLEM: 
RENORMALIZATION OF GA

After agreeing on the nuclear matrix elements, one should consider the next 
important problem, i.e.,
Renormalization

 

of the axial vector coupling constant gA

 

in nuclei.

A well know problem for single b

 

decay where gA, eff

 

~0.7gA

A crucial problem for extraction of the neutrino mass.
gA

 

appears to the fourth power in the half-life!

Origin of the renormalization:
1.

 

Limited model space
2.

 

Missing hadronic

 

degrees of freedom, Δ,…

This is a difficult problem to solve: for case 1 we are 
limited by the size of the matrices (>109); for case 2 we are 
limited by a detailed knowledge of the decay process.
It can only be solved indirectly (by studying 2νββ).

p p

e
e

Δ

π,ρ

n n



Fundamental

 

Process

 

2νbb:
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Z N Z NX Y e ν−

+ −→ + +
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E(MeV)

1+

GT GT

We have done a calculation of 2νββ

 

in the closure

 

approximation

 

and 
find a renormalization of gA,eff

 

~0.7gA

 

.
However, the closure approximation may not be good for 2νββ

 

(only a 
selected number of states contributes to the decay). The average

 

neutrino 
momentum is of the order of 10MeV. We have therefore started a full 
scale calculation.
Also, the renormalization effects could be different in 0νββ

 

than in 2νββ.

[The calculation is similar to that of 0νββ

 

except that the 
neutrino “potential”

 

is different.]
(2 )

2

( )( ) pv p
p

ν δ
=



3. ATOMIC PHYSICS
For an extraction of the neutrino mass and for estimates of the half-life we 
also need the phase-space

 

factor

 

G0ν

 

. A general relativistic formulation was 
given by Tomoda

 

¶

 

and results for selected cases tabulated.

¶

 

T. Tomoda, loc.cit.
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T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).
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[For

 

150Nd decay, the wave function is already highly relativistic, 62/137~0.45]

Brief review of theory of F11
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11 (0) (0)e eF ψ ψ∝

Scattering electron wave functions at 
the nucleus

Non-relativistic:
2

2

2(0)
1 y

y
e π

πψ −=
−

( )
( / )

Zy
v c
α

=

Relativistic:
2(0)ψ diverges

Regularization: uniform charge distribution with 1/31.2 ( )R A fm=
Dependence on Z: ( ) , 3Z βα β≈ ≥

Simple parametrization

 
of Tomoda’s

 

results

Tomoda

 

¶

 

solved the Dirac equation numerically for a uniform distribution

[Because of the complex nature of this calculation and of the resulting strong

 
dependence

 

on

 

Z

 

we are planning to do a new and independent calculation of F11
(0).]  



FINAL RESULTS FOR HALF-LIFE

Nuclear matrix elements from J. Barea

 

and F. Iachello, Phys. Rev. C79, 
044301 (2009) and to be published.
Phase space factors from T. Tomoda, Rep. Prog. Phys. 54, 553 (1991).
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Neutrino

 

mass 
mν

 

= 1 eV

gA

 

=1.25



LIMITS ON NEUTRINO MASS
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Theory: Nuclear matrix elements from J. Barea

 

and F. Iachello, Phys. Rev. C79, 044301 (2009). 
Phase space factors from T. Tomoda, Rep. Prog. Phys. 54, 53 (1991). 

Experimental upper limits:  from a compilation of A. Barabash, arXiv:hep-ex/0608054v1 23 Aug 2006. 
Ge

 

[IGEX], Se and Mo [NEMO-3], Te [CUORICINO], Xe

 

[DAMA].
ä

 

: from H.V. Klapdor-Kleingrothaus

 

et al., Phys. Lett. B586, 198 (2004).

Ge

 

Se          Mo        Te         Xe

 

Nd

Neutrino

 

mass



CONCLUSIONS

•

 

A new program (IBM-2) has been developed to calculate 0νββ

 

(and 2νββ, and 
0νββM) nuclear matrix elements

 

M(0ν)

 

in nuclei with mass A>70 in the closure

 
approximation. Results have been published in 2009 for 76Ge, 82Se,100Mo, 128Te, 
130Te,

 

150Nd and 154Sm. Several new results have been obtained recently (2010) for 
96Zr, 110Pd, 116Cd, 136Xe and 148Nd. [A table

 

of results obtained so far is available

 
for distribution.]

•Matrix elements to first excited 0+

 

states have been also calculated. 

• Attempts are being made to reconcile different calculations within 25%.

• Other effects such as the renormalization of gA

 

are being considered.

• The calculation of the phase-space factors is being revisited.





TABLE OF NUCLEAR MATRIX ELEMENTS (SEP 2010)



EFFECT OF HIGHER ORDER CORRECTIONS
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