LHC as a complementary probe to study $0\nu\beta\beta$ mechanisms?

Neutrino Oscillation Workshop 2010
Conca Specchiulla, Otranto, Italy
4-11 Sept 2010

Steve Chun-Hay Kom
Cavendish Laboratory, Cambridge
Why LHC might be relevant for $0\nu\beta\beta$

Example: same sign di-electron + 2 jets in R-parity violating SUSY

Allanach, CHK, Päs 0902.4697, 0903.0347

Charge asymmetry ratio

CHK, Stirling appear soon
‘Reference’ model: light mass mechanism

\[\mathcal{L}_{\text{EW}}^{\text{eff}, \Delta L_e=2}(x) = G_F^2 m_{\beta\beta} \left[\bar{e}_1 \gamma_\mu (1 - \gamma_5) \frac{1}{q^2} \gamma_\nu e_2 \right] \times \left[J_{1, V-A}(q) J_{2, V-A}(-q) \right] \]
‘Reference’ model: light mass mechanism

\[\mathcal{L}_{\text{EW}}^{\text{eff}}, \Delta L_e=2(x) = \frac{G_F^2}{2} m_{\beta\beta} \left[\bar{e}_1 \gamma_\mu (1 - \gamma_5) \frac{1}{q^2} \gamma_\nu e^\nu_2 \right] \times \left[J_1^\mu, V-A(q) J_2^\nu, V-A(-q) \right] \]

Heidelberg-Moscow, CUORICINO & NEMO3

\[|m_{\beta\beta}| \lesssim 0.35\text{eV} \]

(Also \(|m_{\beta\beta}| \sim 0.5\text{eV} \))

Klapdor-Kleingrothaus et. al.)
Other possibilities

However many lepton number violating theories:

- RPV SUSY, heavy Majorana neutrinos,
- type II, type III see-saws, lepto-quarks, KK neutrinos ...
Other possibilities

- However many lepton number violating theories:
 - RPV SUSY, heavy Majorana neutrinos,
 - type II, type III see-saws, lepto-quarks, KK neutrinos ...

- $0\nu\beta\beta$-based strategies to distinguish different mechanisms, e.g.
 - Electron kinematics \(\text{Ali,Borisov,Zhuridov } 07 \), \(\text{SuperNEMO } \& \text{ Flack’s talk} \)
 - \(T^{0\nu\beta\beta}_{1/2}(^{76}\text{Ge}) \) ratios of different isotopes \(\text{Deppisch,Päs } 06 \), \(\text{Gehman,Elliot } 07 \), \(\text{Fogli et. al. } 09 \)
 - Excited daughter nuclei \(\text{Simkovic et. al. } 01 \), \(\text{Iachello’s talk} \)
Other possibilities

However many lepton number violating theories:
- RPV SUSY, heavy Majorana neutrinos,
 type II, type III see-saws, lepto-quarks, KK neutrinos ...

0νββ-based strategies to distinguish different mechanisms, e.g.
- Electron kinematics
 Ali,Borisov,Zhuridov 07, SuperNEMO & Flack’s talk
- $T_{1/2}^{0νββ}(^{76}\text{Ge})$ ratios of different isotopes
 Deppisch,Päs 06, Gehman,Elliott 07, Fogli et. al. 09
- Excited daughter nuclei
 Simkovic et. al. 01, Iachello’s talk

We focus on 0νββ mediation involving TeV scale particles.
Other possibilities

- However many lepton number violating theories:
 - RPV SUSY, heavy Majorana neutrinos,
 - type II, type III see-saws, lepto-quarks, KK neutrinos

- $0\nu\beta\beta$-based strategies to distinguish different mechanisms, e.g.
 - Electron kinematics \(\text{Ali,Borisov,Zhidov 07, SuperNEMO & Flack's talk} \)
 - $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ ratios of different isotopes \(\text{Deppisch,Päss 06, Gehman, Elliot 07, Fogli et. al. 09} \)
 - Excited daughter nuclei \(\text{Simkovic et. al. 01, Iachello’s talk} \)

- We focus on $0\nu\beta\beta$ mediation involving TeV scale particles.

- Investigate interplay between LHC signatures and $0\nu\beta\beta$ rate predictions.
Relative strength of ‘light’ and ‘heavy’ $0\nu\beta\beta$ amplitudes:
Relative strength of ‘light’ and ‘heavy’ $0\nu\beta\beta$ amplitudes:

$$M_{\text{light}} \sim G_F^2 \frac{m_{\beta\beta}}{\langle k^2 \rangle}$$
Relative strength of ‘light’ and ‘heavy’ $0\nu\beta\beta$ amplitudes:

\[
M_{\text{light}} \sim G_F^2 \frac{m_{\beta\beta}}{\langle k^2 \rangle}
\]

\[
M_{\text{heavy}} \sim G_F^2 \left(\frac{\lambda}{g_2} \right)^4 \frac{M_W^4}{\Lambda^3}
\]
TeV $0\nu\beta\beta$ mechanisms at the LHC

Relative strength of ‘light’ and ‘heavy’ $0\nu\beta\beta$ amplitudes:

$$M_{\text{light}} \sim G_F^2 \frac{m_{\beta\beta}}{\langle k^2 \rangle}$$

$$M_{\text{heavy}} \sim G_F^2 \left(\frac{\lambda}{g_2} \right)^4 \frac{M_W^4}{\Lambda^8}$$

LHC as a complementary $0\nu\beta\beta$ probe – p. 5/20
TeV $0\nu\beta\beta$ mechanisms at the LHC

Relative strength of ‘light’ and ‘heavy’ $0\nu\beta\beta$ amplitudes:

$$M_{\text{light}} \sim G_F^2 \frac{m_{\beta\beta}}{\langle k^2 \rangle}$$

$$M_{\text{heavy}} \sim G_F^2 \left(\frac{\lambda}{g_2} \right)^4 \frac{M_W^4}{\Lambda^5}$$

$M_{\text{light}} \sim M_{\text{heavy}} : m_{\beta\beta} \sim \mathcal{O}(0.1)\text{eV} \leftrightarrow \Lambda \sim \mathcal{O}(1)\text{TeV}.$

$\mathcal{O}(1)\text{TeV}$ resonances via same-sign di-electron + 2 jets:

RPV SUSY Allanach, CHK, Päss 0902.4697, Heavy Majorana neutrinos Keung, Senjanovic 83, Hirsch et. al. 96

LHC as a complementary $0\nu\beta\beta$ probe – p. 5/20
TeV $0\nu\beta\beta$ mechanisms at the LHC

Relative strength of ‘light’ and ‘heavy’ $0\nu\beta\beta$ amplitudes:

\[
M_{\text{light}} \sim G_F^2 \frac{m_{\beta\beta}}{\langle k^2 \rangle} \quad M_{\text{heavy}} \sim G_F^2 \left(\frac{\lambda}{g_2} \right)^4 \frac{M_W^4}{\Lambda^3}
\]

- $M_{\text{light}} \sim M_{\text{heavy}} : m_{\beta\beta} \sim \mathcal{O}(0.1)eV \leftrightarrow \Lambda \sim \mathcal{O}(1)\text{TeV}$.

- $\mathcal{O}(1)\text{TeV}$ resonances via same-sign di-electron + 2 jets:
 - RPV SUSY \cite{Allanach2009, CHK2009, Pas2009}, \textit{Heavy Majorana neutrinos} \cite{Keung1983, Senjanovic1983, Hirsch1996}

- 4 leptons f.s. BRs in Higgs triplets \cite{Petcov2009}

- $B_d^0 - \bar{B}_d^0$ mixing \cite{Allanach2009, Pas2009}

LHC as a complementary $0\nu\beta\beta$ probe – p. 5/20
Example: $0\nu\beta\beta$ in RPV SUSY

RPV SUSY: renormalisable lepton number violating parameters.

$$\mathcal{W}_{\text{RPV}} = \lambda'_{111} L_1 Q_1 D_1^c + \cdots$$
Example: $0\nu\beta\beta$ in RPV SUSY

RPV SUSY: renormalisable lepton number violating parameters.

$$\mathcal{W}_{\text{RPV}} = \lambda'_{111} L_1 Q_1 D_1^c + \cdots$$

Direct, TeV scale mediation w/o intermediate light neutrino, e.g.
Example: $0\nu\beta\beta$ in RPV SUSY

RPV SUSY: renormalisable lepton number violating parameters.

$$\mathcal{W}_{\text{RPV}} = \lambda'_{111} L_1 Q_1 D^c_1 + \cdots$$

Direct, TeV scale mediation w/o intermediate light neutrino, e.g.

$$\mathcal{L}_{\lambda'_{111} \lambda'_{111}, \Delta L_e=2}(x) = \frac{G_F^2}{2} m_p^{-1} [\bar{\epsilon}(1 + \gamma_5)\epsilon^c]$$

$$\times \left[(\epsilon_{\tilde{g}} + \epsilon_\chi)(J_{PS} J_{PS} - \frac{1}{4} J^\mu_{T \nu} J_{T \mu \nu}) + (\epsilon_{\chi \tilde{e}} + \epsilon_{\tilde{g}}' + \epsilon_{\chi f}) J_{PS} J_{PS} \right]$$

LHC as a complementary $0\nu\beta\beta$ probe – p. 6/20
RPV SUSY: renormalisable lepton number violating parameters.

\[\mathcal{W}_{\text{RPV}} = \lambda'_{111} L_1 Q_1 D_1^c + \cdots \]

Direct, TeV scale mediation w/o intermediate light neutrino, e.g.

\[\mathcal{L}_{\text{eff}, \Delta L_e=2}(x) = \frac{G_F^2}{2} m_p^{-1} [\bar{e}(1 + \gamma_5)e^c] \times \left[(\epsilon \tilde{g} + \epsilon \tilde{\chi})(J_{PS} J_{PS} - \frac{1}{4} J_{T}^{\mu \nu} J_{T \mu \nu}) + (\epsilon \chi \tilde{e} + \epsilon' \tilde{g} + \epsilon \chi \tilde{f}) J_{PS} J_{PS} \right] \]

\[\epsilon \sim \lambda'^2_{111} \left(\frac{\Lambda_{SM}}{\Lambda_{SUSY}} \right)^5 : \]

\[\lambda'_{111} \text{ bound relaxes rapidly with increasing } \Lambda_{SUSY}. \]
Resonant selectron production

Direct indication of λ'_{111}!
Resonant selectron production

Direct indication of λ'_{111} !

Majorana $\tilde{\chi}_0$: SSDL possible.
Resonant selectron production

Direct indication of λ'_{111}!

Majorana $\tilde{\chi}_0$: SSDL possible.

SS di-electron, 2 jets, small E_T.

LHC as a complementary $0\nu\beta\beta$ probe – p. 7/20
Resonant selectron production

Direct indication of χ'_{111}

Majorana $\tilde{\chi}_0$: SSDL possible.

SS di-electron, 2 jets, small E_T.

Signal believed tiny due to ‘stringent’ $0\nu\beta\beta$ bound.
Resonant selectron production

Direct indication of λ'_{111}!

Majorana $\tilde{\chi}_0$: SSDL possible.

SS di-electron, 2 jets, small E_T.

Signal believed tiny due to ‘stringent’ $0\nu\beta\beta$ bound.

Lower $T^{0\nu\beta\beta}_{1/2} (^{76}\text{Ge})$ limit: $\lambda'_{111} \lesssim 5 \cdot 10^{-4} \left(\frac{\Lambda_{\text{SUSY}}}{100 \text{GeV}} \right)^{2.5}$.

Single slepton production: $\sigma(pp \rightarrow \tilde{l}) \propto |\lambda'_{111}|^2 / m_{\tilde{l}}^3$

→ production upper limit increases with Λ_{SUSY}.

LHC as a complementary $0\nu\beta\beta$ probe – p. 7/20
Numerical analysis

RPV MSSM model parameters:

- ‘RPC’ mSUGRA mass spectrum:
 Vary m_0, $M_{1/2}$, keeping other SUSY parameters fixed
- Consider regions with neutralino LSP.
- Determine λ'_{111} for 5σ excess.
- SS di-lepton analysis follows Dreiner et. al. 99.
Numerical analysis

RPV MSSM model parameters:

- ‘RPC’ mSUGRA mass spectrum:
 Vary m_0, $M_{1/2}$, keeping other SUSY parameters fixed
- Consider regions with neutralino LSP.
- Determine λ'_{111} for 5σ excess.
- SS di-lepton analysis follows [Dreiner et al. 99] .

NME model $\Gamma_{0\nu\beta\beta} = G_{0\nu}|M|^2$:

- Include both π and nucleon modes (76Ge):
 $M_{\lambda'_{111}} = \epsilon M_{\tilde{g}N}^2 + \epsilon' M_{\tilde{f}N}^2 + \left(\epsilon + \frac{5}{8}\epsilon'\right)\left(\frac{4}{3}M_{1\pi}^1 + M_{2\pi}^2\right)$

- $M_{\tilde{g}N}^2 = 283$, $M_{\tilde{f}N}^2 = 13.2$, $M_{1\pi}^1 = -18.2$, $M_{2\pi}^2 = -601$

[Hirsch et al. 96, Faessler et al. 98]
Infer $T_{1/2}^{0
u\beta\beta}(^{76}\text{Ge})$ from SSDL @ 5-\(\sigma\) (10 fb\(^{-1}\), 14 TeV, $m_{\beta\beta} = 0$):

Allanach, CHK, Päs PRL09
Infer $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ from SSDL @ 5-\sigma (10 fb$^{-1}$, 14 TeV, $m_{\beta\beta} = 0$):

Allanach, CHK, Päs PRL09
Infer $T^{0\nu\beta\beta}_{1/2}(^{76}\text{Ge})$ from SSDL @ 5-σ (10 fb$^{-1}$, 14 TeV, $m_{\beta\beta} = 0$):

Allanach, CHK, Päs PRL09

\[1 \cdot 10^{27} \text{ yrs} < T^{0\nu\beta\beta}_{1/2}(^{76}\text{Ge}) \]

\[1.9 \cdot 10^{25} < T^{0\nu\beta\beta}_{1/2}(^{76}\text{Ge}) < 1 \cdot 10^{27} \text{ yrs} \]

\[T^{0\nu\beta\beta}_{1/2}(^{76}\text{Ge}) < 1.9 \cdot 10^{25} \text{ yrs} \]
Other models (e.g. Heavy neutrinos (N) in W' models) can have same signal:
Other models (e.g. Heavy neutrinos (N) in W' models) can have same signal:

$\bar{d} + W_R l^+_{\nu\beta\beta}$

However quark coupling structure different can be very different

- LHC (p-p) produces more +ve over -ve charged final states.
- Proton has non-universal flavour content of course!

Charge asymmetry ratio $R^{\pm} \equiv \frac{N(+)\text{ to } N(-)}{N(-)\text{ to } N(+)}$ depends on how quarks couple to the resonance.
R^\pm tracks parton luminosity ratio \tilde{R}^\pm:

$$
\tilde{R}^\pm = \frac{\int \frac{dx}{x} |\tilde{V}_{ab}|^2 f_a(x) f_b\left(\frac{M_V^2}{xs}\right)|(+)}{\int \frac{dx}{x} |\tilde{V}_{cd}|^2 f_c(x) f_d\left(\frac{M_V^2}{xs}\right)|(-)}
$$

(c.f. $R^\pm = \frac{N(+)}{N(-)}$)
Charge asymmetry ratio

- R^\pm tracks parton luminosity ratio \tilde{R}^\pm:

\[
\tilde{R}^\pm = \frac{\int \frac{dx}{x} |\tilde{V}_{ab}|^2 f_a(x) f_b\left(\frac{M_v^2}{x_s}\right)|_\ (+)}{\int \frac{dx}{x} |\tilde{V}_{cd}|^2 f_c(x) f_d\left(\frac{M_v^2}{x_s}\right)|_\ (-)}
\]

(c.f. $R^\pm = \frac{N(+)}{N(-)}$)

- R^\pm vs \tilde{R}^\pm (W' model with MSTW08 NLO pdfs):
Charge asymmetry ratio

- R^\pm tracks parton luminosity ratio \tilde{R}^\pm:

$$
\tilde{R}^\pm = \frac{\int \frac{dx}{x} |\tilde{V}_{ab}|^2 f_a(x) f_b\left(\frac{M_W^2}{x s}\right)|(+)}{\int \frac{dx}{x} |\tilde{V}_{cd}|^2 f_c(x) f_d\left(\frac{M_W^2}{x s}\right)|(-)}
$$

- R^\pm vs \tilde{R}^\pm (W' model with MSTW08 NLO pdfs):

<table>
<thead>
<tr>
<th>$M_{W'}$ (GeV)</th>
<th>\tilde{R}^\pm</th>
<th>R^\pm</th>
<th>\tilde{R}^\pm</th>
<th>R^\pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 TeV</td>
<td>2.12(4)</td>
<td>1.97(1)</td>
<td>1.92(4)</td>
<td>1.76(1)</td>
</tr>
<tr>
<td>1.5 TeV</td>
<td>2.50(6)</td>
<td>2.45(3)</td>
<td>2.22(7)</td>
<td>2.11(4)</td>
</tr>
<tr>
<td>2.0 TeV</td>
<td>2.82(9)</td>
<td>2.76(7)</td>
<td>2.53(10)</td>
<td>2.38(10)</td>
</tr>
</tbody>
</table>

with PDF (68%) & statistical (100 fb$^{-1}$) uncertainties
Many candidate \(0\nu\beta\beta\) mechanisms.

LHC could provide complementary information to direct \(0\nu\beta\beta\) observation.

More possibilities along this direction.
Gluino/neutralino mediation
Comparing λ_{111}' bounds

- Infer $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ from SS di-election 5-σ discovery reach at 10 fb$^{-1}$:

$$1 \cdot 10^{27} \text{ yrs} < T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$$

$$1.9 \cdot 10^{25} < T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge}) < 1 \cdot 10^{27} \text{ yrs}$$
LHC SS di-lepton cuts

From Dreiner, Richardson, Seymour 99

- Lepton $|\eta| < 2.0, p_T > 40$ GeV. Hadr. $E_T < 5$ GeV in R=0.4.
- Reject $65 < M_T < 80$ GeV, OSSF.
- $E_T < 20$ GeV.
- No more than 2 jets, each with $p_T > 50$ GeV.

Main bkgd after cuts from WZ. Other non-trivial bkgds include $t\bar{t}b\bar{b}$, single top, SUSY, detector ...
Including

\[|m_{\beta\beta}| = 0.05 \text{ eV} \]

\[(\sim \sqrt{\Delta m^{2}_{23}}) \]

- Destructive interference with \(m_{\beta\beta} \) increases \(T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge}) \) → dark yellow region shrinks.

- Fixing \(T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge}) \), destructive int. with \(m_{\beta\beta} \) increases SSL rate → better SSL discovery prospect.
Inference on $m_{\beta\beta}$

Given 5σ SSL observation ($M_0 = 680\text{GeV}, M_{1/2} = 440\text{GeV}$)

$\rightarrow T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge}) = 1 \cdot 10^{26}\text{yrs}$ if direct contribution only.

- Band of $m_{\beta\beta}$ depending on relative phase.
- Normal hierarchy possible if $0\nu\beta\beta$ observed.
$B_d^0 - \bar{B}_d^0$ mixing and RPV $0\nu\beta\beta$

$B_d^0 - \bar{B}_d^0$ mixing limit:

$$\langle B_d | M_{12}^{\text{SM} + \text{New Physics}} | \bar{B}_d \rangle = \Delta_d \langle B_d | M_{12}^{\text{SM}} | \bar{B}_d \rangle$$

$$\lambda'_{131} \lambda'_{131} \leq 4.0 \cdot 10^{-8} \frac{m_{\tilde{\nu}_e}^2}{(100 \text{GeV})^2}$$

$$\lambda'_{131} \lambda'_{131} \lesssim 2 \cdot 10^{-8} \left(\frac{\Lambda_{\text{SUSY}}}{100 \text{GeV}}\right)^3$$

- Bounds comparable, but with different mass dependence.

LHC as a complementary $0\nu\beta\beta$ probe – p. 19/20
Left: lower limit on $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ given upper bound from $B_d^0 - \bar{B}_d^0$.

Right: Effect of a near-future measurement of $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ for $m_0 = 680$ GeV, $M_{1/2} = 440$ GeV, given current $B_d^0 - \bar{B}_d^0$ constraints.