

LHC as a complementary probe to study $0\nu\beta\beta$ mechanisms ?

Neutrino Oscillation Workshop 2010 Conca Specchiulla, Otranto, Italy 4-11 Sept 2010

Steve Chun-Hay Kom

Cavendish Laboratory, Cambridge

LHC as a complementary $0 \nu \beta \beta$ probe – p. 1/20

- Solution Why LHC might be relevant for $0\nu\beta\beta$
- Example : same sign di-electron + 2 jets in R-parity violating SUSY Allanach, CHK, Päs 0902.4697, 0903.0347
- Charge asymmetry ratio CHK, Stirling appear soon

Standard $0\nu\beta\beta$

'Reference' model: light mass mechanism

$$\mathcal{L}_{EW}^{eff,\,\Delta L_e=2}(x) = \frac{G_F^2}{2} m_{\beta\beta} \left[\bar{e}_1 \gamma_\mu (1-\gamma_5) \frac{1}{q^2} \gamma_\nu e_2^c \right] \\ \times \left[J_{1,\,V-A}^\mu(q) J_{2,\,V-A}^\nu(-q) \right]$$

Standard $0\nu\beta\beta$

 d_L u_L 'Reference' model: light mass mechanism W е $\mathcal{L}_{EW}^{eff,\,\Delta L_e=2}(x) = \frac{G_F^2}{2} m_{\beta\beta} \left| \bar{e}_1 \gamma_\mu (1-\gamma_5) \frac{1}{q^2} \gamma_\nu e_2^c \right|$ $m^*_{\beta\beta} \downarrow \nu$ $\times \left[J^{\mu}_{1, \, V-A}(q) J^{\nu}_{2, \, V-A}(-q) \right]^{-1}$ W d_L u_L 1000 Degenerate (me 100 Heidelberg-Moscow, CUORICINO & NEMO3 Inverted Effective $\beta\beta$ Mass $|m_{\beta\beta}| \lesssim 0.35 \mathrm{eV}$ 10 (also $|m_{\beta\beta}| \sim 0.5$ eV 1 -Normal Klapdor-Kleingrothaus et. al. 0.1 2 2 1 10 100 1000 Minimum Neutrino Mass (meV)

LHC as a complementary $0\nu\beta\beta$ probe – p. 3/20

However many lepton number violating theories : RPV SUSY, heavy Majorana neutrinos, type II, type III see-saws, lepto-quarks, KK neutrinos ...

- However many lepton number violating theories : RPV SUSY, heavy Majorana neutrinos, type II, type III see-saws, lepto-quarks, KK neutrinos ...
- $0\nu\beta\beta$ -based strategies to distinguish different mechanisms, e.g.
 - Electron kinematics Ali, Borisov, Zhuridov 07, SuperNEMO & Flack's talk
 - $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ ratios of different isotopes Deppisch,Päs 06, Gehman,Elliot 07, Fogli et. al. 09
 - Excited daughter nuclei Simkovic et. al. 01, lachello's talk

- However many lepton number violating theories : RPV SUSY, heavy Majorana neutrinos, type II, type III see-saws, lepto-quarks, KK neutrinos ...
- $0\nu\beta\beta$ -based strategies to distinguish different mechanisms, e.g.
 - Electron kinematics Ali, Borisov, Zhuridov 07, SuperNEMO & Flack's talk
 - $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ ratios of different isotopes Deppisch,Päs 06, Gehman,Elliot 07, Fogli et. al. 09
 - Excited daughter nuclei Simkovic et. al. 01, lachello's talk
- Solution We focus on $0\nu\beta\beta$ mediation involving TeV scale particles.

- However many lepton number violating theories : RPV SUSY, heavy Majorana neutrinos, type II, type III see-saws, lepto-quarks, KK neutrinos ...
- $\mathbf{D} = 0\nu\beta\beta$ -based strategies to distinguish different mechanisms, e.g.
 - Electron kinematics Ali, Borisov, Zhuridov 07, SuperNEMO & Flack's talk
 - $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ ratios of different isotopes Deppisch,Päs 06, Gehman,Elliot 07, Fogli et. al. 09
 - Excited daughter nuclei Simkovic et. al. 01, lachello's talk
- Solution We focus on $0\nu\beta\beta$ mediation involving TeV scale particles.
- Investigate interplay between LHC signatures and $0\nu\beta\beta$ rate predictions.

Relative strength of 'light' and 'heavy' $0\nu\beta\beta$ amplitudes:

• $M_{\text{light}} \sim M_{\text{heavy}}$: $m_{\beta\beta} \sim \mathcal{O}(0.1) \text{eV} \leftrightarrow \Lambda \sim \mathcal{O}(1) \text{TeV}.$

- $M_{\text{light}} \sim M_{\text{heavy}} : m_{\beta\beta} \sim \mathcal{O}(0.1) \text{eV} \leftrightarrow \Lambda \sim \mathcal{O}(1) \text{TeV}.$
- \$\mathcal{O}(1)\$ TeV resonances via same-sign di-electron + 2 jets :
 RPV SUSY Allanach, CHK, Päs 0902.4697 , Heavy Majorana neutrinos Keung, Senjanovic
 83, Hirsch et. al. 96

- $M_{\text{light}} \sim M_{\text{heavy}} : m_{\beta\beta} \sim \mathcal{O}(0.1) \text{eV} \leftrightarrow \Lambda \sim \mathcal{O}(1) \text{TeV}.$
- \$\mathcal{O}(1)\$ TeV resonances via same-sign di-electron + 2 jets :
 RPV SUSY Allanach, CHK, Päs 0902.4697 , Heavy Majorana neutrinos Keung, Senjanovic
 83, Hirsch et. al. 96
- 4 leptons f.s. BRs in Higgs triplets Petcov et. al. 09
- \blacksquare B^0_d - \bar{B}^0_d mixing Allanach, CHK, Päs 0903.0347

RPV SUSY: renormalisable lepton number violating parameters.

$$\mathcal{W}_{\rm RPV} = \lambda_{111}' L_1 Q_1 D_1^c + \cdots$$

RPV SUSY: renormalisable lepton number violating parameters.

 $\mathcal{W}_{\rm RPV} = \lambda_{111}' L_1 Q_1 D_1^c + \cdots$

Direct, TeV scale mediation w/o intermediate light neutrino, e.g.

RPV SUSY: renormalisable lepton number violating parameters.

 $\mathcal{W}_{\rm RPV} = \lambda_{111}' L_1 Q_1 D_1^c + \cdots$

Direct, TeV scale mediation w/o intermediate light neutrino, e.g.

LHC as a complementary $0 \nu \beta \beta$ probe – p. 6/20

RPV SUSY: renormalisable lepton number violating parameters.

$$\mathcal{W}_{\rm RPV} = \lambda_{111}' L_1 Q_1 D_1^c + \cdots$$

Direct, TeV scale mediation w/o intermediate light neutrino, e.g.

 $\epsilon \sim \lambda_{111}^{\prime 2} \left(\frac{\Lambda_{SM}}{\Lambda_{SUSY}}\right)^{5}$: λ_{111}^{\prime} bound relaxes rapidly with increasing Λ_{SUSY} .

Direct indication of λ'_{111} !

Direct indication of λ'_{111} !

Majorana $\tilde{\chi}_0$: SSDL possible.

Majorana $\tilde{\chi}_0$: SSDL possible.

SS di-electron, 2 jets, small $\not\!\!\!E_T$.

Majorana $\tilde{\chi}_0$: SSDL possible.

SS di-electron, 2 jets, small $\not\!\!E_T$.

Signal believed tiny due to 'stringent' $0\nu\beta\beta$ bound.

Majorana $\tilde{\chi}_0$: SSDL possible.

SS di-electron, 2 jets, small $\not\!\!E_T$.

Signal believed tiny due to 'stringent' $0\nu\beta\beta$ bound.

Lower $T_{1/2}^{0\nu\beta\beta}({}^{76}\text{Ge})$ limit: $\lambda'_{111} \lesssim 5 \cdot 10^{-4} (\frac{\Lambda_{SUSY}}{100GeV})^{2.5}$. Single slepton production: $\sigma(pp \to \tilde{l}) \propto |\lambda'_{111}|^2/m_{\tilde{l}}^3 \to production$ upper limit increases with Λ_{SUSY} .

Numerical analysis

RPV MSSM model parameters:

- 'RPC' mSUGRA mass spectrum: Vary m_0 , $M_{1/2}$, keeping other SUSY parameters fixed
- Consider regions with neutralino LSP.
- **Determine** λ'_{111} for 5σ excess.
- SS di-lepton analysis follows Dreiner et. al. 99.

Numerical analysis

RPV MSSM model parameters:

- 'RPC' mSUGRA mass spectrum: Vary m_0 , $M_{1/2}$, keeping other SUSY parameters fixed
- Consider regions with neutralino LSP.
- **Determine** λ'_{111} for 5σ excess.
- SS di-lepton analysis follows Dreiner et. al. 99.

NME model $\Gamma_{0\nu\beta\beta} = G_{0\nu}|M|^2$:

Include both \$\pi\$ and nucleon modes (⁷⁶Ge):
M_{\lambda'_{111}} = \$\epsilon M_{\tilde{g}}^{2N} + \epsilon' M_{\tilde{f}}^{2N} + \left(\epsilon + \frac{5}{8}\epsilon'\right)(\frac{4}{3}M^{1\pi} + M^{2\pi})
M_{\tilde{g}}^{2N} = 283, M_{\tilde{f}}^{2N} = 13.2, M^{1\pi} = -18.2, M^{2\pi} = -601

Hirsch et. al. 96, Faessler et. al. 98

Infer $T_{1/2}^{0\nu\beta\beta}$ (⁷⁶Ge) from SSDL @ 5- σ (10 fb⁻¹, 14 TeV, $m_{\beta\beta} = 0$): Allanach,CHK,Päs PRL09

Infer $T_{1/2}^{0\nu\beta\beta}$ (⁷⁶Ge) from SSDL @ 5- σ (10 fb⁻¹, 14 TeV, $m_{\beta\beta} = 0$): Allanach,CHK,Päs PRL09

Infer
$$T_{1/2}^{0\nu\beta\beta}({}^{76}\text{Ge})$$
 from SSDL @ 5- σ (10 fb⁻¹, 14 TeV, $m_{\beta\beta} = 0$):
Allanach,CHK,Päs PRL09

LHC as a complementary $0 \, \nu \, \beta \, \beta$ probe $\,$ – p. 9/20

Other models (e.g. Heavy neutrinos (N) in W' models) can have same signal:

Other models (e.g. Heavy neutrinos (N) in W' models) can have same signal:

However quark coupling structure different can be very different

- LHC (p-p) produces more +ve over -ve charged final states.
- Proton has non-universal flavour content of course !

 \implies Charge asymmetry ratio $R^{\pm} \equiv \frac{N(+)}{N(-)}$ depends on how quarks couple to the resonance.

■
$$R^{\pm}$$
 tracks parton luminosity ratio \tilde{R}^{\pm} :

$$\tilde{R}^{\pm} = \frac{\int \frac{\mathrm{d}x}{x} |\tilde{V}_{ab}|^2 f_a(x) f_b(\frac{M_V^2}{xs})|_{(+)}}{\int \frac{\mathrm{d}x}{x} |\tilde{V}_{cd}|^2 f_c(x) f_d(\frac{M_V^2}{xs})|_{(-)}} \qquad (c.f. \quad R^{\pm} = \frac{N(+)}{N(-)})$$

 \blacksquare R^{\pm} tracks parton luminosity ratio \tilde{R}^{\pm} :

$$\tilde{R}^{\pm} = \frac{\int \frac{\mathrm{d}x}{x} |\tilde{V}_{ab}|^2 f_a(x) f_b(\frac{M_V^2}{xs})|_{(+)}}{\int \frac{\mathrm{d}x}{x} |\tilde{V}_{cd}|^2 f_c(x) f_d(\frac{M_V^2}{xs})|_{(-)}} \qquad (c.f. \quad R^{\pm} = \frac{N(+)}{N(-)})$$

● R^{\pm} vs \tilde{R}^{\pm} (W' model with MSTW08 NLO pdfs):

 R^{\pm} tracks parton luminosity ratio \tilde{R}^{\pm} :

$$\tilde{R}^{\pm} = \frac{\int \frac{\mathrm{d}x}{x} |\tilde{V}_{ab}|^2 f_a(x) f_b(\frac{M_V^2}{xs})|_{(+)}}{\int \frac{\mathrm{d}x}{x} |\tilde{V}_{cd}|^2 f_c(x) f_d(\frac{M_V^2}{xs})|_{(-)}} \qquad (c.f. \quad R^{\pm} = \frac{N(+)}{N(-)})$$

 \square R^{\pm} vs \tilde{R}^{\pm} (W' model with MSTW08 NLO pdfs):

- Many candidate $0\nu\beta\beta$ mechanisms.
- LHC could provide complementary information to direct $0\nu\beta\beta$ observation.
- More possibilities along this direction.

Backup slides

$0\nu\beta\beta$ diagrams in RPV SUSY

Gluino/neutralino mediation

Comparing λ'_{111} **bounds**

Infer $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ from SS di-election 5- σ discovery reach at 10 fb⁻¹:

LHC as a complementary $0\nu\beta\beta$ probe – p. 15/20

LHC SS di-lepton cuts

From Dreiner, Richardson, Seymour 99

- Lepton $|\eta| < 2.0$, $p_T > 40$ GeV. Hadr. $E_T < 5$ GeV in R=0.4.
- **P** Reject 65 < M_T < 80 GeV, OSSF.
- E_T < 20 GeV.
- No more than 2 jets, each with $p_T > 50$ GeV.

Main bkgd after cuts from WZ. Other non-trivial bkgds include $t\overline{t}b\overline{b}$, single top, SUSY, detector ...

- Destructive interference with $m_{\beta\beta}$ increases $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge}) \rightarrow \text{dark}$ yellow region shrinks.
- Fixing $T_{1/2}^{0\nu\beta\beta}$ (⁷⁶Ge), destructive int. with $m_{\beta\beta}$ increases SSL rate → better SSL discovery prospect.

LHC as a complementary $0 \nu \beta \beta$ probe – p. 17/20

Inference on $m_{\beta\beta}$

Given 5σ SSL observation ($M_0 = 680$ GeV, $M_{1/2} = 440$ GeV) $\rightarrow T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge}) = 1 \cdot 10^{26}$ yrs if direct contribution only. 700 700 |m_{ββ}| only -----600 600 500 500 $|m_{\beta\beta}| (meV)$ $|m_{\beta\beta}|$ (meV) 400 400 300 300 200 200 100 100 0 0 1.9e+251e+261e+271.9e+251e + 261e+27observed Ge half life (yrs) observed Ge half life (yrs)

- Sand of $m_{\beta\beta}$ depending on relative phase.
- Normal hierarchy possible if $0\nu\beta\beta$ observed.

LHC as a complementary $0 \nu \beta \beta$ probe – p. 18/20

 $\frac{1}{2}$ mixing and RPV $0\nu\beta\beta$

Bounds comparable, but with different mass dependence.

mixing and RPV $0\nu\beta\beta$

Left: lower limit on $T_{1/2}^{0\nu\beta\beta}({}^{76}\text{Ge})$ given upper bound from $B_d^0 \cdot \bar{B}_d^0$. Right: Effect of a near-future measurement of $T_{1/2}^{0\nu\beta\beta}({}^{76}\text{Ge})$ for $m_0 = 680$ GeV, $M_{1/2} = 440$ GeV, given current $B_d^0 \cdot \bar{B}_d^0$ constraints.

LHC as a complementary $0\nu\beta\beta$ probe – p. 20/20