The ArgoNeuT LArTPC:

a dedicated Experiment for
neutrino Cross Section measurement at FNAL

NOW 2010
September 7th, 2010

Ornella Palamara
Laboratori Nazionali del Gran Sasso
In the recent years, due to the increasing interest on LAr-TPC technology in the US, a dedicated experiment (ArgoNeuT, 2007) has been included as a first step in a graded program towards massive LBL neutrino oscillation experiments.

One of the main uncertainties in the next generation long baseline oscillation experiments is given by the neutrino-nucleus interaction cross section in the “few-GeV region”.

The (CC-QE) Cross Section (how well we measured it)

- Charged-Current Quasi-Elastic Scattering
 - Second generation measurements

(T. Katori)

- KEK/Booster
- NuMI
- CNGS

- MiniBooNE/SciBooNE in agreement, but tension with higher energy NOMAD results. All three on carbon. This is not understood.
- Single point, first and so far unique investigation with Ar target, in agreement with NOMAD data (same, high energy ν beam - WANF)

50t ICARUS LAr-TPC (preliminary errors)
ArgoNeuT Physics Goals

• Measure charged-current cross-section in the “few GeV” (1-5 GeV) range:
 • CC Quasi-Elastic (QE) channel
 • CC Resonant (RES: Δ→ π N) channel

 with unprecedented sensitivity to products of FSI (vertex activity characterization)

• e/γ separation study and optimization ⇒ superior background rejection
 • Important for ν_e appearance: excellent signal (CC ν_e) efficiency and background (NC π^0) rejection
 • Particle identification from energy deposition (dE/dx) measured along track

• Develop reconstruction techniques useful for all future LArTPCs:
 • full 3D reconstruction of the event topology
 • precise calorimetric reconstruction of deposited energy and Particle Identification
ArgoNeuT

✓ ArgoNeuT is a 175 liter (active) Liquid Argon Time Projection Chamber (LArTPC)
✓ Jointly funded by DOE/NSF
✓ Designed and assembled in 2007-08, first commissioned (on surface) at FNAL in Summer 2008
✓ Moved underground in the NuMI beam at FNAL, in front of MINOS Near Detector, early 2009
✓ Phase I: Exposure to $\nu/\bar{\nu}$ beam (LE beam option): June‘09 \oplus Sept’09-Feb.’10

✓ Phase II - (second run): in the BOOSTER low-energy nu-beam (SciBooNE enclosure) - 2011

Fermilab, NuMI beam line

MINOS Hall: ArgoNeuT just upstream of the MINOS ND
The TPC, about to enter the inner cryostat

2 read-out planes: *Induction and Collection*

each channel: 2048 samples in 400 microseconds

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryostat Volume</td>
<td>500 Liters</td>
</tr>
<tr>
<td>TPC Volume</td>
<td>175 Liters</td>
</tr>
<tr>
<td># Electronic Channels</td>
<td>480</td>
</tr>
<tr>
<td>Wire Pitch</td>
<td>4 mm</td>
</tr>
<tr>
<td>Electronics Style (Temperature)</td>
<td>JFET (293 K)</td>
</tr>
<tr>
<td>Max. Drift Length (Time)</td>
<td>0.5m (330µs)</td>
</tr>
<tr>
<td>Electric field</td>
<td>500 V/cm</td>
</tr>
</tbody>
</table>
ArgoNeuT’s physics run in the NuMI beam

Schematic of NuMI experiments

NuMI beam Fluxes - Low Energy (LE) mode
$<E_{\nu}> = 3.7 \text{ GeV}$

- Neutrino mode
 - Horns focus π^+, K^+
 - ν_μ: 91.7%
 - $\overline{\nu}_\mu$: 7.0%
 - $\nu_e + \overline{\nu}_e$: 1.3%

- Anti-neutrino Mode
 - Horns focus π^-, K^-
 - Enhancing the ν_μ flux
 - $\overline{\nu}_\mu$: 39.9%
 - ν_μ: 58.1%
 - $\nu_e + \overline{\nu}_e$: 2.0%

ArgoNeuT POT delivered and accumulated

- Stable, shift-free operation for >5 months!
- The first 1000s of (anti-)neutrino LArTPC events collected in a low-energy ($\sim3 \text{ GeV}$) neutrino beam ever!
(Neutrino) Event Display

The detector provides two 2D-views of the event.

The color scale is indicative of the energy deposited along the track.

- m.i.p. yield: \(\sim 6000 \, \text{e/mm} \)
- Very fine pixel size (4mmx4mm x 0.3mm)
- Dark "shadow bands" are due to electronics returning to baseline...

- Fourier decomposition (FFT) to remove electronics response (Filtering).
Neutrino Event – ν_e

El.m. shower (not fully contained) + short densely ionizing track at the vertex

- This (beam-intrinsic) event demonstrates what a signal-like electron-neutrino event looks like in LArTPC.
- Current and future long baseline neutrino oscillation experiments (MINOS, T2K, NoVA, LBNE, ...) search for electron-neutrino appearance in order to measure θ_{13} and δ_{CP}.
ν event Reconstruction

Offline reconstruction procedure:
1. Hit identification
2. Hit reconstruction
3. Cluster/Vertex reconstruction
4. 3D track reconstruction
5. Matching ArgoNeuT tracks with downstream MINOS ND for escaping muon momentum reconstruction and sign determination
6. Calorimetric reconstruction
7. Particle Identification (dE/dx along the track)
\(\mu \) from upstream \(\nu \) beam interaction

2D views

3D reconstruction

Muon calorimetric reconstruction

Muon angular distribution

\[<dE/dx> = 2.2 \text{ MeV/cm} \]
\[dE/dx_{m.p} = 1.7 \text{ MeV/cm} \]
(Landau-Gauss fit)

Beam direction
(\(\approx 3^\circ \) downward to MINOS Far Detector)

(many) crossing \(\mu \)'s superimposed in 3D view
Tracks whose direction extrapolated from ArgoNeuT matches a MINOS track

Difference between horizontal coordinates and vertical coordinates of the “matched tracks”
μ from upstream $\bar{\nu}$ beam interaction:
Matching with MINOS ND (II)

MINOS:
reconstruction of the “matched muon” energy

Muon momentum reconstruction from MINOS ND:
- by curvature in magn. field - 12% resolution for a 10 GeV muon
- by range for stopping muons ~6% resolution)

MINOS:
measurement of the “matched muon” sign

NuMI

Anti-neutrino Mode
Horns focus π, K^- enhancing the $\bar{\nu}_\mu$ flux

$\bar{\nu}_\mu$: 39.9%
ν_μ: 58.1%
$\nu_e + \bar{\nu}_e$: 2.0%

Preliminary
Entries 182
Mean 5.183
RMS 2.738

Preliminary
Entries 182
Mean -0.002972
RMS 0.5253

Higher energy distr. (63%)
Lower energy distr. (37%)
Minimum ionizing ptcl: \textit{muon or pion}

Track length = 52 cm
Kinetic Energy = 160 MeV
(in agreement with expectations GEANT)

Muon-Pion separation possible only in same cases
Muon-Pion separation possible only in same cases
νμ CC QE event reconstruction

ν Interaction in LAr volume

μ+p (νμ CC QE event) +
uncorrelated tracks from upstream neutrino interaction
Heavy ionizing ptcl.

Proton
Track length=25 cm
Kin. Energy=194 MeV
(in agreement with expectations
[GEANT-Nist tables])

Muon

dE/dx along the track ~ 2 MeV/cm

Preliminary
ν interaction in LAr

μ + π event + proton track

2 m.i.p. particles (μ + π) at vtx
[faking a QEL signature (μ + p)]
+ proton track (far from vtx.)

νμ

Track length=5.6 cm
Kinetic Energy=80 MeV
(in agreement with expectations
[GEANT-Nist tables])

(Preliminary)
PID: e/γ separation study and optimization

- Photon conversion background to νₑ interactions
 - Separation from primary vertex or by double ionization
 - γ-conversion over a minimum ionizing track requires excellent pair resolution

Careful inspection yields a minimum ionizing track with overlapping γ conversion

\[\pi^0 \rightarrow \gamma \gamma \rightarrow (e^+e^-) (e^+e^-) \]

For \(e^+e^- \) efficiency > 80%,
\(e \) contamination < 5%
“Final State (re)-Interactions” - the main source of uncertainty:

even the “easiest” topology (CC-QE) is not so simple

\[\nu_\mu + n \rightarrow \mu^- + p \]
(reaction on free nucleon)

\[\nu_\mu + A(n) \rightarrow \mu^- + p + (A-1)^* \]
nucleon bound in the nuclear target

- proton Spallation (intranuclear interactions with \(p \) and \(n \) emission ...but also \(\pi^\pm, \pi^0 \))
- Nuclear evaporation (lower kin.en. \(p \) and \(n \))
- (and/or) Fission (nuclear fragments, \(\alpha \)'s,..)
- Nuclear de-excitation with \(\gamma \) emission

These products are usually neglected because not detectable, unless... a high quality imaging detector is in use !!
Understanding vertex activity

“Final State (re)-Interactions” - the main source of uncertainty:

even the “easiest” topology (CC-QE) is not so simple

\[\nu_{\mu} + n \rightarrow \mu^- + p \] (reaction on free nucleon)

\[\nu_{\mu} + A(n) \rightarrow \mu^- + p + (A-1)^* \] (nucleon bound in the nuclear target)

These products are usually neglected because not detectable, unless...
.... a high quality imaging detector is in use!!
The ArgoNeuT Collaboration

F. Cavanna
University of L’Aquila

A. Ereditato, S. Haug, B. Rossi, M. Weber
University of Bern

B. Baller, C. James, S. Pordes, G. Rameika, B. Rebel
Fermi National Accelerator Laboratory

M. Antonello, O. Palamara
Gran Sasso National Laboratory

T. Bolton, S. Farooq, G. Horton-Smith, D. McKee
Kansas State University

C. Bromberg, D. Edmunds, P. Laurens, B. Page
Michigan State University

K. Lang, R. Mehdiyev
The University of Texas at Austin

C. Anderson, E. Church, B. Fleming, R. Guenette, S. Linden, K. Partyka, M. Soderberg*, J. Spitz
Yale University
Conclusions

Next-generation neutrino physics experiments require precision Particle IDentification and fine grained 3D imaging on very large scale. Liquid Argon TPC combines an ideal detection medium with a modern imaging and calorimetric readout technique, scalable to very large volume/mass.

ArgoNeuT is a fully operational LArTPC: during the (first) ν-run, large samples of neutrino/antineutrino events have been collected for the 1st time ever in a low-Energy beam.

The extension to a second run period is being proposed at FNAL

Extensive Real data/experience is invaluable in improving LArTPC technique. Analysis software is being developed as general purpose tool for future LArTPCs. Highly sophisticated/detailed MonteCarlo codes are needed, and are currently under test/optimization.