Outlook

- Direct neutrino mass measurement
- Experimental approaches for direct measurements: Spectrometers vs Calorimeters
- The KArlsruhe TRItium Neutrino experiment: KATRIN
- Prospects for Re experiments: MARE
- Conclusion
Direct neutrino mass measurement

neutrino oscillations evidence → $m_\nu \neq 0$
BUT oscillation experiments give only Δm^2!

direct neutrino mass measurement

Kurie plot near E_0

$F_{\Delta E}(0) \approx \left(\frac{\Delta E}{E_0} \right)^3$

$E_0 - m_\nu, E_0$

effect of:
♦ energy resolution
♦ background
♦ Pile up

$K(E_\beta) = (E_0 - E_\beta) \sqrt[4]{1 - \frac{m_\nu^2}{(E_0 - E_\beta)^2}}$

$m_\nu = (\Sigma m_i^2 |U_{ei}|^2)^{1/2}$

2 eV → 3H ($E_0 = 18.6$ keV)
& spectrometers
15 eV → 187Re ($E_0 = 2.47$ keV)
& calorimeters
Different approaches to direct measurement

- **Spectrometers**: source \(\neq\) detector
 - **3H source** → **β counter**
 - **β analyzer**
 - differential or integral spectrometer: βs from the \(^3\text{H}\) spectrum \(\delta E\) are magnetically and/or electrostatically selected and transported to the counter

- **Calorimeters**: source \(\subseteq\) detector
 - **\(^{187}\text{Re source}\)** → **ν_ε**
 - **β calorimeter**
 - ideally measures all the energy \(E\) released in the decay except for the \(ν_ε\) energy
Calorimeter vs Spectrometer

General experimental requirements

- High statistics at the beta spectrum end-point:
 - low end point energy E_0
 - high source activity and high efficiency
- high energy resolution ΔE (same order of magnitude of m_ν sensitivity)
- high Signal to Noise ratio
- small systematics effects

Spectrometer: β source \neq detector

Advantages:
- high statistics
- high energy resolution

Disadvantages:
- \times systematics due to source effect
- \times systematics due to decay to excited states
- \times background

Calorimeter: β source \subseteq detector

Advantages:
- \checkmark no backscattering
- \checkmark no energy losses in the source
- \checkmark no solid state excitation
- \checkmark no atomic/molecular final state effects

Disadvantages:
- \times limited statistics
- \times systematics due to pile-up
- \times background
Precursors of ^{187}Re experiments

MANU (1999)
Genova
- 1 crystal of metallic Re: 1.6 mg
- ^{187}Re activity ≈ 1.6 Hz
- Ge-NTD thermistor
- $\Delta E = 96$ eV FWHM
- 0.5 years live-time
- $m_\nu^2 = -462^{+579}_{-679}$ eV2
- $m_\nu \leq 26$ eV (95 % C.L.)

MIBETA (2002-2003)
Milano, Como, Trento
- 10 AgReO$_4$ crystals: 2.71 mg
- ^{187}Re activity = 0.54 Hz/mg
- Si thermistors (ITC-irst)
- $\Delta E = 28.5$ eV FWHM
- 0.6 years live time
- $m_\nu^2 = -112^{+207}_{-90}$ stat$^{+90}_{-90}$ sys eV2
- $m_\nu < 15$ eV (90% CL)

- 6.2×10^6 ^{187}Re decays above 700 eV
History of tritium Beta decay experiments

ITEP
- T_2 in complex molecule
- magn. spectrometer (Tret'yakov)
 - m_ν: 17-40 eV

Los Alamos
- gaseous T_2 source
- magn. spectrometer (Tret'yakov)
 - m_ν: < 9.3 eV

Tokio
- T source
- magn. spectrometer (Tret'yakov)
 - m_ν: < 13.1 eV

Livermore
- gaseous T_2 source
- magn. spectrometer (Tret'yakov)
 - m_ν: < 7.0 eV

Zürich
- T_2 source impl. on carrier
- magn. spectrometer (Tret'yakov)
 - m_ν: < 11.7 eV

Troitsk (1994-today)
- gaseous T_2 source
- electrostat. spectrometer
 - m_ν: < 2.5 eV

Mainz (1994-today)
- frozen T_2 source
- electrostat. spectrometer
 - m_ν: < 2.3 eV

Mainz & Troitsk have reached their intrinsic limit of sensitivity
The KArlshure TRItium Neutrino experiment: KATRIN

Physics Goal: 1 order of magnitude improvement on m_ν
$$2 \text{ eV} \rightarrow 0.2 \text{ eV}$$

Statistic
Count rate at the b-endpoint falls off very steeply, small background!

Improvement of statistics ($\times 10^3$):
- stronger tritium source and larger spectrometer
- larger measuring period (100 d → 1000 d)

Systematics
Aim: systematic uncertainties = statistical errors

Improvement of systematics ($\times 0.1$):
- improved energy resolution spectrometer with $\Delta E=0.94 \text{ eV}$ (factor 4)
- reduced systematic errors for energy losses in source → windowless gaseous tritium source
KATRIN

(Scientific Report FZKA 7090)

- Windowless gaseous molecular tritium source WTGs
- Tritium retention system
- Pre spectrometer
- Main spectrometer
- Detector

![Diagram of KATRIN setup]({static/diagram.png})

- **T$_2$-injection**: 1.8 mbar l/s = 1.7×10^{11} Bq/s
- **Differential pumping**
- **Cryogenic pumping**
- **Adiabatic electron guiding** & **T$_2$ flow reduction factor of 10^{14}**

- $R > 10^7$
- $\approx 10^{-7}$ mbar l/s
- $< 2.5 \times 10^{-14}$ mbar l/s
KATRIN

- filter out all β-decay electrons without m_ν info
- reduction of background from ionising collisions
- large energy resolution
- high luminosity
- ultrahigh vacuum requirements (background)
- simple construction: vacuum vessel at HV + “massless” screening electrode

- Si-Pin diode
- detection of transmitted β-decay electrons
- low background for endpoint investigation
- high energy resolution
- 148 pixels

detector magnet $B = 3-6 \, T$
KATRIN sensitivity

Expectation for 3 full beam years

→ Statistical & Systematic errors contribute equal ($\sigma_{\text{syst}} \sim \sigma_{\text{stat}}$)

KATRIN discovery potential:

$m_\nu = 0.35 \text{ eV (3}\sigma)$

$m_\nu = 0.3 \text{ eV (5}\sigma)$

Sensitivity:

$m_\nu \leq 0.2 \text{ eV (90% CL)}$

Commissioning of the completed set-up in 2012

2012-2018 regular data taking for 5-6 years (3 full beam year)
Cryogenic Detectors

Detection Principle:
- $\Delta T = E/C$ where C is the total thermal capacity.
 - low C: $C \sim (T/\Theta_D)^3$ in superconductors & dielectric below T_C
 - low T (10 ÷ 100 mK)
- ultimate limit to energy resolution:
 - statistical fluctuation of internal energy $\Delta E = (k_B T^2 C)^{1/2}$
- detect all deposited energy, including short-lived excited states (100 μs)
- achieve very good energy resolution in the keV range
MARE: Microcalorimeter Array for a Rhenium Experiment

Goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE-1: collection of activities aiming at isotope/technique selection

- \(^{187}\text{Re} \): high statistics measurement
 - assess systematics
 - test large arrays
 - lower limit to few eV

- \(^{163}\text{Ho} \): high statistics measurement - R&D for \(^{163}\text{Ho} \) production
 - measure \(Q_{EC} \)
 - study spectrum shape
 - assess systematics

Different techniques:

- TES - Transition Edge Sensor
- MMC - Magnetic MicroCalorimeter
- MKID - Microwave Kinetic Inductance Detector

- multiplexed readout
- large arrays
MARE 1

MARE-1 in Milan: Milano/Como/IRST/Wisconsin/NASA

- $m_{\nu e} < 2 \text{ eV/c}^2$
- 10^{10} events - 300 sensors
- 8 arrays of Si:P thermistors with AgReO$_4$ absorbers
- Energy resolution 25 eV @ 2.6 keV

The first phase is needed:
- because it's the only possible one with present technology
- To investigate systematics in thermal calorimeters

very important to cross-check spectrometer results
MARE 1 in Milan

- **6x6 NASA/GSFC arrays**
 - pixel 300x300x1.5 µm³
 - developed for X-ray spectroscopy with HgTe absorber (ASTRO-E2)

- **flat AgReO₄ single crystal**
 - mass ~ 500mg per pixel ($A_\beta \sim 0.3$ dec/sec)

- **Detector R&D results**
 - best operating $T \approx 85$mK
 - $\Delta E \approx 30$ eV, $\Delta \tau \approx 250$ µs
MARE 1 in Milan: MC sensitivity

Detectors
\[\Delta E_{\text{FWHM}} \sim 15 \text{ eV e } \tau_R \sim 100 \mu \text{s} \]
1 year and 72 channels \(\rightarrow \Sigma(m_\nu) \sim 5 \text{ eV} \)
3 years and 288 channels \(\rightarrow \Sigma(m_\nu) \sim 3 \text{ eV} \)

\[\Delta E_{\text{FWHM}} \sim 30 \text{ eV e } \tau_R \sim 300 \mu \text{s} \]
1 year and 72 channels \(\rightarrow \Sigma(m_\nu) \sim 6 \text{ eV} \)
3 years and 288 channels \(\rightarrow \Sigma(m_\nu) \sim 3 \text{ eV} \)

- setup designed for 8 arrays
- 288 AgReO\(_4\) crystals
- now starting with 2 arrays (72 ch.)
- gradual deployment

\(\triangleright \) further detector optimization

\[\Sigma_\nu \text{ at } 90\% \text{ CL versus measurement time } t_M \]

Load
Resistance
50 M\(\Omega \)
detector holder
Pb shield for calibration source
cold pre-amplifier stage
\[{^{163}\text{Ho}} + e^- \rightarrow {^{163}\text{Dy}^*} + \nu_e \]

- calorimetric measurement of non-radiative Dy atomic de-excitation (mostly non radiative)
- Breit Wigner M,N,O lines have an end-point at the Q-value
 - finite neutrino mass causes a kink at the end point similarly to beta spectrum of \(^{187}\text{Re}\)
- fraction of events at end-point may be as high as for \(^{187}\text{Re}\):
 - depends on \(Q_{EC}\) (2.3\(\pm\)2.8 keV), but \(Q_{EC}\)?
- \(\tau_{1/2} \approx 4570\) y: few active nuclei are needed
 - can be implanted in any suitable absorber
- new NASA/Goddard TES arrays (\(\Delta E = 2\) eV) can be implanted with \(^{163}\text{Ho}\)
- 163 Ho production by neutron irradiation of \(^{162}\text{Er}\) enriched Er
- no high statistics and clean calorimetric measurement so far

MARE 1 activities

- **Isotope physics investigation and systematics assessment**
 - 163Ho + Si-impl/TES (U Genova - U Milano-Bicocca - U Lisbon/ITN)
 - AgReO_4 + Si-impl (U Milano-Bicocca - U Como - NASA/GSFC - UW Madison)

- **Sensor-Absorber coupling (187Re/163Ho) and single pixel design**
 - 187Re + TES (U Genova - U Miami - U Lisbon/ITN)
 - 187Re + MMC (U Heidelberg)
 - 163Ho + TES (U Genova)
 - 163Ho + MMC (U Heidelberg)
 - 163Ho/187Re + MKID (U Milano-Bicocca - JPL/Caltech - U Roma - FBK)

- **Multiplexed sensor read-out**
 - SQUID multiplexing (U Genova - PTB)
 - SQUID microwave multiplexing (U Heidelberg)

- **Software tools**
 - Data Analysis (U Miami)
 - Montecarlo simulations (U Miami - U Milano-Bicocca)
MARE 2 statistical sensitivity: Re & Ho options

- only statistical analysis
- 50000+ detectors gradually deployed
 - arrays distributed in many laboratories around the world
 - about $10^{13} \div 10^{14}$ events after 5 years

Exposure required for 0.2 eV m_ν sensitivity

<table>
<thead>
<tr>
<th>A_p [Hz]</th>
<th>τ_R [us]</th>
<th>ΔE [eV]</th>
<th>N_{ev} [counts]</th>
<th>exposure [det \times year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.2\times 10^{14}</td>
<td>7.6\times 10^{5}</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0.7\times 10^{14}</td>
<td>2.1\times 10^{5}</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>1.3\times 10^{14}</td>
<td>4.1\times 10^{5}</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
<td>1.9\times 10^{14}</td>
<td>6.1\times 10^{5}</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>3.3\times 10^{14}</td>
<td>10.5\times 10^{5}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_p [Hz]</th>
<th>τ_R [us]</th>
<th>ΔE [eV]</th>
<th>N_{ev} [counts]</th>
<th>exposure [det \times year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.8\times 10^{13}</td>
<td>9.0\times 10^{5}</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1.3\times 10^{13}</td>
<td>4.3\times 10^{5}</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>1</td>
<td>4.6\times 10^{13}</td>
<td>1.5\times 10^{4}</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>1</td>
<td>2.8\times 10^{13}</td>
<td>9.0\times 10^{4}</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>4.6\times 10^{13}</td>
<td>1.5\times 10^{5}</td>
</tr>
</tbody>
</table>

- need for new sensor R&D and new read-out techniques

$bkg = 0$

5000 pixels/array
8 arrays
10 years
400 g ^{nat}Re

$Q_{EC} = 2200$ eV

$bkg = 0$

5000 pixels/array
3 arrays
1 year
$\sim 2\times 10^{17} \ ^{163}\text{Ho}$ nuclei
Conclusion

- Investigation of the kinematics of β-decay = only model independent measurement of the absolute neutrino mass scale

- **MARE** staged approach based on microcalorimeters -Re β-decay. The **MARE** project 1st phase is just starting. R&D improvements on the detector technology are crucial for the 2nd phase.

 $^{187}\text{Re calorimetry is complementary to tritium experiments and can give sub-eV sensitivity to } m_\nu.$

- **KATRIN** is the ultimate tritium β-decay experiment: it will reach a sensitivity of 0.2 eV on m_ν. Expected data taking in 2012.