Short-BaseLine Electron Neutrino Disappearance

Carlo Giunti

INFN, Sezione di Torino

NOW 2010, 4-11 September 2010

Collaboration with Marco Laveder (Padova University)

Statistical Significance of the Gallium Anomaly arXiv:1006.3244

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance arXiv:1008.4750

Standard Model: Massless Neutrinos

► Standard Model: $\nu_L, \nu_R^c \implies$ no Dirac mass term

 $\mathcal{L}^{\mathsf{D}} = m^{\mathsf{D}} \left(\overline{\nu_L} \nu_R + \overline{\nu_R} \nu_L \right)$

- Majorana Neutrino: $\nu^c = \nu$
- $\nu_R^c = \nu_R \implies$ Majorana mass term

$$\mathcal{L}^{\mathsf{M}} = \frac{1}{2} m^{\mathsf{M}} \left(\overline{\nu_L} \nu_R^c + \overline{\nu_R^c} \nu_L \right)$$

 Standard Model: Majorana mass term not allowed by SU(2)_L × U(1)_Y (no Higgs triplet)

- Neutrinos are special in the Standard Model: the only neutral fermions
- In extensions of SM neutrinos can mix with non-SM fermions

$$L_{\alpha L} = \begin{pmatrix} \nu_{\alpha L} \\ \alpha_L \end{pmatrix} \qquad \qquad \tilde{\Phi} = i\sigma_2 \, \Phi^* = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix} \xrightarrow{\text{Symmetry}} \begin{pmatrix} v/\sqrt{2} \\ 0 \end{pmatrix} \\ (\alpha = e, \mu, \tau)$$

 $\overline{L_{\alpha L}} \Phi$ can be coupled to new non-SM chiral fermion fields $f_{\beta R}$ Dirac mass terms $\sim \overline{L_{\alpha L}} \Phi f_{\beta R}$ + Majorana mass terms $\sim \overline{f_{\beta R}^C} f_{\beta R}$ $f_{\beta R}$ are often called Right-Handed Neutrinos: $f_{\beta R} \rightarrow \nu_{\beta R}$

• If $f_{\beta R}$ are light, they are called Sterile Neutrinos:

$$\nu_{s_{\beta}L} = f_{\beta R}^{C}$$

Sterile Neutrinos

- ► Sterile means No Standard Model Interactions
- Obviously no electromagnetic interactions as normal active neutrinos
- Thus Sterile means No Standard Weak Interactions
- But Sterile Neutrinos are not absolutely sterile:
 - Gravitational Interactions
 - New Non-Standard Interactions of the Physics Beyond the Standard Model which generates the masses of sterile neutrinos
- Extremely interesting and powerful window on Physics Beyond the SM
- Active Neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into Sterile Neutrinos (ν_s)
- Observables:
 - disappearance of Active Neutrinos
 - indirect evidence through combined fit of data

Solar and Atmospheric Neutrino Oscillations

- ► New Short-BaseLine Oscillations: $\frac{L}{E} \lesssim 1 \frac{m}{MeV} \implies \Delta m_{SBL}^2 \gtrsim 1 eV^2$
- Necessary introduction of at least one new massive neutrino: 4-ν Mixing

$$\Delta m_{\rm SBL}^2 = \Delta m_{41}^2$$
Mass Basis: $\nu_1 \quad \nu_2 \quad \nu_3 \quad \nu_4$
Flavor Basis: $\nu_e \quad \nu_\mu \quad \nu_\tau \quad \nu_s$

Effective SBL Oscillation Probabilities:

•
$$P_{\nu_{\alpha} \to \nu_{\beta}}^{\text{SBL}} = \sin^2 2\vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{\text{SBL}}^2 L}{4E}\right) \quad (\alpha \neq \beta)$$

• $P_{\nu_{\alpha} \to \nu_{\alpha}}^{\text{SBL}} = 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{\text{SBL}}^2 L}{4E}\right)$

Gallium Anomaly

- ► Deficit could be due to overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$
- Calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ related to measured $\sigma(e^- + {}^{71}\text{Ge} \rightarrow {}^{71}\text{Ga} + \nu_e)$:

$$\sigma_{\mathsf{G.S.}}(^{51}\mathsf{Cr}) = 55.3 imes 10^{-46} \, \mathsf{cm}^2 \left(1 \pm 0.004
ight)_{3\sigma}$$

• $\sigma(^{51}\text{Cr}) = \sigma_{G.S.}(^{51}\text{Cr})\left(1 + 0.669 \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{G.S.}} + 0.220 \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{G.S.}}\right)$

Contribution of Excited States only 5%!

Bahcall:

from $p + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + n$ measurements [Krofcheck et al., PRL 55 (1985) 1051] $\frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{CS}} < 0.056 \Rightarrow \frac{\text{BGT}_{175 \text{ keV}}}{\text{BGT}_{CS}} = \frac{0.056}{2} \qquad \frac{\text{BGT}_{500 \text{ keV}}}{\text{BGT}_{CS}} = 0.146$ 3σ lower limit: $\frac{BGT_{175 \text{ keV}}}{BGT_{GS}} = \frac{BGT_{500 \text{ keV}}}{BGT_{GS}} = 0$ 3σ upper limit: $\frac{BGT_{175 \text{ keV}}}{BGT_{CS}} < 0.056 \times 2$ $\frac{BGT_{500 \text{ keV}}}{BGT_{CS}} = 0.146 \times 2$ $\sigma(^{51}{\rm Cr}) = 58.1 \times 10^{-46} \, {\rm cm}^2 \left(1^{+0.036}_{-0.028}\right)_{\rm sc}$

Haxton: [Hata, Haxton, PLB 353 (1995) 422, nucl-th/9503017; Haxton, PLB 431 (1998) 110, nucl-th/9804011] "a sophisticated shell model calculation is performed ... for the transition to the first excited state in ⁷¹Ge. The calculation predicts destructive interference between the (p, n) spin and spin-tensor matrix elements."

$$\sigma(^{51}{
m Cr}) = 63.9 imes 10^{-46} \, {
m cm}^2 \, (1 \pm 0.106)_{1\sigma}$$

Future

- ► New Gallium source experiments: ν_e disappearance [Gavrin et al, arXiv:1006.2103]
- CPT test: ν_e and $\bar{\nu}_e$ disappearance
- Beta-Beam experiments:

$$egin{aligned} \mathcal{N}(A,Z) &
ightarrow \mathcal{N}(A,Z+1) + e^- + ar{
u}_e & (eta^-) \ & \mathcal{N}(A,Z) &
ightarrow \mathcal{N}(A,Z-1) + e^+ +
u_e & (eta^+) \end{aligned}$$

Neutrino Factory experiments:

$$\mu^+
ightarrow ar{
u}_\mu + e^+ +
u_e$$
 $\mu^-
ightarrow
u_\mu + e^- + ar{
u}_e$

New ν_e and ν
_e radioactive source experiments with low-threshold neutrino elastic scattering detectors? (as Borexino or liquid Argon TPC)

C. Giunti – Short-BaseLine Electron Neutrino Disappearance – NOW 2010, 7 Sep 2010 – 12

Conclusions

- ▶ Gallium Anomaly may be a signal of Short-Baseline ν_e disappearance with $\Delta m^2 \gtrsim 1 \, \text{eV}^2$ and $\sin^2 2\vartheta \gtrsim 0.1$
- ▶ Tension with reactor $\bar{
 u}_e$ disappearance limit sin² 2 $\vartheta \lesssim 0.1$
- Hint of CPT violation: $A_{\sin^2 2\vartheta}^{\text{CPT}} > 0$ at 3.5σ .
- Needed high-precision ν_e and $\bar{\nu}_e$ disappearance experiments
- ► Short-Baseline ν_e disappearance maybe connected with LSND and MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$ signal (work in progress)