Charged Cosmic Rays and Neutrinos

Michael Kachelrieß

NTNU, Trondheim
Outline of the talk

1. Introduction ⇒ talk by F. Halzen

2. SNRs as Galactic CR sources

3. Extragalactic CRs
 - transition
 - anisotropies
 - composition measurements

4. Astrophysical source models ⇒ talks of S. Ando & F. Halzen

5. Cosmogenic neutrinos

6. Summary
Outline of the talk

1. Introduction

2. SNRs as Galactic CR sources

3. Extragalactic CRs
 - transition
 - anisotropies
 - composition measurements

4. Astrophysical source models

5. Cosmogenic neutrinos

6. Summary
Outline of the talk

1. Introduction
 ⇒ talk by F. Halzen

2. SNRs as Galactic CR sources

3. Extragalactic CRs
 ▶ transition
 ▶ anisotropies
 ▶ composition measurements

4. Astrophysical source models
 ⇒ talks of S. Ando & F. Halzen

5. Cosmogenic neutrinos

6. Summary
The CR–γ–ν connection:

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes
The CR–γ–ν connection:

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes

- astrophysical models, cosmogenic flux:
 - ratio I_ν/I_N determined by nuclear composition and source evolution
The CR–γ–ν connection:

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- **astrophysical models, direct flux:**
 - strongly model dependent fluxes

- **astrophysical models, cosmogenic flux:**
 - ratio I_ν/I_N determined by nuclear composition and source evolution

- **top-down models:**
 - large fluxes with $I_\nu \gg I_p$
 - ratio I_ν/I_p fixed by fragmentation
The CR–γ–ν connection:

HE neutrinos and HE photons are unavoidable byproducts of HECRs

- astrophysical models, direct flux:
 - strongly model dependent fluxes

- astrophysical models, cosmogenic flux:
 - ratio I_ν/I_N determined by nuclear composition and source evolution

- top-down models:
 - large fluxes with $I_\nu \gg I_p$
 - ratio I_ν/I_p fixed by fragmentation

- prizes to win:
 - astronomy above 100 TeV
 - identification of CR sources
 - determine galactic–extragalactic transition of CRs
 - test/discover new particle physics
Diffusive shock acceleration in test particle picture:

- energy spectrum \(dN/dE \propto 1/E^2 \)
- escape flux \(dN/dr \propto \exp\left(-\left(r - R_{sh}\right)/x_0\right) \) for \(r > R_{sh} \)
SNR: Leptonic versus hadronic models

SNRs as CR sources

Test the SNR CR acceleration paradigm through SNR’s particle radiation:

Michael Kachelrieß (NTNU Trondheim)
Cosmic Rays and Neutrinos
NOW 2012
SNR: Leptonic versus hadronic models

- combining Fermi and IACT contrains models tightly
Maximal energy of SNR: Lagage-Cesarsky limit

- acceleration rate

\[\beta_{\text{acc}} = \frac{dE}{dt}_{\text{acc}} = \frac{3E \nu_{sh}^2}{\zeta D(E)} , \quad \zeta \sim 8 - 20 \]
Maximal energy of SNR: Lagage-Cesarsky limit

- acceleration rate

\[
\beta_{\text{acc}} = \frac{dE}{dt}\bigg|_{\text{acc}} = \frac{3E\nu_{\text{sh}}^2}{\zeta D(E)}, \quad \zeta \sim 8 - 20
\]

- assume Bohm diffusion \(D(E) = cR_L/3 \propto E \) and \(B \sim \mu G \)
SNRs as CR sources

Maximal energy of SNR: Lagage-Cesarsky limit

- acceleration rate

\[\beta_{\text{acc}} = \left. \frac{dE}{dt} \right|_{\text{acc}} = \frac{3E\nu_{sh}^2}{\zeta D(E)} , \quad \zeta \sim 8 - 20 \]

- assume Bohm diffusion \(D(E) = cR_L/3 \propto E \) and \(B \sim \mu G \)

\[\Rightarrow E_{\text{max}} \sim 10^{13} - 10^{14} \text{ eV} \]
Maximal energy of SNR:

- (resonant) coupling CR \leftrightarrow Alfven waves
Maximal energy of SNR:

- (resonant) coupling CR ↔ Alfvén waves
- non-linear non-resonant magnetic field amplification
Maximal energy of SNR:

- (resonant) coupling CR ↔ Alfven waves
- non-linear non-resonant magnetic field amplification

- observational evidence for $B \sim 0.1 - 1 \text{ mG}$ in young SNR rims
changes on $\delta t \sim 1\,\text{yr}$ imply $B \sim 1\,\text{mG}$

$\Rightarrow \ E_{\text{max}} \sim 10^{16}\,\text{eV}$ for protons
SNRs as CR sources

Tycho observations by VERITAS

\[\Gamma = 1.95 \pm 0.51_{\text{stat}} \pm 0.30_{\text{sys}} \]
Tycho observations by VERITAS
Tycho observations by VERITAS

- CRs escape before Sedov phase
Tycho observations by VERITAS

- CRs escape before Sedov phase
- $E_{\gamma,\text{max}} > 10$ TeV requires:
 - protons with $E > 100$ TeV
Tycho observations by VERITAS

- CRs escape before Sedov phase
- $E_{\gamma,\text{max}} > 10$ TeV requires:
 - protons with $E > 100$ TeV
 - electrons, ICS on CMB

\[
E_\gamma = \frac{4 \varepsilon_\gamma E_e^2}{3 m_e^2} \approx 3 \text{ GeV} \left(\frac{E_e}{1 \text{ TeV}} \right)^2
\]
Tycho observations by VERITAS

- CRs escape before Sedov phase
- $E_{\gamma,\text{max}} > 10$ TeV requires:
 - protons with $E > 100$ TeV
 - electrons, ICS on CMB

\[
E_{\gamma} = \frac{4}{3} \frac{\varepsilon_\gamma E_e^2}{m_e^2} \approx 3 \text{ GeV} \left(\frac{E_e}{1 \text{ TeV}} \right)^2
\]

electrons with $E > 50$ TeV
Tycho: Leptonic versus hadronic models

[Morlino, Capriolo '11]
Why is there a universal CR spectrum?

- age-limited
 - CRs are advected down-stream, released at end of Sedov phase
 - adiabatic losses, reduced E_{max}, no B amplification
Why is there a universal CR spectrum?

- age-limited
- CRs escape up-stream:
 - standard approach: homogeneous field & free escape boundary
Why is there a universal CR spectrum?

- age-limited
- CRs escape up-stream:
 - standard approach: homogeneous field & free escape boundary
 - filamentation instability:

[Reville, Bell '11]
Why is there a universal CR spectrum?

- age-limited
- CRs escape up-stream:
 - standard approach: homogeneous field & free escape boundary
 - filamentation instability:

[Reville, Bell ’11]
Transition – KASCADE Grande data
Transition from Galactic to extragalactic CRs

Nuclear composition

Transition – KASCADE Grande data

rising proton fraction $E \gtrsim 10^{17}$ eV?
PAO result on dipole anisotropy:

\[\text{Amplitude} \]

\[10^{-3} \]

\[10^{-2} \]

\[10^{-1} \]

\[1 \]

\[\text{E [EeV]} \]

Rayleigh Analysis
East/West Analysis
PAO result on dipole anisotropy:

Phase [°] vs. E [EeV]

- **East/West analysis**
- **Rayleigh analysis**

- **Graph**
 - X-axis: E [EeV]
 - Y-axis: Phase [°]
 - Data points with error bars
 - Trend line

- **Data Points**
 - East/West analysis: Blue circles with error bars
 - Rayleigh analysis: Red squares with error bars

- **Axis Labels**
 - X-axis: E [EeV] from 0.3 to 20
 - Y-axis: Phase [°] from 180 to 0

Michael Kachelrieß (NTNU Trondheim)
Cosmic Rays and Neutrinos
NOW 2012
Anisotropy of protons at $E = 10^{18}$ eV

protons excluded for all reasonable parameters

⇒ measuring protons at $E = 10^{18}$ eV means fixing transition energy
Energy spectrum

- PAO confirmed the “GZK-suppression” seen first by HiRes
Energy spectrum

- PAO confirmed the “GZK-suppression” seen first by HiRes

- Interpretation:
 - E_{max} of sources?
 - does not fix composition: proton GZK, Fe photo disintegration
Determining nuclear composition: X_{max} and $\text{RMS}(X_{\text{max}})$

- Bethe-Heitler model: $N_{\text{max}} \propto E_0$ and $X_{\text{max}} \propto \ln(E_0)$
Determining nuclear composition: X_{max} and $\text{RMS}(X_{\text{max}})$

- Bethe-Heitler model: $N_{\text{max}} \propto E_0$ and $X_{\text{max}} \propto \ln(E_0)$
- Superposition model: nuclei $= A$ shower with $E = E_0/A$

$\Rightarrow X_{\text{max}} \propto -\ln(A)$ and $\text{RMS}(X_{\text{max}})$ reduced
Determining nuclear composition: X_{max} and $\text{RMS}(X_{\text{max}})$

- Bethe-Heitler model: $N_{\text{max}} \propto E_0$ and $X_{\text{max}} \propto \ln(E_0)$
- Superposition model: nuclei = A shower with $E = E_0/A$

$\Rightarrow X_{\text{max}} \propto -\ln(A)$ and $\text{RMS}(X_{\text{max}})$ reduced
Determining nuclear composition: X_{max} and $\text{RMS}(X_{\text{max}})$

- Bethe-Heitler model: $N_{\text{max}} \propto E_0$ and $X_{\text{max}} \propto \ln(E_0)$
- Superposition model: nuclei = A shower with $E = E_0/A$

$\Rightarrow X_{\text{max}} \propto -\ln(A)$ and $\text{RMS}(X_{\text{max}})$ reduced
Determining nuclear composition: X_{max} and $\text{RMS}(X_{\text{max}})$

- Bethe-Heitler model: $N_{\text{max}} \propto E_0$ and $X_{\text{max}} \propto \ln(E_0)$
- Superposition model: nuclei = A shower with $E = E_0/A$

$\Rightarrow X_{\text{max}} \propto -\ln(A)$ and $\text{RMS}(X_{\text{max}})$ reduced

- $\text{RMS}(X_{\text{max}})$ has smaller theoretical error than X_{max}
Nuclear composition via X_{max}:

![Graph showing nuclear composition via X_{max}.](image-url)
Nuclear composition via $\text{RMS}(X_{\text{max}})$ from Auger:

\[
\begin{align*}
\text{RMS}(X_{\text{max}}) \text{ [g/cm}^2\text{]} & \quad \text{E [eV]} \\
\text{proton} & \quad 10^{18} \quad 10^{19} \\
\text{iron} & \quad 10^{18} \quad 10^{19}
\end{align*}
\]
Mixed composition:

\[\sigma^2 = \sum_i f_i \sigma_i^2 + \sum_{i<j} f_i f_j (X_{\text{max},i} - X_{\text{max},j})^2 \]
What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - $\text{RMS}(X_{\text{max}})$ favors heavy
 - energy spectrum, X_{max} and $\text{RMS}(X_{\text{max}})$ difficult to fit

- experimental discrepancy: HiRes/TA ⇔ Auger
 - X_{max}
 - $\text{RMS}(X_{\text{max}})$

- discrepancy experiment ⇔ theory:
 - energy ground array/fluorescence ~ 1.2
 - muon number exp/MC $\sim 1.2 - 2$
What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - $\text{RMS}(X_{\text{max}})$ favors heavy
 - energy spectrum, X_{max} and $\text{RMS}(X_{\text{max}})$ difficult to fit

- experimental discrepancy: HiRes/TA ⇔ Auger
 - X_{max}
 - $\text{RMS}(X_{\text{max}})$

- discrepancy experiment ⇔ theory:
 - energy ground array/fluorescence ~ 1.2
 - muon number exp/MC $\sim 1.2 - 2$
What goes wrong?

- internal discrepancy in PAO:
 - AGN correlations favor protons
 - $\text{RMS}(X_{\text{max}})$ favors heavy
 - energy spectrum, X_{max} and $\text{RMS}(X_{\text{max}})$ difficult to fit

- experimental discrepancy: HiRes/TA \Leftrightarrow Auger
 - X_{max}
 - $\text{RMS}(X_{\text{max}})$

- discrepancy experiment \Leftrightarrow theory:
 - energy ground array/fluorescence ~ 1.2
 - muon number exp/MC $\sim 1.2 - 2$
Comparison of MCs to LHC data: Energy flow

PYTHIA as typical HEP model

Cosmic ray interaction models
Fermi-LAT limit for cosmogenic neutrinos:

$z_{\text{max}} = 2$, $E_{\text{max}} = 10^{21}\text{eV}$

[Berezinsky et al. '10, ...]
Fermi-LAT limit for cosmogenic neutrinos:

$z_{\text{max}}=2; E_{\text{max}}=10^{21}\text{eV}; m=0$

HiRes II

HiRes I

$\Sigma \nu_i$

E, eV

$E^3J(E) \text{eV}^2\text{m}^{-2}\text{sec}^{-1}\text{ster}^{-1}$
Fermi-LAT limit for cosmogenic neutrinos: \[\text{[Berezinsky et al. '10, ...]}\]
Cosmogenic neutrinos

Limit from EGRB

Fermi-LAT limit for cosmogenic neutrinos:

\[\nu : \nu_e : \nu_\tau = 1:1:1\]

- Auger diff.
- ANITA
- BAIKAL
- Auger
- ANITA-lite
- RICE
- JEM-EUSO
- IceCube 5yr
- \(E^2 \text{cascade}\)

\(E, \text{ eV}\)

\(E^2 J(E), \text{ eV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}\)
Fermi-LAT limit for cosmogenic neutrinos:

\[\text{[Berezinsky et al. '10, ...]} \]

\[E^2 J(E), \text{eV cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \]

\[0.01 \text{ nG} \]
\[1 \text{ nG} \]

\[m=0, \alpha_g=2.0, z_{\text{max}}=2, E_{\text{max}}=10^{21} \text{eV} \]
Cosmogenic neutrinos: proton vs. Fe

\[\text{Anchordoqui et al. '07} \]

Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 24 / 25
Summary

- **Galactic CRs:** *Tycho:* room left for *leptonic* models marginal

- **UHECRs:**
 - understanding differences PAO vs. TA and MC vs. experiment
 - extensions (HEAT, Amiga, infill array) allow cross checks
 - test of MC models against LHC data
 - proton dominance at 10^{18} eV fixes transition energy

- *cosmogenic neutrino flux is low,* because of Fermi limit

- 2 Icecube events: start of neutrino astronomy?
New TA data for X_{max}:

![Graphs showing X_{max} data for HiRes and TA.](image)
Zenith angle dependence, TA scintillator:

Data/MC Comp. (TA-SD, Zenith angle)

QGSJET-II p, E > 10^{18.0} eV

QGSJET-II Fe, E > 10^{18.0} eV
Zenith angle dependence, TA scintillator:

Data/MC Comp. (TA-SD, Zenith angle)

QGSJET-II p, E > 10^{19.0} eV

<table>
<thead>
<tr>
<th>χ^2/ndf</th>
<th>9.516 / 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>0.8639 ± 0.0996</td>
</tr>
<tr>
<td>slope</td>
<td>0.004327 ± 0.00334</td>
</tr>
</tbody>
</table>

QGSJET-II Fe, E > 10^{19.0} eV

<table>
<thead>
<tr>
<th>χ^2/ndf</th>
<th>11.08 / 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>0.574 ± 0.088</td>
</tr>
<tr>
<td>slope</td>
<td>0.0152 ± 0.0032</td>
</tr>
</tbody>
</table>
Icecube events

- 2 cascade events close to $E_{\text{min}} = 10^{15} \text{ eV}$, bg = 0.14
Icecube events

- 2 cascade events close to $E_{\text{min}} = 10^{15} \text{ eV}$, bg = 0.14
- **Glashow resonance**
 - very narrow
 - if $W^- \rightarrow \bar{q}q$, detected energy too low
Icecube events

- 2 cascade events close to $E_{\text{min}} = 10^{15} \text{ eV}$, bg = 0.14
- Glashow resonance
- cosmogenic neutrinos: $\lesssim 1$ events/yr

[Anchordoqui et al. '07]
Icecube events

- 2 cascade events close to $E_{\text{min}} = 10^{15}$ eV, bg = 0.14
- Glashow resonance
- cosmogenic neutrinos: $\lesssim 1$ events/yr
- extragalactic sources: extension to higher energies? if yes, then diffuse flux
Icecube events

- 2 cascade events close to $E_{\text{min}} = 10^{15}$ eV, bg = 0.14
- Glashow resonance
- cosmogenic neutrinos: $\lesssim 1$ events/yr
- extragalactic sources: extension to higher energies?
 if yes, then diffuse flux
- **Galactic point sources**: SNR with $d \sim 50$ pc