Recent Results from EXO-200

Phil Barbeau
Stanford University
The EXO collaboration

University of Alabama, Tuscaloosa AL, USA
D. Auty, M. Hughes, R. MacLellan, A. Piepke, K. Pushkin, M. Volk

University of Bern, Switzerland

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada

Colorado State University, Fort Collins CO, USA
S. Alton, C. Benitez-Medina, C. Chambers, Adam Craycraft, S. Cook, W. Fairbank, Jr., K. Hall, N. Kaufold, T. Walton

University of Illinois, Urbana-Champaign IL, USA - D. Beck, J. Walton, L. Yang

Indiana University, Bloomington IN, USA - T. Johnson, L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

Laurentian University, Sudbury ON, Canada
E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, B. Mong, U. Wichoski

University of Maryland, College Park MD, USA
C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA
T. Daniels, S. Johnston, K. Kumar, A. Pocar, J.D. Wright

University of Seoul, South Korea - D. Leonard

SLAC National Accelerator Laboratory, Menlo Park CA, USA

Stanford University, Stanford CA, USA

Technical University of Munich, Garching, Germany
W. Feldmeier, P. Fierlinger, M. Marino
Xenon: a great candidate for $0\nu\beta\beta$ searches

- **Xenon is “reusable”:** continuously purify-able & recyclable (no crystal growth).

- **Monolithic detector:** LXe is self shielding.

- **Minimal Cosmogenic activation:** No long lived radioactive isotopes of Xe.
The EXO-200 TPC

Two almost identical halves reading ionization and 178 nm scintillation, each with:

- 38 U triplet wire channels (charge)
- 38 V triplet wire channels, crossed at 60° (induction)
- 234 large area avalanche photodiodes (APDs, light in groups of 7)
- Wire pitch 3 mm (9 mm per channel)
- Wire planes 6 mm apart and 6 mm from APD plane
- All signals digitized at 1 MS/s, ±1024S around trigger
- Drift field 376 V/cm

- Field shaping rings: copper
- Supports: acrylic
- Light reflectors/diffusers: Teflon
- APD support plane: copper; Au (Al) coated for contact (light reflection)
- Central cathode, U+V wires: photo-etched phosphor bronze
- Flex cables for bias/readout: copper on kapton, no glue

Comprehensive material screening program

Goal: 40 cnts/2y in 0νββ ±2σ ROI, 140 kg LXe
Copper vessel 1.37 mm thick
175 kg LXe, 80.6% enr. in 136Xe
Copper conduits (6) for:
- APD bias and readout cables
- U+V wires bias and readout
- LXe supply and return
Epoxy feedthroughs at cold and warm doors
Dedicated HV bias line

EXO-200 detector: JINST 7 (2012) P05010
Characterization of APDs: NIM A608 68-75 (2009)
The EXO-200 Detector

- **HV Filter and Feedthrough**
- **Veto Panels**
 - High purity Heat transfer fluid
 - HFE7000
 - > 50 cm
- **Double-Walled Cryostat**
 - 25 mm ea
- **LXe Vessel**
 - 1.37 mm
- **Lead Shielding**
 - > 25 cm
- **Veto Panels**

Notes:
- Monday, September 10, 12
Muon veto
- 50 mm thick plastic scintillator panels
- surrounding TPC on four sides.
- 95.5 ± 0.6 % efficiency
Veto cuts (8.6% combined dead time)
- 25 ms after muon veto hit
- 60 s after muon track in TPC
- 1 s after every TPC event
Sep 2011 – Hardware upgrades
- APD gain increase by factor 2
- improved U-wire shaping
- added outer lead shield

Purity
At $\tau_e = 3$ ms:
- max. drift time ~ 110 μs
- loss of charge is 3.6% at full drift length

<table>
<thead>
<tr>
<th></th>
<th>Run I</th>
<th>Run 2 (this analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>May 21, 11 – Jul 9, 11</td>
<td>Sep 22, 11 – Apr 15, 12</td>
</tr>
<tr>
<td>Live Time</td>
<td>752.7 hr</td>
<td>2,896.6 hr</td>
</tr>
<tr>
<td>Exposure (136Xe)</td>
<td>4.4 kg-yr</td>
<td>26.3 kg-yr</td>
</tr>
</tbody>
</table>

Ultrasound pump:
Rev Sci Instrum. 82(10):105114

Xenon purity with mass spectroscopy:
NIM A675 (2012) 40-46

Gas purity monitors:
NIM A659 (2011) 215-228
The 214Bi decay coincidence rate is consistent with measurements from alpha-spectroscopy and the expectation before the Rn trap is commissioned.
Low-background spectra

single - cluster

multiple - cluster

zoomed in

31 live-days of data
63 kg active mass
Signal / Background ratio 10:1

\[T_{1/2} = 2.11 \cdot 10^{21} \text{ yr (± 0.04 stat) yr (± 0.21 sys)} \]

[PRL 107 (2011) 212501]

Confirmed by Kamland-Zen:
Combining Ionization and Scintillation

Property of liquid xenon: increased scintillation associated with decreased ionization (and vice-versa)

Multi site (MS) and single site (SS) data (black points) are compared to model (blue curve).

- Single site fraction agrees to within 8.5%
- Source activities measured to within 9.4%
Events removed by diagonal cut:
- alpha events (large ionization density -> more recombination -> more scintillation light)
- events near edge of detector, where not all the charge ends up on the collection wires
Low Background Spectrum

Counts / 20 keV vs. Energy (keV)

MS

SS

120.7 days
98.5 kg LXe
(79.4 kg 136LXe)

Exposure 32.5 kg.yr

Total dead time from vetos: 8.6%

No $0\nu\beta\beta$ signal observed
Background counts in ±1,2σ ROI

<table>
<thead>
<tr>
<th>Source</th>
<th>Expected events from fit</th>
<th>±1σ</th>
<th>±2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>222Rn in cryostat air-gap</td>
<td>1.9</td>
<td>±0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>238U in LXe Vessel</td>
<td>0.9</td>
<td>±0.2</td>
<td>1.3</td>
</tr>
<tr>
<td>232Th in LXe Vessel</td>
<td>0.9</td>
<td>±0.1</td>
<td>2.9</td>
</tr>
<tr>
<td>214Bi on Cathode</td>
<td>0.2</td>
<td>±0.01</td>
<td>0.3</td>
</tr>
<tr>
<td>All Others</td>
<td>~0.2</td>
<td>~0.2</td>
<td>~0.2</td>
</tr>
<tr>
<td>Total</td>
<td>4.1</td>
<td>±0.3</td>
<td>7.5</td>
</tr>
<tr>
<td>Observed</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Background index ($kg^{-1}yr^{-1}keV^{-1}$)
$1.5\times10^{-5} \pm 0.1 \, 1.4\times10^{-5} \pm 0.1$

EXO-200 goal:
40 cnts/2y in ±2σ ROI, 140 kg LXe
In this data 120 days, 98.5 kg: 4.6

Expected from the fit: 7.5
Observed: 5

Background within expectation
Limits on $T_{1/2}^{0\nu\beta\beta}$ and $\langle m_{\beta\beta} \rangle$

$$(T_{1/2}^{0\nu\beta\beta})^{-1} = G^{0\nu} |M_{nucl}|^2 \langle m_{\beta\beta} \rangle^2$$

$T_{1/2}^{0\nu\beta\beta} > 1.6 \cdot 10^{25} \text{ yr}$

$\langle m_{\beta\beta} \rangle < 140–380 \text{ meV}$

(90% C.L.)

PRL 109 (2012) 032505
References for: Limits on $T_{1/2}^{0\nu\beta\beta}$ and $\langle m_{\beta\beta} \rangle$

EXO-200 Sensitivity
QRPA-2

\[136Xe \, T_{1/2} \, (yr) \]

\[m_{\beta\beta} \, (meV) \, QRPA-2 \]

- median sensitivity 90% CL
- analysis upgrades
- commission Rn Tent
- EXO-200 limit
- KK&K claim (QRPA-2)
All important EXO-200 subsystems working

Low background running with enriched xenon already producing physics results

$^{136}\text{Xe } 2\nu\beta\beta$: $T_{1/2} = 2.11 \times 10^{21} \text{yr} \ (\pm 0.04 \ \text{stat}) \ (\pm 0.21 \ \text{sys})$ [PRL 107 (2011) 212501]

$^{136}\text{Xe } 0\nu\beta\beta$: $T_{1/2} > 1.6 \times 10^{25} \text{yr}$ [PRL 109 (2012) 032505]

Contradict claimed observation for the decay in ^{76}Ge for most nuclear matrix elements models

new $T_{1/2}^{2\nu\beta\beta} (^{136}\text{Xe}) = (2.23 \pm 0.017 \ \text{stat} \pm 0.22 \ \text{sys}) \times 10^{21} \text{yr}$ agrees with previous EXO-200 and Kamland-Zen’s results

Stay tuned: improved energy resolution, upgraded pattern recognition, reduced backgrounds... & beginning work on nEXO detector concepts
Backup Slides
Ba-tagging research is actively pursued.

Because of the success with EXO-200 the collaboration started to study the case for a ~5 ton Xe experiment, *initially* without Ba-tagging; with tagging remaining an option.

Assume:

- 4 tons of active enrXe (80% or higher).
- 1.4% (σ) energy resolution.
- Observed EXO-200 backgrounds minus the Rn in the shield.
- $\beta\beta$-scales like the volume, the background like the surface area (assume equal materials thicknesses).
Simulating different shielding configurations from baseline EXO-200 scale-up
nEXO SENSITIVITY

- 5 ton-yr Ge Zero Background
- 5 ton-yr Ge (1 c/ROI/t/yr)
- nEXO 40 ton-yr Zero Background
- nEXO 40 ton-yr (7.5 c/ROI/t/yr)

$T_{1/2}^{76}$Ge (yr)

$T_{1/2}^{136}$Xe (yr)
Common cathode for 2 TPCs

APDs see prompt scintillation
(t₀ for drift time)

V: induction on shielding grid

U & ionization: charge on collection grid
Calibration

Guide tube brings various sources to several positions outside detector

x-y distribution shows excess near source location
Wire Gains

• gains of wire channels measured with charge calibrations
• This is further corrected using the pair production peak (1593 keV) from 232Th 2615 keV gamma depositions.
• Have also individually measured the electronic transfer function of each channel, which are used to reconstruction the charge signals
• With all this, and the excellent purity, the charge resolution improved from 4.5% to 3.4% at 2615 keV
Calibration runs compared to simulation
-GEANT4 based simulation
-charge & scintillation propagation
-signal generation
-energy resolution parameter is added from after the fact

Rate is not a free parameter
poorest agreement is +8%
Identifying 3-site events from pair-production and annihilation provides 2 extra charge calibration peaks
-511 keV gammas are our lowest energy calibration sources
-1592 keV pair production very similar topology to ββ decays
Energy Calibrations: charge only

After purity correction, calibrated single and multiple cluster peaks across energy region of interest (511 to 2615 keV)

-uncertainty bands are systematic
Point-like depositions have large reconstructed energies due to induction effects
- observed for pair-production site (similar to β and ββ decays)
reproduced in simulation
Peak widths also recorded and their dependence on energy is parameterized.
Correcting for light response

EXO-200 light response (Averaged over \(\phi \))

- APD Plane
- Cathode Ring

Disabled APD gang

Lightmap near APD plane
At $Q_{\beta\beta}$ (2458 keV):
- $\sigma/E = 1.67\%$ (SS)
- $\sigma/E = 1.84\%$ (MS)

Energy resolution model:

$$\sigma_{Tot}^2 = p_0^2 E + p_1^2 + p_2^2 E^2$$

Dominated by constant (noise) term p_1
Pinpoint source location using a Compton Telescope technique

Detector measures E, x, y, z for each site

Use scattering formula

$$\phi = \arccos \left[1 - m_e c^2 \cdot \left(\frac{1}{E_\gamma - E_1} - \frac{1}{E_1} \right) \right]$$

From each site a cone is drawn and adding up these cones produces the image to the right.
Systematic uncertainties: $2\nu\beta\beta$

- Fiducial volume: 9.3%
- Multiplicity assignment: 3%
- Energy calibration: 1.8%
- Background models: 0.6%
2νββ signal is clearly in the LXe bulk, while other gamma background contributions decrease with increasing distance from the walls.

Also constant in time
Low Background Spectrum

Zoomed around $0\nu\beta\beta$ region of interest (ROI)

Constraints:
- SS to MS ratio within ±8.5% of values predicted by MC (set by largest variations in source data)
- Energy resolution
- Energy calibration
- Beta energy scale
- Some PDFs (e.g. ^{222}Rn in LXe)

No 0ν signal observed
From estimated background, expect to quote a 90% CL upper limit on $T_{1/2}$:

- $\geq 1.6 \times 10^{25}$ yr 6.5% of the time
- $\geq 7 \times 10^{24}$ yr 50% of the time
EXO-200 Sensitivity
R-QRPA
EXO-200 Sensitivity
NSM

The graph shows the sensitivity of the EXO-200 experiment for measuring the half-life of 136Xe and the mass of the NSM. The x-axis represents the EXO-200 livetime in years, while the y-axis shows the 136Xe half-life in years and the NSM mass in meV. The sensitivity is illustrated with various lines and markers representing different scenarios, such as median sensitivity, 90% CL, analysis upgrades, commission Rn Tent, EXO-200 limit, and KK&K claim (NSM).
EXO-200 Sensitivity
GCM
Systematics Uncertainties

Error breakout: expected 90% CL limit given absolute knowledge (0 error) of a given parameter or set of parameters

<table>
<thead>
<tr>
<th>Term</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiducial Volume</td>
<td>12.34</td>
</tr>
<tr>
<td>β scale</td>
<td>9.32</td>
</tr>
<tr>
<td>SS / (SS + MS)</td>
<td>0.93</td>
</tr>
<tr>
<td>232Th LXe Vessel</td>
<td>0.11</td>
</tr>
<tr>
<td>238U LXe Vessel</td>
<td>0.04</td>
</tr>
<tr>
<td>222Rn Air Gap</td>
<td>0.04</td>
</tr>
<tr>
<td>Calibration offsets</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Spatial Distributions

- $2\nu\beta\beta$ rate does not change with fiducial volume
- Background gammas rates drop towards the inside of the detector
- Events in the $\pm 1,2\sigma$ ROIs: statistics is too low to conclude on their parent distribution
Simulated spectra generation

Dotted line is Geant4 simulated energy deposition from 228Th source.

Solid line is energy spectra resulting from the convolution of the MC energy deposition with the energy resolution model.
Muon track signals

Muon traverses both TPCs

Collection

Induction
- Investigate alpha spectrum for scintillation signals from 238U
- Calibrate spectrum with alphas in Rn chain
- Can constrain contamination of 238U in bulk LXe by searching for 4.5 MeV alphas (<0.3 counts per day in our fiducial volume)
- The same limit applies to its daughter 234mPa which β decays with a Q-value of 2195 keV, which cannot then explain our LXe bulk signal
Event reconstruction

- Signal finding – matched filters applied on U, V and APDs waveforms
- Signal parameter estimation \((t, E)\) for charge and light
- Cluster finding – assignment to Single Site (SS) or Multiple Site (MS): separation resolution 18mm in U and 6 mm in Z

Amplitudes corrected by channel for gain variation
Scintillation response corrected for position in TPC
Require events to be fully reconstructed in 3D
Reconstruction efficiency for 0νββ is 71% – estimated by MC and verified by comparing the 2νββ MC efficiency with low background data, over a broad range in energy
Fiducial volume uncertainty

Uncertainty determined from the fidelity with which calibration events are reconstructed within a chosen volume as compared to simulation.
3D reconstruction threshold

- Events >100 keV well above charge detection threshold
- 3D reconstruction still requires t_0 from scintillation signal
- Compare ratio of fully reconstructed events to triggered events to determine reconstruction efficiency
- Early software threshold \sim700 keV
- Recent dramatic increase with change in APD bias voltages \sim300 keV