Probing baryon asymmetry by light right-handed neutrinos

Takehiko Asaka (Niigata Univ.)

In collaboration with Shintaro Eijima (Niigata Univ.)

@NOW2012, Italy (2012/9/12)
SM with TWO RH neutrinos

Introduce two RH neutrinos ν_{R2}, ν_{R3}

$$\delta L = i\bar{\nu}_{RI} \gamma_\mu \nu_{RI} - F_{\alpha I} \bar{L}_\alpha \nu_{RI} \Phi - \frac{M_I}{2} \bar{\nu}_{RI} \nu^c_{RI} + \text{h.c.}$$

$I = 2, 3$

$\alpha = e, \mu, \tau$

- Explain neutrino masses by seesaw mechanism
 - Light (active) neutrinos ν_1, ν_2, ν_3
 - Heavy neutrinos N_2, N_3

- Explain baryon asymmetry by RH neutrinos
 - Mechanism depends on masses of heavy neutrinos
 - ex) Leptogenesis, Baryogenesis via Neutrino Oscillation
 - Fukugita, Yanagida (86)
 - Akhmedov, Rubakov, Smirnov (98)

- Heavy neutrinos can be tested directly by experiments, if their masses are small enough
In this talk

Consider two quasi-degenerate (RH) heavy neutrinos N_2, N_3

- Lighter than charged kaon mass $M_{2,3} < m_K$
 \[\rightarrow \text{Test by Kaon decays } (K^+ \rightarrow \ell^+ N_i) \text{ is possible} \]
- Quasi-degenerate $M_3 - M_2 = \Delta M \ll 2M_N = M_3 + M_2$
 \[\rightarrow \text{Baryogenesis via neutrino oscillation is possible} \]

Can we determine all the parameters of the model by experiments and cosmological observations?

- Interactions of heavy neutrinos

\[\Phi \rightarrow F_{\alpha l} \uparrow \downarrow N_I \quad L_\alpha \]

\[W \rightarrow g \Theta_{\alpha l} \uparrow \downarrow \ell^+_\alpha \]

\[Z \rightarrow g_Z \Theta_{\alpha l} \uparrow \downarrow \bar{\nu}_\alpha \]

\[\nu_{L\alpha} = U_{\alpha i} \nu_i + \Theta_{\alpha l} N^c_I \]

\[\theta_{\alpha l} = \frac{\langle \Phi \rangle F_{\alpha l}}{M_I} \]

\text{\textbf{F}_{\alpha l} determine the interactions}
Yukawa couplings for $N_{2,3}$

\[F = U_{\text{PMNS}} \ D_v^{1/2} \ \Omega \ D_N^{1/2} / \langle \Phi \rangle \]

(in IH)

- **Parameters of light (active) neutrinos**
 \[D_v^{1/2} = \text{diag}(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3} = 0) \quad : \quad \nu \text{ masses} \]
 \[U_{\text{PMNS}} = \begin{pmatrix}
 c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\
 -c_{23} s_{12} - s_{23} c_{12} s_{13} e^{i\delta} & c_{23} c_{12} - s_{23} s_{12} s_{13} e^{i\delta} & s_{23} c_{13} \\
 s_{23} s_{12} - c_{23} c_{12} s_{13} e^{i\delta} & -s_{23} c_{12} - c_{23} s_{12} s_{13} e^{i\delta} & c_{23} c_{13}
\end{pmatrix} \begin{pmatrix}
 1 \\
 e^{i\eta} \\
 1
\end{pmatrix} \]

- **Parameters of heavy neutrinos**
 \[D_N^{1/2} = \text{diag}(\sqrt{M_2}, \sqrt{M_3}) \quad : \quad N \text{ masses} \]
 \[\Omega = \begin{pmatrix}
 \cos \omega & -\sin \omega \\
 \xi \sin \omega & \xi \cos \omega \\
 0 & 0
\end{pmatrix} \quad \text{Complex number } \omega \]
 \[\text{Sign parameter } \xi = \pm 1 \]

Casas, Ibarra (01)

Dirac phase δ

Majorana phase η
Parameters of 2RHN model (IH)

- Global analysis
 \[\sin^2 \theta_{12} = 0.307 \]
 \[m_2 = 0.0496 \text{ eV} \]
 \[\sin^2 \theta_{23} = 0.392 \]
 \[m_1 = 0.0488 \text{ eV} \]
 \[\sin^2 \theta_{13} = 0.0244 \]
 \[m_3 = 0 \]

- Unknown parameters
 \[\delta = [0, 2\pi] \]
 \[\eta = [0, \pi] \]
 \[\xi = +1, -1 \]
 \[M_N \]
 \[\Delta M \ll M_N \]
 \[\Re \omega = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \]
 \[X_\omega = \exp(\Im \omega) \geq 1 \]

What can we learn from present experiments and cosmological observations?
Direct search experiments

- **PS191 experiment**

 Production \(\pi^+, K^+ \rightarrow e^+ N, \mu^+ N \)

 Detection \(N \rightarrow \ell^+ \ell^- \nu, \ell^+ \pi^- \)

- **Upper bounds**

\[
|\Theta_{\alpha l}|^2 \left(a |\Theta_{e l}|^2 + b |\Theta_{\mu l}|^2 + c |\Theta_{\tau l}|^2 \right)
\]

\(a, b, c \): depends on \(M_N \) and search channel

Ruchayski, Ivashko '12

- Majorana (rather than Dirac)
- Not only CC but also NC contributions
- Two quasi-degenerate heavy neutrinos \((N_2, N_3) \)

Takehiko Asaka (Niigata Univ.)

12 September 2012
BBN constraint

- Heavy neutrino decays
 \[N_{\ell} \to 3\nu, \ell^+ \ell^- \nu, \pi^0 \nu, \pi^+ \ell^- \]
 \(\rightarrow N_{\ell} \) is long lived particle
- To keep the success of BBN
 \(\rightarrow \tau_N < 0.1 \text{ sec} \)
 Dolgov, Hansen, Rafflet, Semikoz ('00)

- **Lower bounds**
 \[a'|\Theta_{eI}|^2 + b'|\Theta_{\mu I}|^2 + c'|\Theta_{\tau I}|^2 \]

Together with search bounds, we obtain allowed range!

Gorbunov, Shaposhnikov (07), Ruchayski, Ivashko (12)

Takehiko Asaka (Niigata Univ.)
Allowed range of M_N

We can obtain allowed range of $X_\omega = \exp(\text{Im}\omega)$

$$\Gamma_N = \tau^{-1}_N \propto \Theta^2 \propto F^2 \text{ and } F \propto X_\omega \text{ for large } \text{Im}\omega$$
Allowed range of X_ω

We find other interesting information in IH case!
Mixing elements of heavy neutrinos

- Since $\Delta M \ll M_N$ and $X_\omega \gg 1$, mixing elements of N_2 and N_3 are the same

\[\theta_{\alpha 2} = \theta_{\alpha 3} \quad \text{TA, Eijima, Ishida ('11)} \]

- Mixing elements strongly depend on $\xi \sin \eta$

\[
\begin{align*}
|\Theta_e|^2 &\approx 1.20 \times 10^{-8} \left(\frac{\text{MeV}}{M_N} \right) (1.000 - 0.925 \xi \sin \eta) X_\omega^2, \\
|\Theta_\mu|^2 &\approx 0.76 \times 10^{-8} \left(\frac{\text{MeV}}{M_N} \right) (1.000 + 0.895 \xi \sin \eta - 0.250 \xi \cos \eta \sin \delta + 0.092 \xi \sin \eta \cos \delta) X_\omega^2, \\
|\Theta_\tau|^2 &\approx 0.50 \times 10^{-8} \left(\frac{\text{MeV}}{M_N} \right) (1.000 + 0.860 \xi \sin \eta + 0.380 \xi \cos \eta \sin \delta - 0.140 \xi \sin \eta \cos \delta) X_\omega^2.
\end{align*}
\]

We find allowed range of Majorana phase!
Majorana phase in IH case

\[\sin \eta \sim 1 \quad \sin \eta \sim 0.3 \quad \text{all } \eta \text{ is allowed} \]

Excluded by BBN +PS191

\[K^+ \rightarrow e^+ N \]
\[N \rightarrow e^- \pi^+ + cc \]

Excluded by BBN +PS191

\[K^+ \rightarrow \mu^+ N \]
\[N \rightarrow \mu^- \pi^+ + cc \]

Future search experiments by Kaon decays can provide strong information on Majorana phase

Takehiko Asaka (Niigata Univ.)

12 September 2012
0νββ decays in IH

Effective neutrino mass from light and heavy neutrinos

\[m_{\text{eff}} = m_i U_{ei}^2 + f_\beta (M_i) M_i \Theta_{ei}^2 = \left[1 - f_\beta (M_N) \right] m_\nu^\text{v} \]

\[m_\nu^\text{v} = \cos^2 \theta_{13} \left(m_1^2 \cos^4 \theta_{12} + m_2^2 \sin^4 \theta_{12} + 2 m_1 m_2 \cos^2 \theta_{12} \sin^2 \theta_{12} \cos 2\eta \right)^{1/2} \]

- Heavy neutrinos give negative contribution to \(m_{\text{eff}} \)
- Constraint on \(\eta \) restricts the predicted range of \(m_{\text{eff}} \)
Oscillation of heavy neutrinos can be a source of BAU

- CPV in oscillation and production generates asymmetries
- Asymmetries are separated into LH and RH leptons
- Asymmetry in LH leptons is converted into BAU

BAU can provide information on $F_{\alpha I}$ since generation of asymmetry is controlled by $F_{\alpha I}$

Especially, CP violating parameters and mass difference

$$T_{osc} \sim (M_0, M_N, \Delta M)^{1/3}$$
Reω, ΔM and BAU (IH)

$M_N = 250\text{MeV}, \delta = \pi$

- η and Reω are important for the sign of BAU
- Correct sign of BAU restricts the region of Reω depending on η

- Once η is determined, we obtain the relation between Reω and ΔM
- Together with measurement of δ we may probe ΔM if Reω is away from 0 and $\pi/2$

Takehiko Asaka (Niigata Univ.)

12 September 2012
Parameters of 2RH\nu model (IH)

- **Global analysis**
 \[
 \sin^2 \theta_{12} = 0.307 \quad \sin^2 \theta_{23} = 0.392 \quad \sin^2 \theta_{13} = 0.0244 \\
 m_2 = 0.0496 \text{ eV} \quad m_1 = 0.0488 \text{ eV} \quad m_3 = 0
 \]

- **Free parameters**
 \[
 \delta = [0, 2\pi] \\
 \eta = [0, \pi] \\
 \xi = +1, -1 \\
 M_N \\
 \Delta M \ll M_N \\
 \Re \omega = [-\frac{\pi}{2}, \frac{\pi}{2}] \\
 X_\omega = \exp(\Im \omega) \geq 1
 \]

Future
- Oscillation experiments
- Search experiments in K decays (beam dump/peak search) + BBN
- 0v\beta\beta experiments

Present and future
- Baryon asymmetry

Present
- Takehiko Asaka (Niigata Univ.)
Summary

- Two right-handed neutrinos offer
 - Seesaw mechanism for neutrino masses
 - Baryogenesis for baryon asymmetry of the universe

- When heavy neutrinos are quasi-degenerate with $M_N \sim 200-400\text{MeV}$, we may have a chance to test directly the origin of neutrino masses and baryon asymmetry by using kaon decays!