where are neutrino mass-mixing parameters leading us?

Otranto, September 5th 2016

NOW 2016
Neutrino Oscillation Workshop

Ferruccio Feruglio
Universita’ di Padova
GUTs: the open sea (once called the big desert)

RGE flow

flavour symmetries

radiative neutrino masses
starting point

[Marone, Neutrino 2016]

$\Delta \chi^2_{\text{IO-NO}} = 3.1$

CP-conservation disfavored at $\geq 2\sigma$

Normal Ordering slightly preferred

missing pieces

Dirac or Majorana?

mass ordering

$\Sigma_i m_i$ absolute mass scale

δ Dirac phase

$\alpha \beta$ Majorana phases
radiative neutrino masses
Specific particle content and/or symmetries can force the Weinberg operator to arise at \(L \geq 1 \) loop order.

\[
L_5 = \frac{1}{\Lambda} (\varphi^+ l)^T W (\varphi^+ l) + h.c.
\]

Topologies classified

- [1-loop: Bonnet, Hirsch, Ota, Winter 1204.5862]
- [2-loop: Sierra, Degee, Dorame, Hirsch 1411.7038]

At least 2 new multiplets required as intermediate states (or additional non-renormalizable operators)

[Geib, King, Merle, No, Panizzi 1512.04391]

Main motivation

Neutrino masses suppressed by loop factors: intermediate states can be light and probed at existing facilities (cfr. \(\nu_R \) in seesaw at the GUT scale)

Neutrino physics directly accessible at
- high-energy colliders (direct production of new particles \(100 \text{ GeV} \leq m \leq 1 \text{ TeV} \))
- high-intensity facilities (LFV, \(\mu \rightarrow e\gamma \) at 1-loop, \(\mu \rightarrow 3e \) at tree-level,....)

Very interesting physics (it would deserve a dedicated review)
Also DM candidates among the new particles (with discrete symmetries)
price to pay

large variety of possible realizations

many independent topologies: $4 \text{ (1-loop)} + 20 \text{ (2-loop)} + \ldots$

for each topology, several different choices of intermediate states

large (∞) number of models

uniqueness of tree-level seesaw lost

many new independent parameters

- tuning of parameters needed:
 - to cope with LFV
 - to reproduce $(m_i, \theta_{ij}, \ldots)$

flavour problem amplified

no insight about the origin of lepton mixing

connection to charged fermions/GUT weakened

embedding of intermediate states in GUT requires large representations

\[k^{++} \subset 50 \text{ [SU(5)]} \subset \overline{126} \text{ [SO(10)]} \]

gauge coupling unification possible, but with ad-hoc particle content

[Hagedorn, Ohlsson, Riad, Schmidt 1605.03986]
lepton mixing from RGE flow
under appropriate conditions:
low-energy value $\alpha(Q) = \alpha^*$
independent from
the initial conditions $\alpha(\Lambda)$

more parameters (α, β, \ldots)
running at the same time:

fixed point relation

$$f(\alpha^*, \beta^*, \ldots) = 0$$
starting point

\[L_5 = \frac{1}{\Lambda} (\varphi^+ l)^T w(\varphi^+ l) + h.c. \]

at some large scale \(\Lambda \gg \text{e.w. scale} \)
e.g. from see-saw

what matters is the speed along the RGE trajectories. For \(U_{PMNS} \)

\[
\frac{m_i + m_j}{m_i - m_j} \times \frac{\eta}{16\pi^2} y_\tau^2 \times \log \frac{\Lambda}{Q} \approx \frac{m_i + m_j}{m_i - m_j} \times 10^{-5} \tan^2 \beta
\]

\[
(\Lambda = 10^{10} \, \text{GeV} \quad Q = 10^2 \, \text{GeV})
\]

sufficient speed requires strong degeneracy at \(Q = \Lambda \)

fixed point relations

\[
\sin^2 2\theta_{12} = s_{13}^2 \frac{\sin^2 2\theta_{23}}{s_{23}^2 + s_{13}^2 c_{13}^2}
\]

\[\text{CP conserving case} \quad [\text{Chankowski, Krolikowki, Pokorski 2000}] \]

(0.75 + 0.92) [3\sigma]

(0.05 + 0.16) [3\sigma]

does not work

\[\text{CP violating case} \quad [\text{Casas, Espinosa, Ibarra, Navarro 9910420}] \]

the only acceptable case is Inverted Hierarchy
with \(m_1 \approx m_2 \) at the scale \(\Lambda \)

\[\text{Re}(U_{31}^{*} U_{32}) = 0 \]
fixed point relation reads

\[s_{12}c_{12}(c_{23}s_{13} - s_{23})(c_{23}s_{13} + s_{23})\cos\alpha / 2 + \\
\; s_{13}s_{23}c_{23}(c_{12}^2 \cos(\alpha / 2 - \delta) - s_{12}^2 \cos(\alpha / 2 + \delta)) = 0 \]

phase convention for Majorana phases:

\[|m_{ee}| = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{i\alpha} m_2 + s_{13}^2 e^{i\beta} m_3 \right|^2 \]

represents a constraint in (\delta, \alpha) plane

impact on 0\nu\beta\beta decay

predictions

- large scale \Lambda
- Inverted Hierarchy
- \pi \leq \delta \leq 2\pi correlated with \alpha \approx -150^0
- \Sigma_i m_i > 0.1 \text{ eV (degeneracy)}
- |m_{ee}| close to present bounds

but

- \(\vartheta \)\text{ }_{23} \text{ }_{13} \text{ do not appreciably run in this regime}
- no relation to quark sector
- can be altered by threshold corrections
GUTs: the open sea
(once called the big desert)
almost no symmetry

no striking hierarchies among lepton mixing angles or neutrino masses

Higgs multiplets

[Hall, Murayama, Weiner 1999, De Gouvea, Murayama 1204.1249
Brdar, König, Kopp 1511.0637]

Anarchy

$m_\nu = \begin{pmatrix}
\text{mixing angles and mass ratios from random } O(1) \\
\text{quantities: consistent with data}
\end{pmatrix}$

$|U_{PMNS}| \approx \begin{pmatrix}
0.8 & 0.5 & 0.2 \\
0.4 & 0.6 & 0.6 \\
0.4 & 0.6 & 0.8
\end{pmatrix}$

can we adopt this principle for quarks and charged leptons?

1. all Yukawa’s are described by anarchical matrices with $O(1)$ matrix elements

2. minimal $SU(5)$ field content: 3 copies of

fermion masses from

$10 = (q, u^c, e^c) \quad \bar{5} = (l, d^c)$

$L_Y = 10 y_u 10 \varphi + \bar{5} y_d 10 \varphi + \frac{1}{M} \bar{5} w \bar{5} \varphi \varphi$

Higgs multiplets
the observed hierarchies are generated by a rescaling

\[F_{10} \rightarrow F_{\tilde{5}} \]
\[\bar{5} \rightarrow F_{\tilde{5}} \bar{5} \]

\[F_x = \begin{pmatrix} \varepsilon' \ 0 \ 0 \\ 0 \ \varepsilon_x \ 0 \\ 0 \ 0 \ 1 \end{pmatrix} = \begin{pmatrix} \end{pmatrix} \]

\[1 \geq \varepsilon_x \geq \varepsilon_x' \]

 hierarchy in up-quark sector is stronger than in the down-quark one:

\[F_{\tilde{5}} = \begin{pmatrix} \end{pmatrix} \]

F\(_x\) can arise from:
- U(1)\(_{FN}\) symmetries,
- a 5\(^{th}\) Extra Dimension,
- Partial Compositness,
- conformal dynamics

m\(_u\) : m\(_c\) : m\(_t\) \approx m\(_d^2\) : m\(_s^2\) : m\(_b^2\) \approx m\(_e^2\) : m\(_\mu^2\) : m\(_\tau^2\) approximately true
\[Y_e = F_{10} y_d^T F_5 = Y_d^T \]

\[Y_d \text{ and } Y_e \text{ lopsided} \]

\[F_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[m_v = \frac{\nu^2}{M} F_5 w F_5 \propto \]

\[V_{ub} \approx V_{us} \times V_{cb} \]

[Hagiwara, Okamura '98; Berezhiani, Rossi '98; Altarelli, F. '98]

anarchy is just the special case

anarchy:
-- no preferred mass ordering
-- smallness of small parameters due to chance

worth to explore other possibilities beyond anarchy

\[F_5 = \begin{pmatrix} \lambda^{Q_1} & 0 & 0 \\ 0 & \lambda^{Q_2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\begin{array}{|c|c|c|}
\hline
\text{sin}^2 \theta_{13} & \Delta m_{21}^2 / |\Delta m_{31}^2| \\
\hline
\text{NH} & 0.0214^{+0.0011}_{-0.0009} & 0.0295 \pm 0.0008 \\
\text{IH} & 0.0218^{+0.0009}_{-0.0012} & 0.0300 \pm 0.0009 \\
\hline
\end{array} \]

\[\begin{array}{|c|c|}
\hline
(Q_1, Q_2) & \lambda \\
\hline
A & (0,0) \\
A_{\mu\tau} & (1,0), 0.25 \\
PA_{\mu\tau} & (2,0), 0.35 \\
H & (2,1), 0.45 \\
\hline
\end{array} \]
Normal Hierarchy favored in non-anarchical examples

$\sin^2 \theta_{13} \approx \Delta m^2_{12} / \Delta m^2_{13}$

typical

[Buchmuller, Domcke, Schmitz, 1111.387;
Altarelli,F, Masina, Merlo 1207.0587;
Bergstrom, Meloni, Merlo, 1403.4528]

Impressive
-- minimal amount of symmetry required
-- reproduces qualitative features of both quark and lepton masses and mixings
-- explains why $U_{PMNS} \neq V_{CKM}$
-- compatible with GUT
-- compatible with leptogenesis
-- incorporates anarchy as a special case

Limits:
-- maximal θ_{23} unexplained
-- Dirac phase unpredicted
-- large number of independent $O(1)$ parameters: impossible to go beyond order-of-magnitude predictions

accurate existing data need precise predictions
flavour symmetries
can we do better?

perhaps some feature of lepton mixing is not accidental

\[\theta_{23} \text{ nearly maximal?} \]

\[\delta_{CP} = -\pi/2 ? \]

quark-lepton complementarity?

\[\theta_{12} + \theta_{12}^q = \frac{\pi}{4} \leftrightarrow (1.023 \pm 0.023) \frac{\pi}{4} \]

[Smirnov; Raidal; Minakata and Smirnov 2004]

\[U_{PMNS} \text{ close to TB, BM,...?} \]

\[U_{PMNS} = U_{PMNS}^0 + \text{corrections} \]

\[|U_{PMNS}|^2 = |U_{TB}|^2 = \begin{pmatrix} 2/3 & 1/3 & 0 \\ 1/6 & 1/3 & 1/2 \end{pmatrix} + \ldots \]

[Harrison, Perkins, Scott 0202074]

\[|U_{PMNS}|^2 = |U_{BM}|^2 = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} + \ldots \]

[Marrone, Neutrino 2016]
discrete flavor symmetries showed very efficient to reproduce U_{TB}, U_{BM},…

but also indirect: [King, Merle, Morisi, Shimizu Tanimoto 1402.4271]

3x3 matrix space

$U_ν$ diagonal matrices

$U_e (m_e^+ m_e)$

direct models 4 predictions

$\delta^0 \pmod{\pi}$

neutrino masses: fitted, not predicted

for simplest pattern such as $TB, BM,…$

required groups are small: A_4, S_4

but corrections are needed

corrections “by hand”

BM corrected from charged lepton sector

$U^0_{PMNS} = U_{BM} \rightarrow R_{12}(\alpha)U_{BM}$

sum rules

$\sin^2 \theta_{12} = \frac{1}{2} + \sin \theta_{13} \cos \delta_{CP} + O(\sin^2 \theta_{13})$

$\sin^2 \theta_{23} = \frac{1}{2} + O(\sin^2 \theta_{13})$

more freedom if also $R_{13}(\beta)$ is allowed [Altarelli, Machado, Meloni 1504.05514]
corrections by scanning discrete groups

complete classification of $|U_{PMNS}|$ for Majorana ν from any finite group available now!

[Fonseca, Grimus 1405.3678]

- patterns compatible with data: TriMaximal
- if mixing angles close to data then: δ_{CP} trivial
- large groups required, for example $\Delta(486)$

$U_{PMNS}^0 = U_{TB} \rightarrow U_{TB} R_{23}(\alpha)$

$U_{PMNS}^0 = U_{TB} \rightarrow U_{TB} R_{13}(\alpha)$

TM mixing leads to other sum rules

combining CP and discrete flavour symmetries

mixing angles and CP violating phases

$(\vartheta_{12}^0, \vartheta_{23}^0, \vartheta_{13}^0, \delta^0, \alpha^0, \beta^0)$

predicted in terms of a single real parameter $0 \leq \vartheta \leq \pi$

$G_f=\Delta(384)$

<table>
<thead>
<tr>
<th>$\sin^2 \theta_{13}$</th>
<th>$\sin^2 \theta_{12}$</th>
<th>$\sin^2 \theta_{23}$</th>
<th>$\sin \delta$</th>
<th>$\sin \alpha = \sin \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0220</td>
<td>0.318</td>
<td>0.579</td>
<td>0.936</td>
<td>$-1/\sqrt{2}$</td>
</tr>
<tr>
<td>0.0220</td>
<td>0.318</td>
<td>0.421</td>
<td>-0.936</td>
<td>$-1/\sqrt{2}$</td>
</tr>
</tbody>
</table>

Lam 1208.5527 and 1301.1736
Holthausen, Lim and Lindner 1212.2411
Neder, King, Stuart 1305.3200
Hagedorn, Meroni, Vitale 1307.5308
King, Neder 1403.1758
Ishimori, King, Okada, Tanimoto 1411.5845
Yao, Ding 1505.03798]

[F. F., C. Hagedorn and R. Ziegler 1211.5560, 1303.7178
Ding, King, Luhn, Stuart 1303.6180
Ding, King, Stuart 1307.4212
Fonseca, Grimus 1405.3678]

[Hagedorn, Meroni, Molinaro 1408.7118]
flavour symmetries are a useful tool in our quest of the origin of \((m_i, \theta_{ij})\) but no compelling and unique picture have emerged so far. Present data can be described within widely different frameworks [despite the constant, impressive progress on the experimental side]

simple schemes with a minimal amount of structure can well reproduce the main features of \((m_i, \theta_{ij})\) in both quark and lepton sectors also in a GUT framework
main drawbacks: -- no precise questions/no precision tests allowed [e.g. maximal \(\theta_{23}\) unexplained]
-- more structure needed to suppress FCNC and CPV if there is new physics at the TeV scale

some special features [\(\theta_{23}\) maximal, \(\delta_{CP} = -\pi/2\), \(U_{PMNS} \approx TB, BM,\ldots\)] can survive experimental refinements and guide us in the search of first principles ruling the flavour sector
back-up slides
available tools to predict masses and mixing angles

in Quantum Field Theory

assumed throughout this talk:
3 light active Majorana neutrinos [i.e. no sterile neutrinos, and $\Delta(B-L) = 2$]

$(m_i, \theta_{ij}, \ldots)$ are basic parameters of the theory that cannot be predicted unless they vanish in the Classical Lagrangian [with one exception $\rightarrow 3.$]

1. quantum corrections removing accidental zeros of the classical Lagrangian
[due to specific particle content and renormalizability]

$m_i = \frac{\mu}{16\pi^2} f_i(g) + \ldots$

radiative fermion masses

2. symmetries requiring relations among $(m_i, \theta_{ij}, \ldots)$

exact symmetries

example: $U(1)_{em} \rightarrow m_\gamma = 0$

do not apply to fermion masses and mixing angles. Largest (non-abelian) global symmetry of quark sector - $G_{\text{MFV}} = SU(3)^3$ - completely broken by $(m_i, \theta_{ij}, \ldots)$

no hint for exact symmetries in the lepton sector with Majorana neutrinos
approximate symmetries

\[SU(2)_{\text{isospin}} \rightarrow m_n - m_p \approx 0 \]

\[SU(2)_L \times U(1)_Y \rightarrow \begin{cases} m_W \propto g \langle v \rangle \\ m_Z \propto \sqrt{g^2 + g'^2} \langle v \rangle \end{cases} \]

huge number of models of \((m_i, \theta_{ij}, \ldots)\):
- abelian and non-abelian symmetries
- continuous and discrete symmetries
- explicitly or spontaneously broken

renormalization group flow driving \((m_i, \theta_{ij}, \ldots)\) to special low-energy values

under appropriate conditions:
low-energy value \(\alpha(Q) = \alpha^*\)
independent from the initial conditions \(\alpha(\Lambda)\)

(Infrared Stable) Fixed Point of RGE flow

more parameters \((\alpha, \beta, \ldots)\) running at the same time:

fixed point relation
\[f(\alpha^*, \beta^*, \ldots) = 0 \]
flavour symmetries

two examples
Explanation of leptonic flavour mixing is a part of a more general problem, the "flavour puzzle"

Some open questions:

- Smallness of neutrino masses
- Lepton mixing angles versus quark mixing angles
- Hierarchy of charged fermion masses

ν sector very special: the only one where predictions are still possible

- Mass ordering
- $\Sigma_i m_i$ absolute mass scale
- δ Dirac phase
- $\alpha \beta$ Majorana phases
corrections by scanning discrete groups

complete classification of $|U_{PMNS}|$ for Majorana ν from any finite group available now!

[Fonseca, Grimus 1405.3678]

-- patterns compatible with data: only TriMaximal
-- if mixing angles close to data then: δ_{CP} trivial
-- large groups required, for example $\Delta(486)$
-- larger groups - e.g. $\Delta(1176)$ - can determine the Cabibbo angle as well, but not the other quark mixing angles.

combining CP and discrete flavour symmetries

Next talk!

In summary
- discrete groups produce testable predictions but
- evidence for discrete symmetries in the quark sector is still very poor
- unified - lepton&quarks - descriptions typically badly broken in the quark sector
- approach too much centered on mixing/CP properties, masses take second place

F.F., C. Hagedorn, R. de A. Toroop
Lam 1208.5527 and 1301.1736
Holthausen1, Lim and Lindner 1212.2411
Neder, King, Stuart 1305.3200
Hagedorn, Meroni, Vitale 1307.5308
King, Neder 1403.1758
Ishimori, King, Okada, Tanimoto 1411.5845
Yao, Ding 1505.03798
Trimaximal [TM] mixing from TB

\[U_{PMNS}^0 = U_{TB} \rightarrow U_{TB} R_{23}(\alpha) \]

leading to testable sum rules

\[
\sin^2 \theta_{12} = \frac{1}{3} - \frac{2}{3} \sin^2 \theta_{13} + O(\sin^4 \theta_{13})
\]

\[
\sin^2 \theta_{23} = \frac{1}{2} - \sqrt{2} \sin \theta_{13} \cos \delta_{CP} + O(\sin^2 \theta_{13})
\]

deviation from TB is linear in \(\alpha \) for \(\sin^2 \theta_{23} \), whereas is quadratic for \(\sin^2 \theta_{12} \), the best measured angle

sum rules can be tested by measuring \(\delta_{CP} \) and improving on \(\sin^2 \theta_{23} \)