(Non)standard oscillations at current facilities

David Vanegas Forero

Center For Neutrino Physics - Virginia Tech

September 7, 2016
1. Introduction

2. The pheno approach to the NSI
 - CC-Like NSI pheno approach
 - What are the current limits?
 - NC-Like NSI pheno approach

3. Where the CC-like NSI can be probed?
 - Example I, results

4. Where the NC-like NSI can be probed?
 - Example II, results
Within the Standard Model, and in ordinary matter:

\[V_{\alpha \beta} = \begin{pmatrix}
\nu_e & \nu_e \\
Z & 0 & 0 \\
p, n, e & 0 & Z & 0 & 0 \\
\nu_e & \nu_e \\
p, n, e & 0 & 0 & 0 & 0 \\
\end{pmatrix}_\text{NC} + \begin{pmatrix}
\nu_e \\
W & Z & 0 & 0 & 0 \\
\nu_e \\
e & e & 0 & 0 & 0 \\
\end{pmatrix}_\text{CC} \]

proportional to unity and unobservable

relevant term is the $\nu_e - \nu_{\mu, \tau}$ energy difference: $V_{cc \alpha}$

(No analogous for μ, τ, which are absent in ordinary matter)
Oscillation Channels

$\bar{\nu}_e$ Disappearance

$$P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2_{ee} L}{4E} \right) + \text{solar term}$$

ν_e Appearance from a ν_μ-beam

$Cervera$ et al. (NPB 579 (2000))

$Akhmedov$ et al. (JHEP 004 (2004))

$Nunokawa$ et al. (Prog.Part.Nucl.Phys 60 (2008))

$$P(\nu_\mu \rightarrow \nu_e) \approx | \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{\text{sol}}}|^2$$

$$= P_{\text{atm}} + 2\sqrt{P_{\text{atm}}} \sqrt{P_{\text{sol}}} \cos(\Delta_{32} + \delta) + P_{\text{sol}}$$

where

$$\sqrt{P_{\text{atm}}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31},$$

$$\sqrt{P_{\text{sol}}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21}$$

with $a \equiv V_{CC}/2$ and $\Delta_{ij} \equiv (\Delta m^2_{ij} L)/(4E)$

ν_μ Disappearance

$$P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - \sin^2 (2\theta_{23}) \sin^2 \Delta_{32} - \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31}$$
Oscillation Channels

$\bar{\nu}_e$ Disappearance

\[P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E} \right) + \text{solar term} \]

ν_e Appearance from a ν_μ-beam

\[P(\nu_\mu \rightarrow \nu_e) \approx \left| \sqrt{P_{atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{sol}} \right|^2 \]

\[= P_{atm} + \frac{P_{atm}^2 + P_{sol}^2 + 2P_{atm}P_{sol} \cos(\Delta_{32} + \delta)}{P_{\sin \delta + P_{\cos \delta}}} \]

\[\sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31}, \]

\[\sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21} \]

with $a \equiv V_{CC}/2$ and $\Delta_{ij} \equiv (\Delta m_{ij}^2 L)/(4E)$

$\sim 1 \text{ km Reactors.}$

T2K and NOvA.
More importantly …

θ_{13} and δ_{cp}

- T2K result with reactor constraint ($\sin^2 2\theta_{13} = 0.085 \pm 0.005$)

Neutrino 2016

Neutrino 2016: $\delta_{cp} = [-3.02, -0.49] (NH), [-1.87, -0.98] (IH)$ at 90% CL

ICHEP 2016

ICHEP 2016: $\delta_{cp} = [-3.13, -0.39] (NH), [-2.09, -0.74] (IH)$ at 90% CL
Outline

1 Introduction

2 The pheno approach to the NSI
 - CC-Like NSI pheno approach
 - What are the current limits?
 - NC-Like NSI pheno approach

3 Where the CC-like NSI can be probed?
 - Example I, results

4 Where the NC-like NSI can be probed?
 - Example II, results
The pheno approach to the NSI

\[
\mathcal{L}_{V^\pm A} = \frac{G_F}{\sqrt{2}} \sum_{f,f'} \varepsilon^{S(D)}_{\alpha,\beta} \left[\bar{\nu}_\beta \gamma^\rho (1 - \gamma^5) \ell_\alpha \right] \left[\bar{f}'_{\gamma} (1 \pm \gamma^5) f \right] \tag{C.C}
\]

\[
+ \frac{G_F}{\sqrt{2}} \sum_{f} \varepsilon^{m,f}_{\alpha,\beta} \left[\bar{\nu}_\alpha \gamma^\rho (1 - \gamma^5) \nu_\beta \right] \left[\bar{f}_{\gamma} (1 \pm \gamma^5) f \right] + \text{h.c.} \tag{N.C}
\]

Also, see J. Kopp et al. (PRD 77 (2008)).
CC-like NSI pheno approach
Redefining the neutrino states

A ‘new’ state $|\nu_\beta\rangle$ can appear with the usual state $|\nu_\alpha\rangle$ in a CC weak process together with l_α. That flavor ‘admixture’ is incorporated to the anti-neutrino flavor states:

$$|\bar{\nu}_\alpha^{s}\rangle = |\bar{\nu}_\alpha\rangle + \sum_{\gamma} \varepsilon_{\alpha\gamma} |\bar{\nu}_\gamma\rangle$$

$$\langle \bar{\nu}_\beta^{d}\rangle = \langle \bar{\nu}_\beta\rangle + \sum_{\eta} \varepsilon_{\eta\beta}^{d*} \langle \bar{\nu}_\eta\rangle$$

where the standard flavor states are related to mass eigenstates by:

$$|\bar{\nu}_\alpha\rangle = \sum_{k} U_{\alpha k} |\bar{\nu}_{k}\rangle$$

The anti-neutrino transition probability for the new states is:

$$P_{|\bar{\nu}_\alpha^{s}\rangle \rightarrow |\bar{\nu}_\beta^{d}\rangle} = \langle \bar{\nu}_\beta\rangle \exp(-i \mathcal{H} L) |\bar{\nu}_\alpha^{s}\rangle |^2.$$
Current bounds

CC-like NSI

Bounds extracted from:

- **V^{ud} determination**: From Kaon decays $\rightarrow V^{us}$ (and assuming CKM unitarity) compared with the derivation from beta decays (affected by NSI). [*NSI quark dominated]*.

- **Universality tests**: Ratios $\pi \rightarrow e(\mu)\nu$ and $\tau \rightarrow \pi \nu$ decay rates modified by quark CC-like NSI.

- **Non-observation of flavor change at NOMAD** (‘zero distance effect’). Channels $\nu_\mu \rightarrow \nu_e(\nu_\tau)$, $\nu_e \rightarrow \nu_\tau$, and $\nu_\mu \rightarrow \nu_\tau$. [*low (high) E limit]*.

Assuming only one parameter at a time (90% C.L. for 1 d.o.f):

$$X = \begin{bmatrix} V & L(R) & V \\ A & A & A \\ L(R) & L(R) & A \end{bmatrix}, \quad |\varepsilon_{\alpha\beta} X_{ij}| < \begin{bmatrix} 0.041 & 0.026(0.037) & 0.041 \\ 0.026 & 0.078 & 0.013 \\ 0.087(0.12) & 0.013(0.018) & 0.13 \end{bmatrix}$$
Current bounds

CC-like NSI

Bounds extracted from:

- V^{ud} determination: From Kaon decays $\rightarrow V^{us}$ (and assuming CKM unitarity) compared with the derivation from beta decays (affected by NSI). [*NSI quark dominated].

- Universality tests: Ratios $\pi \rightarrow e(\mu)\nu$ and $\tau \rightarrow \pi\nu$ decay rates modified by quark CC-like NSI.

- Non-observation of flavor change at NOMAD (‘zero distance effect’).
 Channels $\nu_\mu \rightarrow \nu_e (|\varepsilon^{ud}_{\mu e}|, |\varepsilon^{ud}_{e\mu}|)$, $\nu_e \rightarrow \nu_\tau (|\varepsilon^{ud}_{\tau e}|)$, and $\nu_\mu \rightarrow \nu_\tau (|\varepsilon^{ud}_{\mu \tau}|, |\varepsilon^{ud}_{\tau \mu}|)$. [*low (high) E limit].

Assuming only one parameter at a time (90% C.L. for 1 d.o.f):

$$\chi = \begin{bmatrix} V & L(R) & V \\ A & A & A \\ L(R) & L(R) & A \end{bmatrix}, \quad |\varepsilon^{ud}_{ij}\chi_{ij}| < \begin{bmatrix} 0.041 \\ 0.026 \\ 0.087(0.12) \end{bmatrix}, \quad \begin{bmatrix} 0.026(0.037) \\ 0.078 \\ 0.013(0.018) \end{bmatrix}, \quad \begin{bmatrix} 0.041 \\ 0.13 \end{bmatrix}$$

$$|\varepsilon^{ud}_{ij}\chi_{ij}| \sim 1\%$$
NC-Like NSI pheno approach
Generalizing the effective matter potential

The general matter interaction Hamiltonian can be written as

\[H_{\text{int}} = V \begin{pmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ (\varepsilon_{e\mu}^*) & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ (\varepsilon_{e\tau}^*) & (\varepsilon_{\mu\tau}^*) & \varepsilon_{\tau\tau} \end{pmatrix} \]

with \(V = \sqrt{2} G_F N_e \), and:

\[\varepsilon_{m\alpha\beta} = \sum_{f=e,u,d} \left\langle \frac{Y_f}{Y_e} \right\rangle \varepsilon_{f\alpha\beta} = \varepsilon_{e\alpha\beta} + Y_u \varepsilon_{u\alpha\beta} + Y_d \varepsilon_{d\alpha\beta} \]

How many new degrees of freedom do we have now ‘in the game’?
Current bounds
NC-like NSI

From a global fit, using only neutrino oscillation data, the 90% of C.L bounds for the LMA solution are:

\[\epsilon_{\alpha\beta} - \epsilon_{\mu\mu} |_{f=d(u)} \in \left[\begin{array}{ccc}
0.02(0.00), 0.51 & -0.09, 0.04 & -0.14, 0.14 \\
\times & 0 & \times \\
\times & \times & \times
\end{array} \right] \]

Thus, for instance, one of the less constrained and non-diagonal NSI coupling is \(\epsilon_{e\tau}^m \sim \mathcal{O}(1) \).
From a global fit, using only neutrino oscillation data, the 90% of C.L bounds for the LMA solution are:

\[\varepsilon_{\alpha\beta} - \varepsilon_{\mu\mu} \begin{bmatrix} f=d(u) \end{bmatrix} \in \begin{bmatrix} [0.02(0.00), 0.51] & [-0.09, 0.04] & [-0.14, 0.14] \\ 0 & [0.01, 0.01] & [0.01, 0.03] \end{bmatrix} \]

Thus, for instance, one of the less constrained and non-diagonal NSI coupling is \(\varepsilon_{m_{e\tau}} \sim \mathcal{O}(1) \).

Constrains on \(\varepsilon_{\alpha\beta} \) also come from ‘ν–e’ scattering (not cover them here), see for instance table III in Ref:

Miranda and Nunokawa (NJP 17(2015))
Outline

1. Introduction

2. The pheno approach to the NSI
 - CC-Like NSI pheno approach
 - What are the current limits?
 - NC-Like NSI pheno approach

3. Where the CC-like NSI can be probed?
 - Example I, results

4. Where the NC-like NSI can be probed?
 - Example II, results
Reactor $\bar{\nu}_e$ production and detection

Production: β decay of $k = ^{235}U$, ^{239}Pu, ^{241}Pu and ^{238}U

Detection: Inverse β decay, $\bar{\nu}_e + p \rightarrow n + e^+$

Flux parametrizations: $\Phi_k(E)$
- P. Huber \textit{(PRC 84 (2011))}
- T. Mueller \textit{et al.} \textit{(PRC 83 (2011))}

Coincidence signals: Prompt e^+-annihilation and delayed n-capture.

For ~ 1km baseline, $\bar{\nu}_e$s propagate to FD practically in Vacuum!
Daya Bay Experimental Setup

Far Hall (EH3)
860 m.w.e.
Target: 80t
\(<L> \sim 1580m\)

Ling Ao near Hall (EH2)
265 m.w.e.
Target: 40t
\(<L> \sim 560m\)

Daya Bay Near Hall (EH1)
250 m.w.e.
Target: 40t
\(<L> \sim 510m\)

Ling Ao II reactors

Reactor power
6 x 2.9 GW\textsubscript{th}

Start 6-AD data taking @ Dec 2011
Full 8-AD data taking @Oct 2012
Analysis details

\[\tilde{\varepsilon}_{\alpha\beta}^{m,f,V\pm A} \to 0 \quad \text{and} \quad \tilde{\varepsilon}_{e\beta}^{S(D),u,d,V\pm A} \to \tilde{\varepsilon}_{e\beta}^{S(D)} \]

Our setup:

- \[\varepsilon_{e\alpha}^s = \varepsilon_{d\alpha}^d \equiv \varepsilon_{\alpha} = |\varepsilon_{\alpha}|e^{i\phi_{\alpha}} \]
- \[|\tilde{\nu}_s^s\rangle = |\tilde{\nu}_\alpha\rangle + \sum_{\gamma} \varepsilon_{s\alpha\gamma}^s |\tilde{\nu}_\gamma\rangle \]
- The effective oscillation probability is given by:

\[
P_{\tilde{\nu}_s^s \to \tilde{\nu}_e^d}^{\text{eff.}} \simeq 1 + \left(4|\varepsilon_e|\cos\phi_e\right) \\
- 4 \left[\sin\theta_{13} + s_{23}|\varepsilon_\mu|\cos(\delta - \phi_\mu) + c_{23}|\varepsilon_\tau|\cos(\delta - \phi_\tau) \right]^2 \sin^2 \Delta_{31} + O(\varepsilon)^2 \]

- Ours is a total rate analysis.
Results for the ε_e case

$0.020 \leq \sin^2 \theta_{13}^{DYB} \leq 0.024$

$|\varepsilon_e| \leq 0.0012$ @90% C.L
$0.020 \leq \sin^2 \theta_{13} \leq 0.024$

C.L = 68.3, 90, 95%; 2 d.o.f
Results for the ε_e case

$0.020 \leq \sin^2 \theta_{13}^{DYB} \leq 0.024$

$\sigma_a = 5\%$

$|\varepsilon_e| \leq 0.015$ @90% C.L

$0.020 \leq \sin^2 \theta_{13} \leq 0.025$

$\text{C.L} = 68.3, 90, 95\%; 2 \text{ d.o.f}$

$a_{\text{norm}} = 0$

$|\varepsilon_e| \leq 0.0012$ @90% C.L

$0.020 \leq \sin^2 \theta_{13} \leq 0.024$

Agarwalla, Bagchi, DVF, Tórtola
(JHEP 060 (2015))
Outline

1 Introduction

2 The pheno approach to the NSI
 - CC-Like NSI pheno approach
 - What are the current limits?
 - NC-Like NSI pheno approach

3 Where the CC-like NSI can be probed?
 - Example I, results

4 Where the NC-like NSI can be probed?
 - Example II, results
T2K Experiment

Super-Kamiokande
Mt. Ikenoyama 1,360m
Mt. Noguchi-Goro Dake 2,924m
Near Detector
Neutrino Beam
295km

Super-Kamiokande (ICRR, Univ. Tokyo)

J-PARC Main Ring (KEK-JAEA, Tokai)
NOvA

- Long-baseline, off-axis neutrino oscillation experiment
- Study neutrinos from NuMI beam at Fermilab
- At 14 mrad off-axis, energy peaked at 2 GeV
- Functionally identical detectors
 - ND on site at Fermilab
 - FD 810 km away in Ash River, MN
 - Measurement at ND is directly used to predict FD
We considered only the (Anti)neutrino appearance channel. Only the off-diagonal NSI parameter $\varepsilon_{m}^{e\tau} \equiv |\varepsilon| \exp(i\phi) \neq 0$. We simulated true neutrino events including NSI and we compare them to the test SM events in both T2K (scaled 5 yrs) and NOvA ($3\nu + 3\bar{\nu}$).
We considered only the (Anti)neutrino appearance channel.

Only the off-diagonal NSI parameter $\varepsilon_{\mu\tau}^m \equiv |\varepsilon| \exp(i\phi) \neq 0$.

We simulated true neutrino events including NSI and we compare them to the test SM events in both T2K (scaled 5 yrs) and NOvA ($3\nu+3\bar{\nu}$).
Results

Bi-rate plots

DVF and Huber (PRL 117 (2016))
Results

Histograms

DVF and Huber (PRL 117 (2016))
Summary

- A pheno approach to the NSI has been discussed leaving out the ‘model building’ treatment to generate sizable NSI indicated by the pheno studies.

- NSI phenomenology with current neutrino oscillation experiments was presented. Two cases were shown, one for CC-like NSI and the other for NC-like NSI. Another study of NC-like NSI was presented by Prof. O. Yasuda.

- Multidetector reactor neutrino experiments offer a clean probe of CC-like NSI. The θ_{13} determination is robust under CC-like NSI while the value of the NSI constraint is limited by our current knowledge of the (total normalization) reactor neutrino fluxes.

- Thanks to ‘parameter degeneracies’ (after including NC-like NSI in the 3ν-framework) if the current prefer value for $\delta_{CP}^{\text{True}} \sim -\pi/2$ were established, with current facilities, we can not disentangle whether the origin of the CP violation comes from the usual Dirac CP violating phase or from the NSI couplings (even with $\phi = \pi$).
THANK YOU
Daya Bay $\bar{\nu}_e \rightarrow \bar{\nu}_e$

$$\frac{N_F}{N_N} = \frac{N_{p,F}}{N_{p,N}} \times \frac{\epsilon_F}{\epsilon_N} \times \frac{L^2_N}{L^2_F} \times \frac{\int \Phi(E) \sigma(E) P_{ee}(E,L_F)}{\int \Phi(E) \sigma(E) P_{ee}(E,L_N)}$$

$$\chi^2 = \sum_{d=1}^{8} \left[\frac{M_d - T_d (1 + a_{\text{norm}} + \sum_r \omega_r \alpha_r + \xi_d) + \beta_d}{M_d + B_d} \right]^2$$

$$+ \sum_{r=1}^{6} \frac{\alpha_r^2}{\sigma_r^2} + \sum_{d=1}^{8} \left(\frac{\xi_d^2}{\sigma_d^2} + \frac{\beta_d^2}{\sigma_B^2} \right) + \left(\frac{a_{\text{norm}}}{\sigma_a} \right)^2$$

Constrained normalization analysis! $\sigma_a \sim 5\%$.