Glimpse of the KATRIN tritium analysis
NOW 2018

Valérian Sibille, on behalf of the KATRIN collaboration

MIT

15th September 2018
Outline

1. Introduction
2. Data
3. Model components
4. Fitting
5. Unbiased analysis
6. Conclusion
Neutrino mass from β spectrum

- Analyse electrons from molecular tritium β-decay

⇒ Transport electrons

⇒ Select energy

⇒ Model comparison
Karlsruhe Tritium Neutrino experiment

- 70-metre beam-line
- Gaseous T_2 from Tritium Laboratory Karlsruhe (40 g d$^{-1}$)
- eV-resolution spectrometer
- 95% efficiency Si-PIN diode wafer
Outline

1 Introduction

2 Data

3 Model components

4 Fitting

5 Unbiased analysis

6 Conclusion
First tritium: commissioning phase

- First injection on 18th May
- Loop operation from 5th to 18th June
- 0.5% tritium atoms in D₂
- 0.1% stability
Counting hits

- Set retarding potential \(U \)
- Integration over the region of interest
Integrated rate stability

- Spectrometer retarding potential set 1 keV below endpoint
- Rate averaged on minute-basis

⇒ Stable over hours

⇒ Start analysis?
Outline

1. Introduction
2. Data
3. Model components
4. Fitting
5. Unbiased analysis
6. Conclusion
Tritium β-decay spectrum

- Super-allowed decay
- Radiative corrections
- $1s$ screening
- ...
- Roughly:

$$\frac{d\Gamma}{dE}(E) \propto F(E) \phi_e(E) \int f(V) \phi_\nu(E + V) \Theta(Q - E - V - m_\nu) \, dV$$

$$\phi_\nu(E) = (Q - E) \sqrt{(Q - E)^2 - m_\nu^2}$$
HeT or HeD molecules after decay

- Spectrum f of excitations
- Theoretical work
- Likely dominant 5-year term systematic
- **Learn** from data (spectroscopy, KATRIN, TRIMS)
Magnetic Adiabatic Collimation & Electrostatic filter

- Align electrons along electrostatic field
- Select all signal electrons with \(E > qU_A \left(1 + \frac{B_A}{B_{\text{max}}} \right) \)
Response function with scattering in the source

- Mitigate scattering with $\theta < 51$ deg acceptance
- Upcoming scattering energy loss spectrum measurements

⇒ KATRIN model is semi-analytical (arXiv:1806.00369)
Minimisers, samplers and systematics

Minimisers & samplers

- Minuit
- Custom with analytical derivatives
- Markov Chain (BAT)

Systematics: work in progress

- Covariance matrices
- Monte Carlo propagation: pull terms or priors
 ⇒ Learn from data
- Dominated by column density for First Tritium
 ⇒ Normalisation (activity)
 ⇒ Shape (scattering)
First 3h-run fit: custom minimiser

- Fit Endpoint, Normalisation, Background
- Fix $m^2_{\nu} = 0$ eV2
- Poisson likelihood, statistical errors only, 400 eV range

⇒ Already agreement
Endpoint evolution: Minuit-based

- χ^2 expression

⇒ Endpoint reproduced
⇒ Distributions exhibit no inconsistencies
Outline

1. Introduction
2. Data
3. Model components
4. Fitting
5. Unbiased analysis
6. Conclusion
Prevent observer’s bias

- Limit **blind** sensitivity to $m_\nu < 2 \text{ eV}$ (95\% C.L.) at best

\Rightarrow Add fluctuations or **systematics** to $m_\nu^2 : \sigma_{\text{blind}}$
Data and model blinding methods

- Sensitivity studies for data-based and model-based methods

⇒ Three out five very suitable
Blind analysis of commissioning data

- Test on First Tritium runs
- Increase systematic uncertainty on m^2_{ν} by smearing s

\Rightarrow Matches theoretical Taylor expansion $2s^2$

\Rightarrow Other fit parameters unscathed
Outline

1 Introduction
2 Data
3 Model components
4 Fitting
5 Unbiased analysis
6 Conclusion
✓ Stable running experiment

✓ Promising data analysis

✓ Towards a blind analysis

✓ Already doing analysis with systematics

✓ On-going measurements

✓ ν-mass runs in early 2019
Thank you for your attention