Multi-messenger physics opportunities from core-collapse supernovae

Shunsaku Horiuchi
Center for Neutrino Physics
Virginia Tech
Inherently a multi-messenger source

Outline

Review of core-collapse supernovae

Multi-messenger opportunities with Galactic supernovae

Beyond the Milky Way

Concluding remarks
Collapse of massive stars

Massive (>8Msun) star structure

Explosion

R: 8000 km \rightarrow \sim20 km
ρ: $\sim10^9$ g cm$^{-3}$ \rightarrow $\sim10^{14}$ g cm$^{-3}$
T: $\sim10^{10}$ K \rightarrow ~30 MeV

Adapted from slides by G. Raffelt
Explosion mechanism

Stalled shock
The bounce shock stalls (photodissociation & neutrino emission). Pressure inside balanced by external ram pressure

\[p = \rho \Delta v^2 \]

Explosion mechanism
e.g., deposit a fraction of the energy in neutrinos to behind the shock

Bethe & Wilson (1985), Colgate et al (1966), ...

And/or, rotation, magnetic, phase transition, exotic, ...

Mass accretion
VS
Heating
Importance of asphericity

Consensus in the 2000s that 1D doesn’t work.

e.g., Liebendoerfer et al (2001, 2004)

Hydrodynamical instabilities aid explosions, *e.g.*, standing accretion shock instability (SASI), convection

e.g. US, German, Japan, Australian groups

![Graph showing 1D, 2D, and 3D shock radius over time](chart1)

![Graph showing energy vs. multipole order](chart2)

Shunsaku Horiuchi (VT CNP)
Takiwaki et al (2014)
Janka et al (2016)
Supernova diversity

Systematic studies: thinking in mass looks incomplete

Compactness: a useful indicator

Compactness:
Captures the density structure of the progenitor, which drives mass accretion evolution

$\xi_M = \frac{M/M_\odot}{R(M_{\text{bary}} = M)/1000\, \text{km}}$

ξM = \frac{M/M_\odot}{R(M_{\text{bary}} = M)/1000\, \text{km}}$

O’Connor & Ott (2011)

Mass accretion
Neutrino heating

VS!
Islands of un-explodability

Failed explosions appear in islands, and correspond to stars with large compactness.

- BH formation for $\xi_{2.5} > 0.3$
- Explosions for $\xi_{2.5} < 0.15$
- Mixture in between

1 compactness predicts outcome in at most $\sim 88\%$ of cases
2 parameters successfully predicts in $\sim 97\%$ of cases

Ertl et al (2015), see also Pejcha & Thompson (2015)
Failed fraction could be large

Many circumstantial evidence for a large fraction of failed explosions.

Red supergiant problem
- \(f_{BH} \approx 20-30\% \)
 - Smartt et al (2009)

Black hole mass function
- \(f_{BH} \approx 10-40\% \)

Supernova rate
- \(f_{BH} \approx 10-30\% \)

Survey about nothing
- \(f_{BH} \approx 4-43\% \)

Insights for compactness:
These can be explained by a critical compactness \(\xi_{2.5} \approx 0.2 \)
(i.e., explosions \(\xi_{2.5} < 0.2 \) and fails for \(\xi_{2.5} > 0.2 \))

- e.g., Kochanek (2014), Horiuchi et al (2014)
MULTI-MESSENGER OPPORTUNITIES WITH GALACTIC SUPERNOVAE
Galactic supernova neutrinos: multi-messenger astronomy

Goals:
The next Galactic supernova neutrino signal will
1. Reveal IF one should look – ‘significance’
2. Reveal WHEN one should look – ‘timing resolution’
3. Provide TIMELY alert – ‘TOO’
4. Reveal WHERE one should look – ‘astronomy’

(see Adams et al 2013)
1. Reveals IF to look

Reveal IF: High number statistics expected from a Galactic core collapse

<table>
<thead>
<tr>
<th>Detector</th>
<th>Type</th>
<th>Mass (kt)</th>
<th>Location</th>
<th>Events</th>
<th>Flavors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-Kamiokande</td>
<td>H\textsubscript{2}O</td>
<td>32</td>
<td>Japan</td>
<td>7,000</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>LVD</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>1</td>
<td>Italy</td>
<td>300</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>KamLAND</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>1</td>
<td>Japan</td>
<td>300</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>Borexino</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>0.3</td>
<td>Italy</td>
<td>100</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>IceCube</td>
<td>Long string</td>
<td>(600)</td>
<td>South Pole</td>
<td>10^6</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>Baksan</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>0.33</td>
<td>Russia</td>
<td>50</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>MiniBooNE*</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>0.7</td>
<td>USA</td>
<td>200</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>HALO</td>
<td>Pb</td>
<td>0.08</td>
<td>Canada</td>
<td>30</td>
<td>ν_e, ν_x</td>
</tr>
<tr>
<td>Daya Bay</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>0.33</td>
<td>China</td>
<td>100</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>NO\nuA*</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>15</td>
<td>USA</td>
<td>4,000</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>SNO+</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>0.8</td>
<td>Canada</td>
<td>300</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>MicroBooNE*</td>
<td>Ar</td>
<td>0.17</td>
<td>USA</td>
<td>17</td>
<td>ν_e</td>
</tr>
<tr>
<td>DUNE</td>
<td>Ar</td>
<td>34</td>
<td>USA</td>
<td>3,000</td>
<td>ν_e</td>
</tr>
<tr>
<td>Hyper-Kamiokande</td>
<td>H\textsubscript{2}O</td>
<td>560</td>
<td>Japan</td>
<td>110,000</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>JUNO</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>20</td>
<td>China</td>
<td>6000</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>RENO-50</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>18</td>
<td>Korea</td>
<td>5400</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>LENA</td>
<td>C\textsubscript{n}H\textsubscript{2n}</td>
<td>50</td>
<td>Europe</td>
<td>15,000</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>PINGU</td>
<td>Long string</td>
<td>(600)</td>
<td>South Pole</td>
<td>10^6</td>
<td>$\bar{\nu}_e$</td>
</tr>
</tbody>
</table>

2. Reveals WHEN to look

WHEN one should look: from reconstruction of the core bounce time

- $E_\nu > 100$ GeV

- Neutrinos can determine the bounce time to $O(10)$ ms

Halzen & Raffelt (2009)

Shunsaku Horiuchi (VT CNP)
Abbasi et al. (2011)
Multi-messenger: gravitational wave

Without neutrino timing
Maximum signal-to-noise ratio is \(\sim 3.5\) occurring at \(\sim 200\text{Hz}\): but no strong detection (using H-L-V-K network)

With neutrino timing
Narrowing window to 60 ms and freq [50, 500] Hz: SNR \(\sim 7 \rightarrow \) `correlated’ detection

\(\rightarrow\) Pagliaroli talk

\(\rightarrow\) Timing of core bounce helps GW detection

Shunsaku Horiuchi (VT CNP)
3. TIMELY alerts

TIMELY alert: rapid sharing of core collapse occurrence

✓ SNEWS:
 - Borexino
 - DayaBay
 - HALO
 - IceCube
 - KamLAND
 - LVD
 - Super-K

Coincidence server (@BNL)

http://snews.bnl.gov
astro-ph/0406214

✓ Individual detectors

 - Super-K will release alert within ~ 1 hour of neutrino burst
 (info: time, duration, total events, pointing)
 - EGADS to automate and release alert within ~ 1 sec

Adams et al (2013)

E-mail ALERT

Rapid alerts!

IAU, ATel alerts

Shunsaku Horiuchi (VT CNP)
Multi-messenger: electromagnetic

Shock breakout
- Among the first EM signatures of a supernova
- Helpful for early light curve modeling, revealing progenitor radius and envelope properties (R, M_{ej}), as well as explosion energetics (E_{exp}).

- For RSG (type IIP): 1000 Rsun, 10 Msun \rightarrow \textit{hours} duration arriving \textit{days} delay
- For WR (type Ibc): 1 Rsun, 1-10 Msun \rightarrow \textit{seconds} duration arriving with \textit{minutes} delay

\rightarrow Rapid alert will help chase the shock breakout signal

\textit{Kistler et al} (2013)

\textit{based on Matzner & McKee} (1999)

Shunsaku Horiuchi (VT CNP)
4. Reveals WHERE to look

WHERE one should look
Use e^- scattering in the forward cone:
~300 events at SK

$$\nu + e^- \rightarrow \nu + e^-$$

Background to be reduced by neutron tagging with Gd ($\sim90\%$ efficiency):

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Remaining background is the $\sim10\%$ of IBD and ν_e absorption on ^{16}O (~20-80 events)

\rightarrow Pointing accuracy of several degrees

<table>
<thead>
<tr>
<th></th>
<th>Super-K</th>
<th>Hyper-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water only</td>
<td>~6 deg</td>
<td>~1.4 deg</td>
</tr>
</tbody>
</table>

Input 3: Super-K with Gadolinium

Background rejection:
In water Cherenkov the signal produces a neutron, while backgrounds typically do not

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

Capture on protons, signal mostly lost (~18% tagging)
Capture on Gadolinium, yields a coincidence signal (~90% tagging)

After many R&D tests and studies, approved in 2015 and begun in June 2018!
4. Reveals WHERE to look

WHERE one should look
Use e^- scattering in the forward cone:
~300 events at SK

$$\nu + e^- \rightarrow \nu + e^-$$

Background to be reduced by neutron tagging with Gd ($\sim90\%$ efficiency):

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Remaining background is the $\sim10\%$ of IBD and ν_e absorption on ^{16}O (~20-80 events)

\rightarrow Pointing accuracy of a few degrees

<table>
<thead>
<tr>
<th></th>
<th>Super-K</th>
<th>Hyper-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water only</td>
<td>~6 deg</td>
<td>~1.4 deg</td>
</tr>
<tr>
<td>Water + Gd (90% tag)</td>
<td>~3 deg</td>
<td>~0.6 deg</td>
</tr>
</tbody>
</table>

Multi-messenger: electromagnetic

Magnitude of optical signal:

- ~35% are within reach of large FOV <1m class telescopes
- ~20% will need >1m class telescopes
- ~20% may be too bright
- ~25% of CCSNe are hard to reach even with modern 8m telescopes

Importance of pointing!

Nakamura et al (2016)

Shunsaku Horiuchi (VT CNP)
Q: was the explosion SASI-driven?

Signatures:
SASI’s time variations (~10-20 ms) in the neutrino luminosity and energy can be measured with the excellent neutrino event statistics expected.

Multiple SASI episodes + convection

Single SASI episode + convection

No SASI episode, only convection

see also Lund et al (2010, 2012)
Q: was the progenitor rotating?

Signatures

- Rotation leaves signatures in neutrinos and gravitational waves
 - Lighthouse effect of spiral flows
 - Complementary viewing angle by gravitational wave
- Frequency matching can help confirm peak

Takiwaki & Kotake (2018); Ott et al (2005)
Q: what was the progenitor?

Did a black hole form?
Neutrinos directly reveal the moment of black hole formation

Beacom et al (2001)

Progenitor compactness
The neutrino emission reflects the progenitor compactness

Black hole case (40Msun)

NS case (13Msun)
BEYOND THE MILKY WAY
Reach to our neighbors

With Super-K (32 kton):

- Approximately 10^4 events from the Galactic center
- Approximately 400 events from LMC
- Approximately 1 event from M 31

With Hyper-K (~x10 SK):

- Approximately 10^5 events from GC
- Approximately 4000 events from LMC
- Approximately 10 events from M 31
- Approximately 1 event from a few Mpc away

Shunsaku Horiuchi (VT CNP)
The challenge: beating background

Two approaches:

1. Neutrino trigger: look for doublets or higher multiplets, depending on bkg rate:
 - Atmospheric neutrinos
 - Invisible muon decays
 - Spallation daughter decays
e.g., doublets in 10 sec occurs once per ~10 years (scaling SK-II to 0.56 Mton)

2. EM trigger: use SBO or early SN light curve to model constrain the bounce time
e.g., Cowen et al (2009)
e.g., background rate in signal region is ~0.8 /day/0.56Mton (scaling from SK-II)
→ maybe even can use neutrino singlets

<table>
<thead>
<tr>
<th></th>
<th>H₂O only</th>
<th>H₂O + Gd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search energy window [MeV]</td>
<td>18-30</td>
<td>12-38</td>
</tr>
<tr>
<td>Signal ν (in 10 sec, d = 1 Mpc, 0.56Mton)</td>
<td>~5</td>
<td>~10</td>
</tr>
<tr>
<td>Background ν (over 1 day, 0.56Mton)</td>
<td>~0.8</td>
<td>~1.1</td>
</tr>
</tbody>
</table>

Shunsaku Horiuchi (VT CNP)

Ando et al (2005)
The nearby supernova rate

Over-dense region of the Universe
→ high rates: one every few years

Detection probability for $P(N=1)$, $P(N\geq2)$, w/ and w/out Gd

Shunsaku Horiuchi (VT CNP)

Nakamura et al (2016); see also Ando et al (2005)
Diffuse supernova neutrino background

Average neutrino emission
- Use >100 simulations to characterize progenitor dependence of neutrinos
- Include collapse to black holes, characterized by critical compactness

Event rate predictions
Hyper-K sensitive to small compactness ($\xi_{2.5} < 0.2$, or $f_{BH} > 0.2$)

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>SK + Gd ($>10\text{MeV}$) [#/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 MeV</td>
<td>1.8 +/- 0.5</td>
</tr>
<tr>
<td>4 MeV+BH</td>
<td>< 2.5</td>
</tr>
<tr>
<td>SN1987A</td>
<td>1.7 +/- 0.5</td>
</tr>
</tbody>
</table>

Graphs and Diagrams
- Graph showing dN/dE vs E for different $\xi_{2.5,\text{crit}}$ values.
- More BH events at lower compactness.
- Event rate predictions for Hyper-K.

References
- Reviews by Beacom (2010), Lunardini (2010)

Shunsaku Horiuchi (VT CNP)
High-energy phenomena

GRB connection:

\[\pi^\pm \rightarrow \mu^\pm + \nu_\mu \]
\[\mu^\pm \rightarrow e^\pm + \nu_e + \nu_\mu \]

High-luminosity GRB jets are constrained by null results from stacked searches.

Low-luminosity/choked jets remain possible.

Prompt <1% of IceCube diffuse.
Ultra-high energy phenomena

Ultra-high energy cosmic rays
High-luminosity and low-luminosity jets capable of accelerating CRs to ultra-high energies (~10^{20} eV).

Possible sites for sourcing nuclei UHECR
- Initial loading
- Entrainment
- In-situ nucleosynthesis

Simple loading model + propagation (CRPropa3) can describe the spectrum & composition measurements by Auger

Shunsaku Horiuchi (VT CNP)
Concluding remarks

Supernova is a multi-messenger phenomenon

- The whole range: photons, neutrinos, gravitational waves, cosmic rays

Galactic multi-messenger opportunities

- Neutrinos will reveal IF, WHEN, and WHERE to look – in RAPID alert
- Neutrinos will help detect GW and photon counterparts

Beyond Milky Way

- Photon-neutrino synergy nearby
- Source candidates of HE neutrino & UHE cosmic rays

Shunsaku Horiuchi (VT CNP)
#4: Searches of failed explosions: Survey about nothing

Survey About Nothing
Look for the disappearance of red-supergiants in nearby galaxies caused by core collapse to black holes

Monitor 27 galaxies with the Large Binocular Telescope

- Survey $\sim 10^6$ red supergiants with luminosity sensitivity $> 10^4$ Lsun
- expect ~ 1 core collapse /yr
- In 10 years, sensitive to 20 – 30% failed fraction at 90% CL

Kochanek et al. (2008)
Results so far:

In 7 years running,

- 6 luminous CC supernovae (SN2009dh, SN2011dh, SN2012fh, SN2013ej, SN203em, SN2014bc)
- 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc); SED well fit by 25Msun RSG

→ Failed fraction 4 – 43% (90%CL)
The NGC6946-BH1 candidate

False positive?
New search will have new false positive \rightarrow multi-wavelength follow-up is needed to vet failed SN candidates and determine whether the star survived or disappeared.

Constant L_{bol}, SED well fit by a 25Msun RSG

Star didn’t survive?
Significant dimming compared to pre-burst; $L_{bol} \sim t^{-1.3}$

Optical outburst consistent with Lovegrove & Woosley (2014)

Late-time IR due to fallback onto BH behind dust?

Shunsaku Horiuchi (VT CNP)

Adams et al (2016)