Final results from OPERA

Gabriele Sirri
Istituto Nazionale di Fisica Nucleare
BOLOGNA, ITALY

on behalf of the OPERA Collaboration

NOW 2018 – Neutrino Oscillation Workshop, Rosa Marina (Ostuni, Italy), Sept. 9-16, 2018
26 institutions
~150 physicists

✓ ν_τ appearance
 (std & looser selection)
✓ ν_e search update
✓ ν_μ disappearance
✓ sterile neutrinos
✓ non-oscillation physics
Oscillations Project with Emulsion TRacking Apparatus

- **Long baseline** experiment: 735 km
- **Aim:** verify the $\nu_\mu \rightarrow \nu_\tau$ oscillations at atmospheric Δm^2 scale
- **How:** ν_τ appearance on event-by-event basis in a ν_μ beam

Conventional muon neutrino beam

- neutrino mean energy: 17 GeV
- Optimized for ν_τ appearance at LNGS
- Maximize the number of ν_τ CC interactions

- $(\nu_e + \bar{\nu}_e)/\nu_\mu$: 0.9%
- $\bar{\nu}_\mu/\nu_\mu$: 2.1%
- ν_τ prompt: negligible

Low background environment

- Laboratori Nazionali del Gran Sasso (Italy)
 - 1400 m rock overburden
 - atm. μ reduction $\sim 10^6 [1\mu/(m^2\cdot h)]$
 - low radioactivity rock

Detector:

- Hybrid apparatus
 - Massive (1.25 kt) and fine-grained (100μm)
The ν_τ detection challenge

Detect a few ν^{CC}_τ from the bulk of ν^{CC}_μ

$$\tau^- \rightarrow \mu^- \nu_\tau \nu_\mu \quad 17\%$$
$$\tau^- \rightarrow e^- \nu_\tau \nu_e \quad 18\%$$
$$\tau^- \rightarrow h^- \nu_\tau n(\pi^0) \quad 50\%$$
$$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau n(\pi^0) \quad 14\%$$

"long" decays: kink

"short" decays: I.P.

Modular detector of “Emulsion Cloud Chambers” (or bricks)

Match the needs for:

- **Large mass**
 $$N_\tau \propto (\Delta m^2)^2 M_{\text{target}}$$

- **Extreme granularity**
 $\sim \mu$m space resolution

NOW 2018, Rosa Marina (Ostuni)

G.Sirri - INFN Bologna
The OPERA detector

Target section (6.7 x 6.7 m²):
- Target
 ~ 625 ton
 ~ 75000 bricks in 27 walls
- Target Tracker
 31 XY doublets of 256 scintillator strips planes

Tracking of the target region
Brick selection
Calorimetry

Muon spectrometer (8 x 10 m²)
- 1.53 T magnet
- 22 XY RPC planes +
 2 RPC planes rotated by 42.6°
- 6 stations of 4-fold drift tubes layers

μ Identification +
charge and momentum measurements

Super Module 1
Super Module 2

+ several ancillary facilities “off-site”:
- Assembly of bricks (LNGS)
- Brick Manipulator System (LNGS)
- Labelling and X ray marking (LNGS)
- Automatized development (LNGS)
- Scanning of CS doublets (LNGS+JP)
- Scanning bricks (European Labs + JP)

NOW 2018, Rosa Marina (Ostuni)
G.Sirri - INFN Bologna
0) tracks tagged in the CS films followed upstream to **stopping point**
1) 1 cm³ **volume centered in the stopping point** scanned and tracks reconstructed
2) cosmic ray tracks (from a dedicated exposure) used for the fine **alignment** of films
3) passing through tracks discarded, the **vertexing algorithm** reconstructs the vertex
4) Short-lived particle decays identified (**decay search**)
Monte Carlo simulation benchmarked on control samples

CC with charm production (all channels)
If primary lepton is not identified and the daughter charge is not (or incorrectly) measured

\[\nu_\mu, e^- \]

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured OPERA charm events.

Reduced by "track follow down", procedure and large angle scanning

Hadronic interactions
Background for \(\tau \to h \)

\[\nu_\mu \]

FLUKA + pion test beam data

Reduced by large angle scanning and nuclear fragment search

Large angle muon scattering
Background for \(\tau \to \mu \)

\[\nu_\mu, \mu^- \]

Measurements in the literature (Lead form factor)

Improved MC simulations
The 5 years long CNGS run

- **1.8 \times 10^{20} p.o.t.** collected (80% of the design)
- **19505** \(\nu \) interactions in the emulsion targets.
- **5 \(\nu_\tau \) candidate events** fulfill kinematical selection \([S/B \text{ ratio } \sim 10]\)

Signal Background Modelization

- Multichannel (uncorrelated) **counting model** based on Poisson Statistics
- Gaussian for Background Uncertainties

\[
\mathcal{L} = \prod \text{Pois}(n_i, \mu s_i + b_i) \text{ Gaus}(b_0i, b_i, \sigma_{bi})
\]

- \(\mu \to \text{strength of the signal} \) (parameter of interest)
- with \(\mu = 0 : \text{background-only hypothesis} \)
- and \(\mu = 1 : \text{nominal signal+background} \)

test statistics:
- i) Profile Likelihood Ratio;
- ii) Fisher’s rule \((\mu = 0)\).

Observed Data: 4 hadronic + 1 muonic candidates

<table>
<thead>
<tr>
<th>Channel</th>
<th>Expected background</th>
<th>Expected signal</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau \to 1h)</td>
<td>0.04 \pm 0.01</td>
<td>0.52 \pm 0.10</td>
<td>3</td>
</tr>
<tr>
<td>(\tau \to 3h)</td>
<td>0.17 \pm 0.03</td>
<td>0.73 \pm 0.14</td>
<td>1</td>
</tr>
<tr>
<td>(\tau \to \mu)</td>
<td>0.004 \pm 0.001</td>
<td>0.61 \pm 0.12</td>
<td>1</td>
</tr>
<tr>
<td>(\tau \to e)</td>
<td>0.03 \pm 0.01</td>
<td>0.78 \pm 0.16</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.25 \pm 0.05</td>
<td>2.64 \pm 0.53</td>
<td>5</td>
</tr>
</tbody>
</table>

Background-only hypothesis:

- **p-value** = \(1.1 \times 10^{-7} \)
- **excluded at 5.1\(\sigma \)** significance

Compatibility with 3\(\nu \) oscillation: \(\bar{\mu} = 1.8^{+1.8}_{-1.1} \) at 90% C.L

Probability of less likely data:
- 17\% based on total number
- 6.4\% if channels considered
The five ν_τ candidates (2015)

- $\tau \rightarrow h$
- $\tau \rightarrow 3h$
- $\tau \rightarrow \mu$

References:*
- JHEP 11 (2013) 036
- Phys. Rev. D 89 (2014) 051102
- PTEP 2014 (2014) 10, 101C01
ντ appearance: loose event selection (2018)

- Loose kinematical cuts:
 - Minimal requirements to identify the topologies showing 2 vertices
 - Negligible additional background from K/π decays

<table>
<thead>
<tr>
<th>Variable</th>
<th>τ → 1h</th>
<th>τ → 3h</th>
<th>τ → μ</th>
<th>τ → e</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{dec} (mm)</td>
<td><2.6</td>
<td><2.6</td>
<td><2.6</td>
<td><2.6</td>
</tr>
<tr>
<td>θ_kink (rad)</td>
<td>>0.02</td>
<td>>0.02</td>
<td>>0.02</td>
<td>>0.02</td>
</tr>
<tr>
<td>p_{2ty} (GeV/c)</td>
<td>>1</td>
<td>>1</td>
<td>[1, 15]</td>
<td>>1</td>
</tr>
<tr>
<td>p_{2sy} (GeV/c)</td>
<td>>0.15</td>
<td>>0.1</td>
<td>>0.1</td>
<td></td>
</tr>
<tr>
<td>Charge_{2ty}</td>
<td></td>
<td></td>
<td>Negative</td>
<td>or unknown</td>
</tr>
</tbody>
</table>

- Increment of ντ sample: x2
- Reduction of S/B from ~10 to ~3

- Multivariate approach (based on BDT)
 - exploit kinematical, topological information and their correlations
 → higher discrimination power

⇒ Improvement in |Δm_{23}^2| or alternatively ⟨σ⟩ estimation

[Phys.Rev.Lett. 120 (2018) no.21, 211801]
Statistical Analysis and Results (2018)

\[\mathcal{L}(\mu, \beta_c) = \prod_{c=1}^{4} \left(\mathcal{P}(n_c | \mu s_c + \beta_c) \prod_{i=1}^{n_c} f_c(x_{ci}) \right) \times \prod_{c=1}^{4} G(b_c | \beta_c, \sigma_{b_c}) \]

where

- Test statistic: profile likelihood ratio
- Best-fit signal strength:
 \[\mu = 1.1^{+0.5}_{-0.4} \]
 \[\mu \propto |\Delta m_{32}^2| \cdot \langle \sigma \rangle \]
 \[|\Delta m_{32}^2| = (2.7^{+0.7}_{-0.6}) \times 10^{-3} \text{ eV}^2 \]
 assuming maximal mixing
 first measure in appearance mode
- Effective tau neutrino cross section
 \[\langle \sigma \rangle = (5.1^{+2.4}_{-2.0}) \times 10^{-36} \text{ cm}^2 \]
 assuming maximal mixing and \(|\Delta m_{32}^2| = 2.5 \times 10^{-3} \text{ eV}^2 \)
 \[\langle \sigma_{\text{Genie}} \rangle = 4.29 \pm 0.04 \times 10^{-36} \text{ cm}^2 \]

NOW 2018, Rosa Marina (Ostuni)
G.Sirri - INFN Bologna
• Muon-less neutrino event

• Most probable topology:
 ν interaction vertex + 2 decay vertices

• Rare topology not considered in the experiment proposal
 (0.1 events expected in full data sample)

• Dedicated simulations + ANN (2 Layers MLP)
 to disentangle possible interpretations:

 • $\nu_\tau CC + c$
 • $\nu_\mu CC + c + had.\ int.$
 • $\nu_\mu NC + c \bar{c}$
 • $\nu_\tau CC + had.\ int.$
 • $\nu_\mu CC + 2 had.\ int.$
 • $\nu_\mu NC + 2 had.\ int.$

The hypothesis the event not being $\nu_\tau CC + charm$ is excluded:

p-value $\sim 10^{-4} \rightarrow$ Significance $= 3.4 \sigma$
- OPERA detector granularity allows e.m. shower id → v_e search.
- A dedicated procedure, balancing time need vs efficiency.

![Diagram](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Expectations w/o ν mixing</th>
<th>Expectations w/ std ν mixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_e \to \nu_e$ ($\bar{\nu}_e \to \bar{\nu}_e$)</td>
<td>30.7</td>
<td>31.1</td>
</tr>
<tr>
<td>τ (unidentified) $\to e$</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>π^0 $\to \gamma$ (misidentified)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$\nu_\mu \to \nu_e$ ($\bar{\nu}_\mu \to \bar{\nu}_e$)</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>31.9</td>
<td>34.3</td>
</tr>
</tbody>
</table>

Table

- observed: 35

ν_μ disappearance

ν_μ disappearance sensitivity **limited** by flux uncertainties

\rightarrow no NEAR detector

Ratio (R) of NC-like over CC-like **mitigates** limitation due to flux uncertainties

Electronic detector data:
smaller uncertainties w.r.t. emulsion data

Test compatibility with expectation for given values of $|\Delta m_{23}^2|$
(assuming maximal mixing)

$|\Delta m_{23}^2| < 4.1 \times 10^{-3} \text{ eV}^2 \ @ \ 90\% \ C.L.$
Sterile neutrino search

Some experimental results may hint to an additional massive (~1 eV^2) sterile neutrino

Mixing described by 4 x 4 matrix

\[
\begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\
U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}
\end{bmatrix}
\begin{align*}
\nu_e \text{ appearance} \\
\nu_\mu \text{ disappearance} \\
\nu_\tau \text{ appearance} \\
\text{NC disappearance}
\end{align*}
\]

OPERA can test the sterile neutrino hypothesis looking for deviations from predictions in the electron neutrino appearance or tau neutrino appearance channels.

Predictions of the 3+1 model evaluated with **GLOBES**

- Δm^2_{21} fixed to PDG value
- Gaussian constraint on Δm^2_{31} (PDG mean and sigma)
- **Matter effects**: constant Earth crust density (PREM onion shell model) [Phys. Earth Planet. Interiors 25 (1981) 297]

- $\Delta m^2_{41} > 0$ favored by $\sum m_\nu$ result from cosmological surveys [A&A 594, A13 (2016)]

- **Profiled likelihood ratio** λ
 (nuisance parameter profiled out)

- Representation: $U = R_{34} R_{24} \hat{R}_{23} R_{14} \hat{R}_{13} \hat{R}_{12}$
$\nu_\mu \rightarrow \nu_\tau$ oscillation probability in presence of a sterile neutrino:

\begin{align*}
P(\text{Energy}) &= C^2 \sin^2 \frac{\Delta_{31}}{2} + \sin^2 2\theta_{\mu\tau} \sin^2 \frac{\Delta_{41}}{2} \\
&+ \frac{1}{2} C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin \Delta_{31} \sin \Delta_{41} \\
&- C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41} \\
&+ 2C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin^2 \frac{\Delta_{41}}{2} \\
&+ C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin \Delta_{31} \sin^2 \frac{\Delta_{41}}{2} \\
&+ \Delta m_{21}^2 \text{ terms ...}
\end{align*}

Effective parameters

\begin{align*}
C &= 2 |U_{\mu 3}| |U_{\tau 3}| \\
\phi_{\mu\tau} &= \text{Arg}(U_{\mu 3} U_{\tau 3}^* U_{\mu 4}^* U_{\tau 4}) \\
\sin^2 2\theta_{\mu\tau} &= 2 |U_{\mu 4}| |U_{\tau 4}|
\end{align*}
• **Counting** analysis

\[L = Pois(n; \mu) \times Gaus(\Delta m_{23}^2; \Delta m_{23}^2, \sigma_{\Delta m}) \]

- \(\mu \): expectation (GLoBES)
- \(n \): observation (data)

\(\Delta m_{23}^2, \sigma_{\Delta m} \) PDG values

- Both normal and inverted neutrino mass hierarchies considered

- Exclusion region on \(\Delta m_{41}^2 \) vs \(\sin^22\theta_{\mu\tau} \) plane

- **Energy selection** \((E_\nu < 30 \text{ GeV}) \) maximizes sensitivity

At high \(\Delta m_{41}^2 \)

Profiling out \(\phi_{\mu\tau} \); \(\sin^22\theta_{\mu\tau} < 0.119 \) 90% C.L.

NOW 2018, Rosa Marina (Ostuni)
G.Sirri - INFN Bologna
• ν_e energy distribution
to evaluate exclusion region on:

$$\Delta m_{41}^2 \text{ vs } \sin^2 2\theta_{\mu e}$$

where $\sin^2 2\theta_{\mu e} = 4|U_{\mu 4}|^2 |U_{e4}|^2$

Systematics errors σ_i due to:

- Beam and efficiencies uncertainties
- 20% $E_\nu < 10$ GeV & 10% $E_\nu > 10$ GeV
- Bin-to-bin uncorrelated (conservative approach)

Likelihood

Constraints on Δm_{23}^2

$\bar{\Delta m}_{23}^2$, $\sigma_{\Delta m}$ from PDG

$\sin^2 2\theta_{\mu e} < 0.022$ @ 95%CL at high Δm_{41}^2
Combining ν_τ and ν_e

Exploiting simultaneously results of

- ν_τ search: 10 candidates
- ν_e search: 35 candidates

... to extract limits on the parameters of the $3 + 1$ neutrino model

(Small) exclusion power enhancement w.r.t previous analyses

\[\sin^2 2\theta_{\mu e} < 0.019 \quad [90\% \text{ C.L.}] \]
\[@ \Delta m^2_{41} \sim 1 \text{ eV}^2 \]

\[\sin^2 2\theta_{\mu \tau} < 0.099 \quad [90\% \text{ C.L.}] \]
\[@ \Delta m^2_{41} \sim 1 \text{ eV}^2 \]
\[\Delta T \text{ in the upper atmosphere} \Rightarrow \text{variation in atm. density} \Rightarrow \text{variation in } \pi \text{ interaction length} \Rightarrow \text{variation in the fraction of mesons decaying before interacting} \]

**Annual modulation of } \mu \text{ rate } (R_{\mu})\]
(More muons in summer than in winter)

Fit with: \[R_{\mu} = R_0 + \delta R \cos \frac{2\pi}{T} (t - \phi) \]

\[T = 359 \pm 2 \text{ days} \]
\[\delta \frac{R}{R_0} = (1.55 \pm 0.08)\% \]
\[\phi = 197 \pm 5 \text{ days} \]

\[\alpha_T = \frac{\Delta R_{\mu}}{\Delta T_{eff}} = 0.95 \pm 0.04 \]

\[\text{If } T \text{ is set to 365 days } \Rightarrow \phi = 5^{th} \text{ July} \]

\[\alpha_T \text{ VS depth} \]
Atmospheric muon charge ratio

- Highest-E region reached

- Opposite magnet polarities runs → lower systematics

- Strong reduction of the charge ratio for multiple muon events
 - single-μ 1.377 ± 0.006
 - multi-μ 1.098 ± 0.023

- Results compatible with a simple π-K model

- No significant contribution of the prompt component up to $E_\mu \cos \theta^* \sim 10$ TeV

- Validity of Feynman scaling in the fragmentation region up to $E_\mu \sim 20$ TeV ($E_N \sim 200$ TeV)

\[\phi_{\mu^\pm} \propto \frac{a_\pi f_{\pi^\pm}}{1 + b_\pi \epsilon_\mu \cos \theta / \epsilon_\pi} + R_{K\pi} \frac{a_K f_{K^\pm}}{1 + b_K \epsilon_\mu \cos \theta / \epsilon_K} \]

\[f_{\pi^+} = 0.5512 \pm 0.0014 \]
\[f_{K^+} = 0.705 \pm 0.014 \]
Neutrino interactions multiplicity

unbiased sample of $\nu_\mu CC$ interactions

charged hadron multiplicity distribution

average multiplicity $\langle n_{ch} \rangle$ as function of $\ln W^2$

$W = \text{invariant mass of the hadronic system}$

Koba-Nielsen-Olesen (KNO) scaling distribution verification

NOW 2018, Rosa Marina (Ostuni)

G. Sirri - INFN Bologna
Summary

• **Discovery of** $\nu_\mu \rightarrow \nu_\tau$ **appearance** in the CNGS neutrino beam: 5.1σ

• Loose selection analysis *increase discovery significance* 6.1σ
 • Measurement of Δm_{23}^2 (first measurement in appearance mode)
 • Measurement of effective ν_τ cross-section

• Muon-less **double decay event** has been reported.
 Favored interpretation ν_τ CC interaction with charm production

• **Final results from** $\nu_\mu \rightarrow \nu_e$ **oscillation search**

• Search for ν_μ **disappearance**
 • Upper limit on Δm_{23}^2

• Constraints on **sterile neutrinos**
 from $\nu_\mu \rightarrow \nu_e, \nu_\mu \rightarrow \nu_\tau$ and their combination in the 3+1 flavor model

• **Non-oscillation Physics:**
 • atmospheric muons charge ratio
 • annual modulation of atmospheric muons rate
 • Neutrino interactions charged multiplicity study
OPERA taking a "selfie"... Thank you!

Image taken using **OPERA nuclear emulsion film**
with a pinhole hand made camera
courtesy by Donato Di Ferdinando