Two new, strange, charmed mesons in BABAR.

Antimo Palano

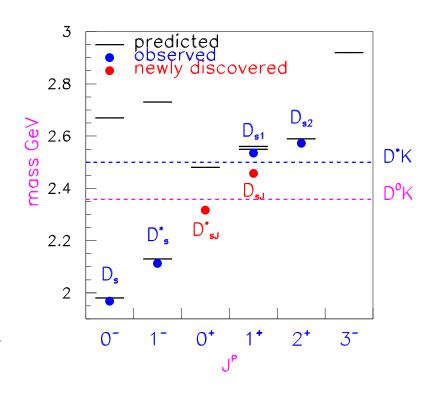
INFN and University of Bari

Representing the BaBar Collaboration

KEK Seminar

November 11, 2003

Outline.


- Introduction.
- A few words on the BaBar experiment.
- Event selection.
- Observation of $D_{s,I}^*(2317)^+ \to D_s^+\pi^0$
- Observation of $D_{sJ}(2458)^+ \to D_s^{*+}\pi^0$
- Comparison with other experiments.
- Theoretical work in progress.
- Conclusions and Outlook.

(Charge conjugation is implied throughout all this work.)

Introduction.

- \Box Up to six months ago, the spectrum of the $c\bar{s}$ D_s mesons still contained empty slots.
- \square Potential models, such as the one from Godfrey-Isgur-Kokoski, predict the $J^P = 0^+$ member at a mass of 2.48 GeV, with a width 270–990 MeV decaying mainly to D^0K . The large width would make it difficult to observe.
- \square The model also predicts two 1⁺ states at masses of 2.55 and 2.56 GeV.
- \square Potential model expectations and experimental status for D_s mesons:

- □ Remarkably good agreement up to now.
- \square Exception: the newly discovered states at 2.317 and 2.458 GeV/c² with $J^P = 0^+$ and 1^+ respectively as the most probable assignments.

United Kingdom

Brunel University Queen Mary, U. London Imperial College, London Royal Holloway U. London Rutherford Appleton Lab. U. Birmingham U. Bristol U. Edinburgh

U. Liverpool U. Manchester

Russia

Budker Institute, Novosibirsk

China

Inst. of High Energy Physics, Beijing

taly

Lab. Nazionali di Frascati dell' INFN INFN and U. Bari

INFN and U. Ferrara

INFN and U. Genova

INFN and U. Perugia

INFN and U. Milano

INFN and U. Napoli

INFN and U. Padova INFN and U. Pavia

INFN and U. Pisa

INFN and U. Roma La Sapienza

INFN and U.Torino

INFN and U.Trieste

The BaBar Collaboration

10 countries 77 Institutions ~580 Physicists

TM 8 @ Nelvana

50% Outside U.S.A.

Canada

McGill U. U. British Columbia U.Victoria U. Montreal

France

LAPP, Annecy Ecole Polytechnique LAL, Orsay DAPNIA, CEN-Saclay LPHNE and U. Paris VI-VII

Norway U. Bergen

Germany

Ruhr U. Bochum Tech. U. Dresden U. Rostock Heidelberg

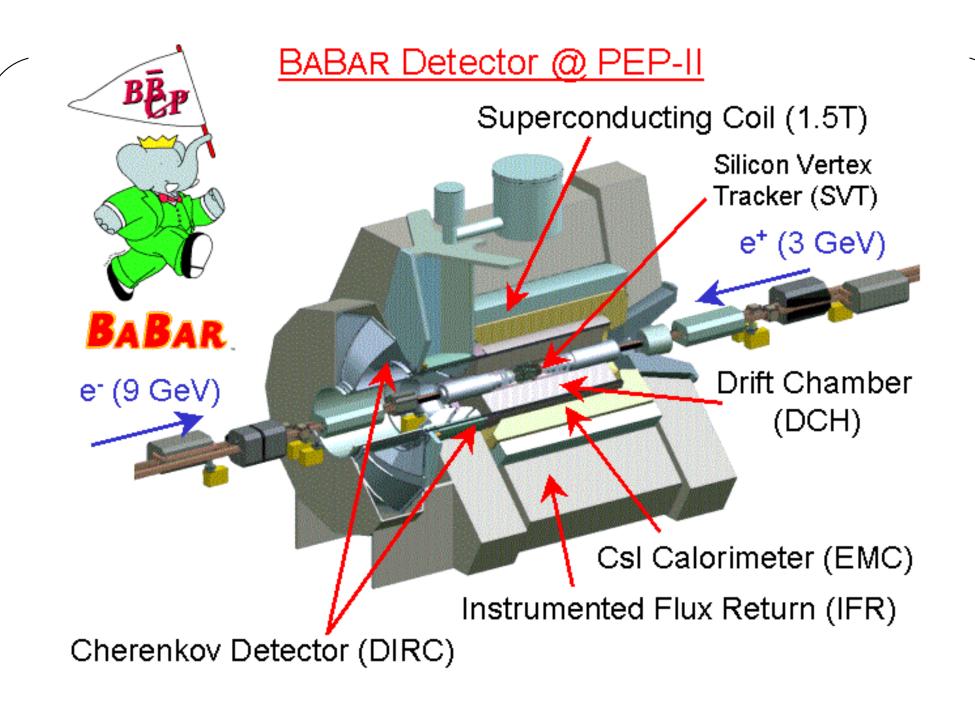
The Netherlands NIKHEF.Amsterdam

USA Caltech Colorado State Florida A&M Harvard Iowa State U. LBNL LLNL MIT Mount Holyoke College Ohio State U. Prairie View A&M U. Princeton U. SLAC

Stanford U. SUNY Albany U.C. Irvine U.C. Los Angeles U.C. San Diego U.C. Santa Barbara U.C. Santa Cruz U. Cincinnati

U. Colorado U. lowa U. Louisville

U. Maryland U. Massachusetts

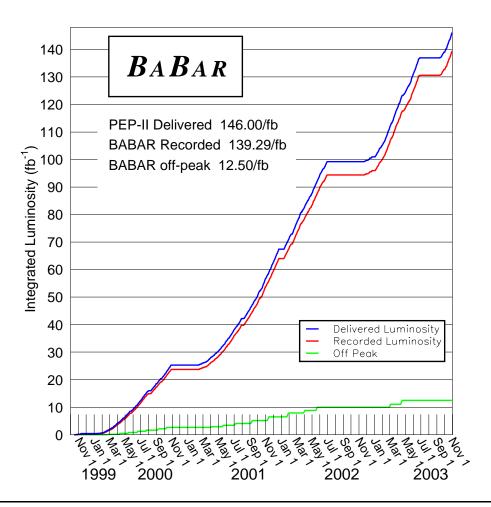

U. Mississippi U. Notre Dame

U. Oregon U. Pennsylvania U. South Carolina

U.Tennessee U. Texas Austin

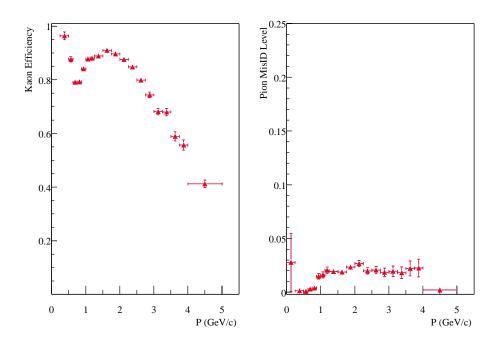
U.Texas Dallas U.Wisconsin (3&4) Vanderbilt U.

Yale U.


Charm Physics in BaBar.

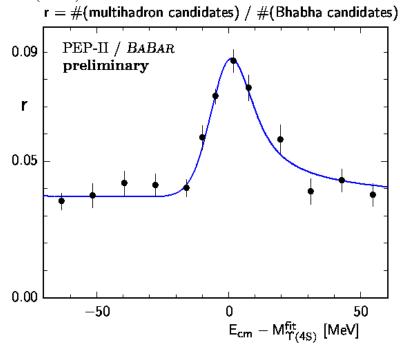
- □ The power of BaBar for Charm Physics is based on:
 - Relatively small combinatoric background in e^+e^- interactions.
 - Good tracking and vertexing.
 - Good Particle Identification.
 - Detection of all possible final states with charged tracks and γ 's.
 - Very high statistics.

Data Set.


 \Box The data sample consists of 91.5 fb^{-1} (on and off peak) from the 1999-2002 data sample.

2003/10/31 11.36

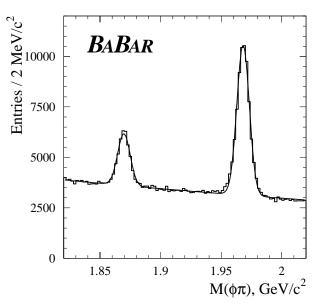
PID Performance.

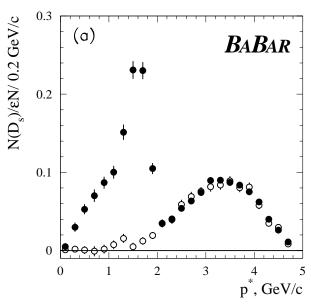

- \Box Particle Identification is obtained by combining dE/dx from the Drift Chamber and Silicon Vertex Detector with the DIRC information.
- \Box In the present analysis the PID algorithm used gives $\approx 90 \%$ K identification efficiency with $\approx 2 \% \pi$ mis-identification as K.
- \square Efficiency for K and π mis-identification as a function of lab. momentum.

Charm Physics in BaBar.

- \square Cross Section Scan from BaBar in the region of the $\Upsilon(4S)$.
- \square The $\Upsilon(4S)$ Resonance sits on a large continuum background.
- \square Effective cross sections at the energy of the $\Upsilon(4S)$.

$e^+e^- \rightarrow$	σ (nb)
$b\overline{b}$	1.05
$car{c}$	1.30
$S\overline{S}$	0.35
u ar u	1.39
$dar{d}$	0.35


 \Box Charm Analyses are performed on data corresponding to continuum $\bar{c}c$ production.


$$e^+e^- \to c\bar{c}$$

Study of D_s^+ in BaBar.

 \square Example from BaBar: mass distribution and p^* momentum spectrum for $D_s^+ \to \phi \pi^+$.

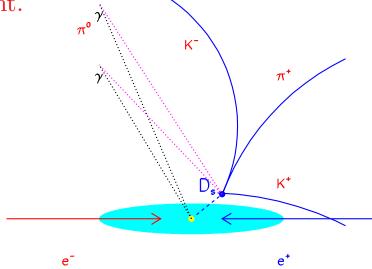
Filled/open points: normalized on/off peak data.

- □ By using inclusive continuum events combinatorial background is strongly reduced.
- \Box Kinematical selection: the center of mass momentum $(p^*) > 2.5 \text{ GeV/c}$.

Data selection.

 \Box In this work we search for resonances decaying to:

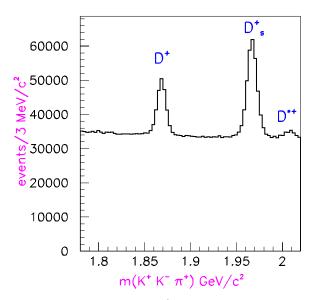
$$D_s^+\pi^0$$

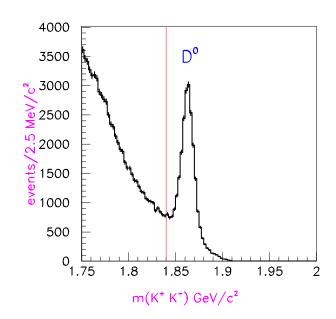

 \Box D_s^+ mesons are selected through the $\phi\pi^+$ and $\overline{K^{*0}}K^+$ decay modes, therefore the final state to reconstruct is:

$$K^+K^-\pi^+\gamma\gamma$$
 $(+c.c.)$

- □ This final state has been selected using the following procedure:
 - All combinations of three charged tracks with total charge \pm 1, an identified K^+K^- pair, and a third track which is not a K^{\pm} , have been considered.
 - Each D_s^+ candidate has been fitted to a common vertex requiring a fit probability > 0.1 %.
 - The D_s^+ candidate was traced back to the interaction region in order to obtain the production vertex.

Data selection.


- All pairs of γ 's, each γ having energy > 100 MeV, have been fitted to a π^0 with mass constraint and a probability cut > 1 % was applied.
- Each π^0 candidate has been fitted twice:
 - to the $K^+K^-\pi^+$ vertex, to investigate the decay mode $D_s^+ \to K^+K^-\pi^+\pi^0$;
 - to the production vertex, to investigate the $D_s^+\pi^0$ mass distribution.
 - □ Qualitative sketch, not to scale, of one event.



• Each $K^+K^-\pi^+\pi^0$ candidate must satisfy $p^* > 2.5$ GeV/c.

$K^+K^-\pi^+$ mass spectrum.

 \square The total $K^+K^-\pi^+$ mass spectrum shows prominent D^+ and D_s^+ signals.

 \square Presence also of a $D^{*+}(2010)$ signal:

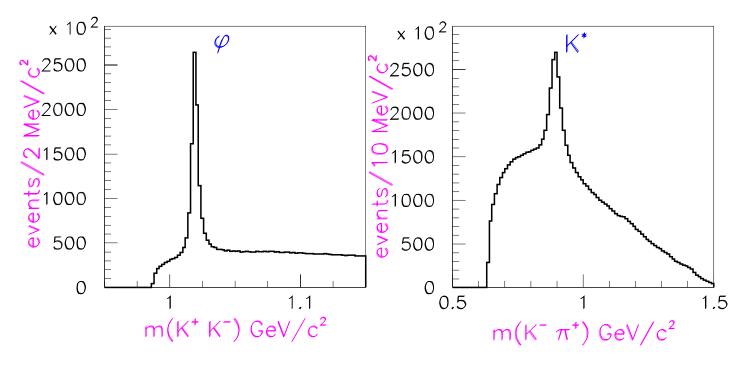
$$D^{*+}(2010) \to \pi^+ D^0$$
 $\to K^+ K^-$


removed requiring: $m(K^+K^-) < 1.84 \text{ GeV}.$

 $\square \approx 131 \times 10^3 \ D_s^+$ events above background.

The D_s^+ Dalitz plot.

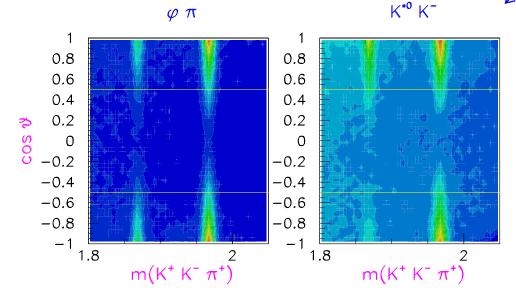
- \square D_s^+ signal enhanced by selecting the $\phi \pi^+$ and $\overline{K^{*0}}K^+$ decay modes.
- \square These two modes do not overlap, as shown by the D_s^+ Dalitz plot:


Real Data: $D_s^+ \to K^+K^-\pi^+$ Dalitz plot tagged with $D_s^*(2112)^+ \to D_s^+\gamma$

 $\Box \cos^2 \theta$ distribution in each vector meson band.

Selection of $\phi \pi^+$ and $\overline{K^{*0}}K^+$

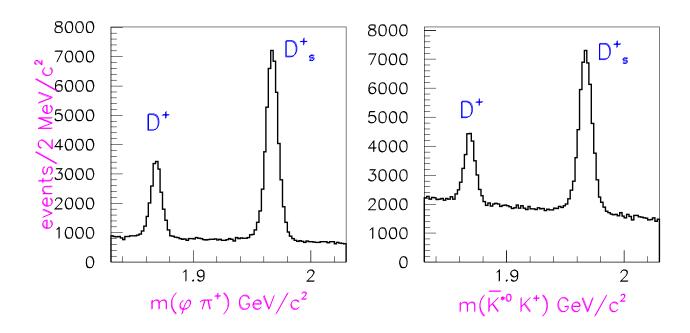
 \square Inclusive K^+K^- and $K^-\pi^+$ mass spectra:


- $\square \phi$ selected requiring: $|m(K^+K^-) 1.019| \le 0.01$ GeV
- $\square \overline{K^{*0}}$ selected requiring: $|m(K^-\pi^+) 0.896| \le 0.05$ GeV

Use of D_s^+ angular distributions.

 \square We define θ as the angle between the K^- and the ϕ ($\overline{K^{*0}}$) direction in the ϕ ($\overline{K^{*0}}$) rest frame.

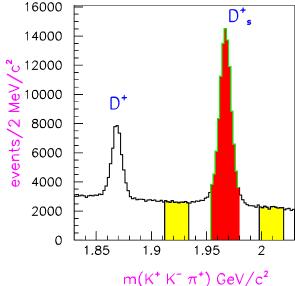
 φ (K*)


 \square Scatter diagram of $\cos\theta$ vs. $m(K^+K^-\pi^+)$:

 \square Require $|\cos\theta| > 0.5$ to enhance the D_s^+ signal (retains 87.5 % of signal).

Resulting mass spectra.

 \square Resulting $\phi \pi^+$ and $\overline{K^{*0}}K^+$ mass spectra:



 \Box The two samples are of similar sizes.

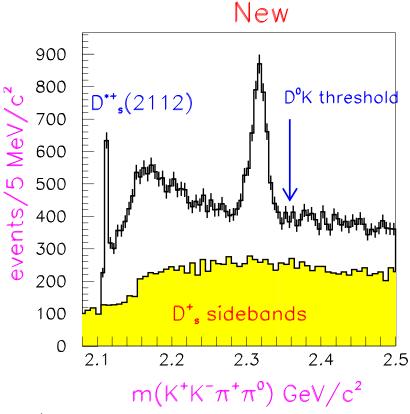
Total $K^+K^-\pi^+$ mass spectrum.

 \square Sum of the $\phi \pi^+$ and $\overline{K^{*0}}K^+$ contributions ($\approx 80~000~D_s^+$ events above

background):

 \square We define the signal D_s^+ region as:

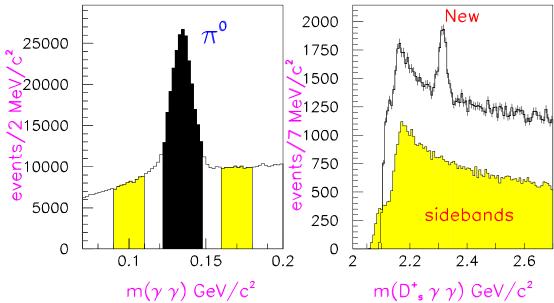
$$1.954 < m(K^+K^-\pi^+) < 1.980 \quad GeV$$


and two sideband regions as:

$$1.912 < m(K^+K^-\pi^+) < 1.934 \quad GeV$$

$$1.998 < m(K^+K^-\pi^+) < 2.020 \quad GeV$$

 $D_s^+\pi^0$ mass spectrum.

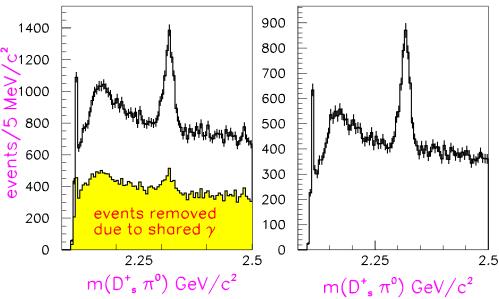

- \square Compare $(K^+K^-\pi^+)\pi^0$ mass spectra for the D_s^+ signal region and sidebands.
- \square We observe the known decay: $D_s^*(2112)^+ \to D_s^+ \pi^0$.
- \Box Totally unexpected large signal ($\approx 2200 \; \mathrm{events}$) at 2.32 GeV.

 \square No signals for the D_s^+ sidebands.

$D_s^+ \gamma \gamma$ mass for π^0 signal and sidebands.

- \square Plot of the $\gamma\gamma$ effective mass defining π^0 signal and sideband regions.
- $\square D_s^+ \gamma \gamma$ mass spectrum for the π^0 signal region.
- \square We make no use of the fitted π^0 , use the 4-momentum of the γ pair.
- \square Same large signal at 2.32 GeV.
- $\square D_s^*(2112)^+$ signal washed out because of " π^0 " resolution.

 \square π^0 sidebands: no signals.


 $D_s^+\pi^0$ mass spectrum.

 \square No D_s^+ kinematic fit. Resolution improved by adding the decay particles' 3-momenta and calculating the D_s^+ energy using the D_s^+ PDG mass:

$$E_{D_s} = \sqrt{p^2 + m_{D_s}^2}$$

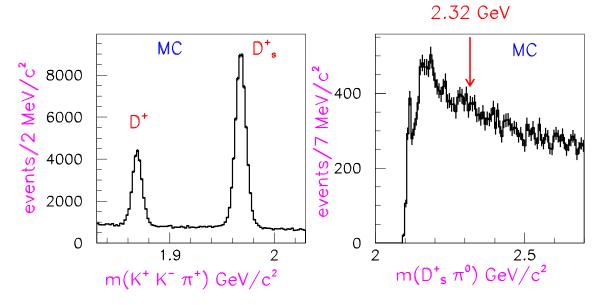
 \square We require that each π^0 does not have either γ in common with any other π^0

candidate.

 \square Remaining signal at 2.32 GeV contains 1948 \pm 104 events.

Test using Monte Carlo simulation.

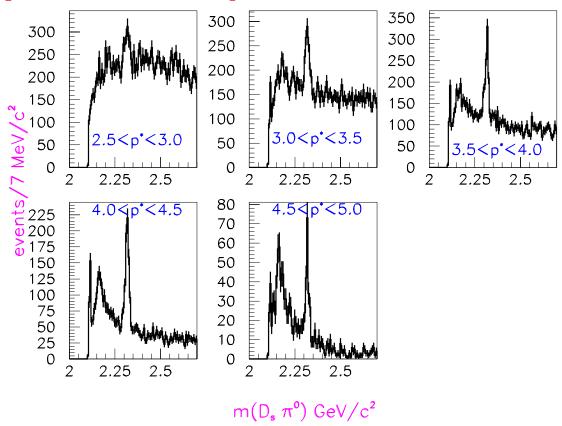
□ Monte Carlo events from the reaction:


$$e^+e^- \to \bar{c}c$$

have been simulated using GEANT4. They have been reconstructed and analyzed using the same analysis procedure as that used for data.

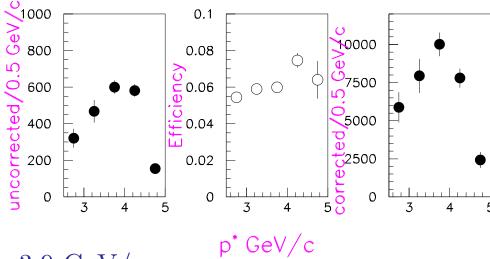
- ☐ The generated events contain all what was presently known about charm spectroscopy.
- \square Analyzed $\approx 80 \times 10^6$ generated events.

Test using Monte Carlo simulation.


 \square Sum of $\phi \pi^+$ and $\overline{K^{*0}}K^+$ mass distributions and $D_s^+\pi^0$ mass spectrum.

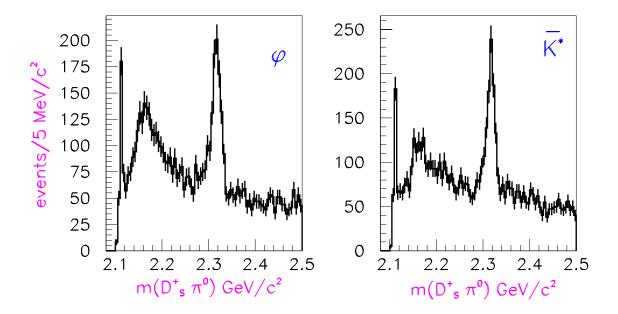
- \square We observe the known decay: $D_s^*(2112)^+ \to D_s^+\pi^0$.
- \Box The $D_s^+\pi^0$ mass spectrum shows no significant signal in the 2.32 GeV mass region. We would expect ≈ 1400 events.
- \square We conclude that the 2.32 GeV structure is not due to reflections from known states.

The $p^*(D_s^+\pi^0)$ dependence of the 2.32 GeV signal.


 $\square D_s^+ \pi^0$ mass spectrum in slices of p^* .

- \square The 2.32 GeV signal is present in all the p^* regions. Signal to background increases with increasing p^* .
- \square The signal to background ratio can be improved by means of a p^* selection.

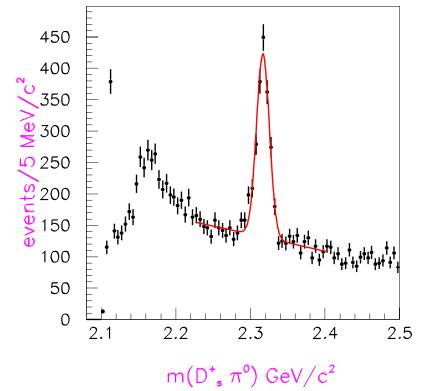
The p^* dependence of the 2.32 GeV signal.


- \Box The 2.32 GeV signal yield has been obtained as a function of p^* by fitting a Gaussian signal+polynomial background to the $D_s^+\pi^0$ mass distributions for each p^* interval.
- \Box The efficiency as a function of p^* has been obtained using Monte Carlo simulation.
- \square Uncorrected and corrected p^* distributions.

 \square Maximum at $\approx 3.9 \text{ GeV/c}$.

$$D_s^+\pi^0$$
 mass spectra.

- \square $D_s^+\pi^0$ mass spectra separated for ϕ and $\overline{K^{*0}}$ subsamples.
- \square Required $p^* > 3.5 \text{ GeV/c}$.

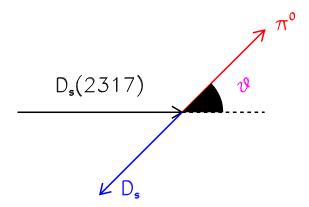


 $\square D_s^*(2112)^+$ and 2.32 GeV signals present in both distributions with similar strengths.

Fit to the $D_s^+\pi^0$ mass spectrum in the 2.32 GeV region.

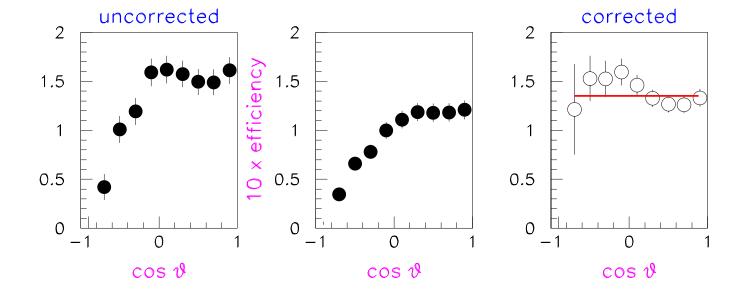
 \square Require $p^* > 3.5 \text{ GeV/c}$.

We will fit this spectrum again later.


□ Fit with a polynomial and a single Gaussian.

$$m = 2316.8 \pm 0.4$$
 GeV $\sigma = 8.6 \pm 0.4$ MeV

 \square Statistical errors only. We refer to this state as $D_{sJ}^*(2317)^+$ from here on.


$D_{sJ}^*(2317)^+$ Decay Angular distribution.

- □ In the case of polarized production, the decay angular distribution can give information on the spin of the particle.
- \square We have computed the distribution of the π^0 angle with respect to the $D_s^+\pi^0$ direction (in the overall c.m.) in the $D_s^+\pi^0$ rest frame.

$D_{sJ}^*(2317)^+$ Decay Angular distribution.

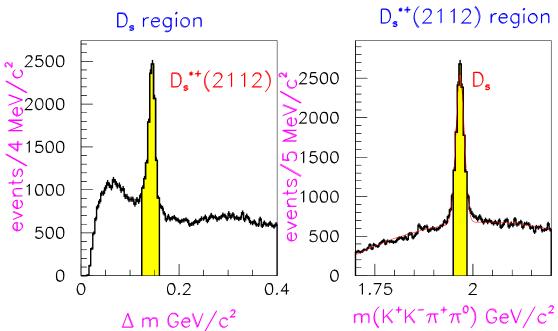
 \Box The $D_s^+\pi^0$ mass spectrum has been fitted in 10 slices of $\cos \theta$. We plot the yield, the efficiency and the corrected angular distribution (in arbitrary units).

 \Box The corrected distribution in $cos\theta$ is consistent with being flat (43 % probability).

Study of
$$D_s^+ \to K^+ K^- \pi^+ \pi^0$$
.

- \square This D_s^+ decay channel has the same topology as $D_s^+\pi^0$ with $D_s^+ \to K^+K^-\pi^+$. It gives direct information on resolution and scale for $m(D_s^+\pi^0)$.
- \square A different D_s^+ decay mode with which to study $D_s^+\pi^0$.
- \square Uses the π^0 fitted to the $K^+K^-\pi^+$ vertex to reconstruct the D_s^+ .
- \square We plot the distribution of:

$$\Delta m = m(K^{+}K^{-}\pi^{+}\pi^{0}\gamma) - m(K^{+}K^{-}\pi^{+}\pi^{0})$$


for the D_s^+ region, defined as:

$$1.95 < m(K^+K^-\pi^+\pi^0) < 1.985$$
 GeV

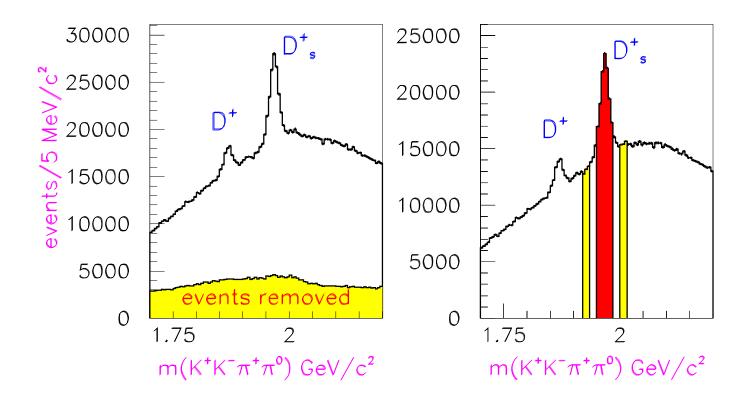
 \square We plot the distribution of $m(K^+K^-\pi^+\pi^0)$ for the $D_s^*(2112)^+$ region, defined as:

$$0.124 < \Delta m < 0.160$$
 GeV

Mass spectra.

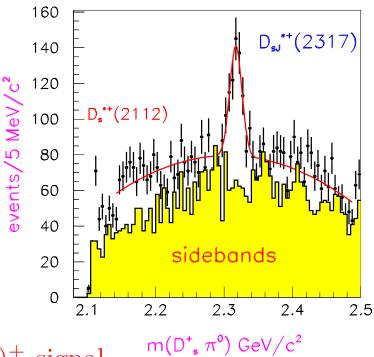
 \square Fitted D_s^+ parameters from the 4-body decay:

$$m_{D_s \to K^+ K^- \pi^+ \pi^0} = 1967.4 \pm 0.2$$
 MeV


 \square To be compared with the fitted D_s^+ parameters from the 3-body decay:

$$m_{D_s \to K^+ K^- \pi^+} = 1967.20 \pm 0.03$$
 MeV

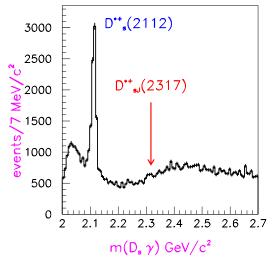
 \square No mass shift introduced by the presence of the π^0 .

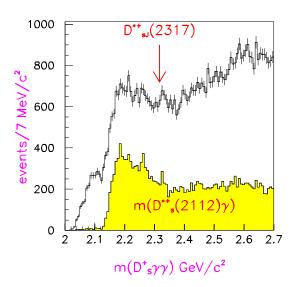

Selection of
$$D_s^+ \to K^+K^-\pi^+\pi^0$$
.

- \square Combinatorial $K^+K^-\pi^+\pi^0$ effective mass.
- \square Require at least one 2-body mass in a vector meson resonance region $[\phi, K^*]$ or ρ .

The $D_s^+\pi^0$ effective mass for $D_s^+ \to K^+K^-\pi^+\pi^0$.

 $\square D_s^+ \pi^0$ spectrum for the D_s^+ signal region and sidebands.

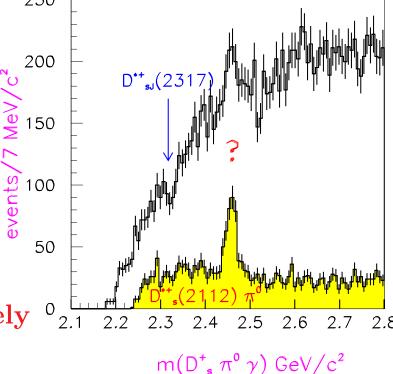

- \square There is a $D_s^*(2112)^+$ signal.
- \square No signals for the D_s^+ sideband regions.
- \square There is a clear $D*_J(2317)^+$ signal with the following parameters:


$$m = 2317.6 \pm 1.3$$
 MeV $\sigma = 8.8 \pm 1.1$ MeV

 \square Consistent with the values obtained using the $D_s^+ \to K^+K^-\pi^+$ decay mode.

Search for other $D_{sJ}^*(2317)^+$ decay modes.

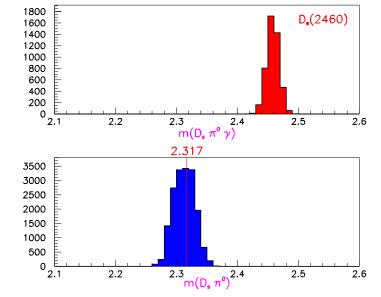
- \square Require that a bachelor γ to be not part of any π^0 candidate.
- \square Require the particle combination under study have $p^* > 3.5 \text{ GeV/c}$.



- \square At the present level of statistics.
 - No significant $D_{sJ}^*(2317)^+ \to D_s^+ \gamma$ decay.
 - No significant $D_{sJ}^*(2317)^+ \to D_s^+ \gamma \gamma$ decay.
 - No significant $D_{sJ}^*(2317)^+ \to D_s^*(2112)^+ \gamma$ decay.

Search for $D_{sJ}^*(2317)^+$ decay to $D_s^+\pi^0\gamma$.

- \square Require $p_{D_s\pi^0\gamma}^* > 3.5 \text{ GeV/c.}$
- \square Require the π^0 lab. momentum > 300 MeV/c.
- \square Neither γ from a π^0 can be part of any other π^0 .
- \square The bachelor γ cannot belong to any π^0 candidate.
- $\square D_s^+ \pi^0 \gamma$ and $D_s^* (2112)^+ \pi^0$ mass spectra. ₂₅₀

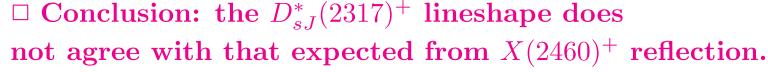

- \square No significant signal in the 2.32 GeV region.
- □ Structure at \approx 2.46 GeV which seems to be associated almost entirely with the $D_s^*(2112)^+$ region.

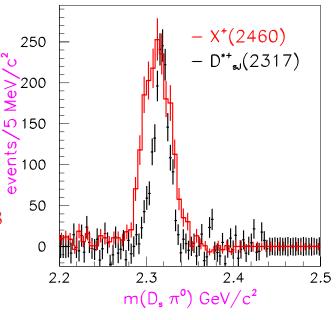
Could the $D_{sJ}^*(2317)^+$ signal be due to the decay of a narrow state at 2.46 GeV?

 \square If we assume the existence of a narrow state, the $X(2460)^+$ which decays to $D_s^*(2112)^+\pi^0$, the kinematic cross-over would result in a narrow signal in

 $m(D_s^+\pi^0)$ near 2.32 GeV.

- \square Two ways to test this hypothesis:
 - The $D_{sJ}^*(2317)^+$ lineshape.
 - Comparison of the $D_{sJ}^*(2317)^+/X(2460)^+$ relative rates for data and $X(2460)^+$ Monte Carlo simulation.


The $D_{sJ}^*(2317)^+$ lineshape.


□ Use of Monte Carlo simulation of:

$$e^{+}e^{-} \to X(2460)^{+} + X_{recoil}$$

 $\to D_{s}^{*}(2112)^{+}\pi^{0}$

 \square Comparison between the $X(2460)^+$ reflection from Monte Carlo and the $D_{sJ}^*(2317)^+$ data signal after background subtraction.

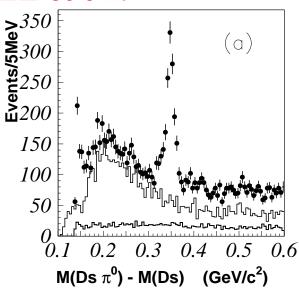
 \Box The reflection is wider (15 MeV) and shifted: the shift can be removed by increasing the mass of the $X(2460)^+$ but the width cannot be reduced to ≈ 9 MeV.

$$D_{sJ}^*(2317)^+/X(2460)^+$$
 ratio.

- \square The second test is to compute the ratio $D_{sJ}^*(2317)^+/X(2460)^+$ for data and Monte Carlo for $X(2460)^+ \to D_s^*(2112)^+\pi^0$ with no D_{sJ}^{*+} generated.
- \square For $p^* > 3.0 \text{ GeV/c}$:

$$\frac{N(D_{sJ}^*(2317)^+)/N(X(2460)^+)(Data)}{N("D_{sJ}^*(2317)^+")/N(X(2460)^+)(MC)} = 5.4 \pm 0.3$$

where " $D_{s,I}^*(2317)^+$ " stands for $X(2460)^+$ reflection.


- \square In the data we find ≈ 5 times more $D_{sJ}^*(2317)^+$ events than expected from a Monte Carlo simulation with only $X(2460)^+$ production.
- \square Conclusion: the relative rates disagree with the hypothesis that the $D_{sJ}^*(2317)^+$ signal is due entirely to production of a state at \approx 2.46 GeV which decays to $D_s^*(2112)^+\pi^0$.

Confirmation of $D_{sJ}^*(2317)^+$ by other experiments.

CLEO 13.5 fb^{-1}

Data — qq Monte Carlo — qq Monte Carlo — 2.10 2.20 2.30 2.40 2.50 2.60 M(D_sπ⁰) (GeV/c²)

BELLE 86.9 fb^{-1}

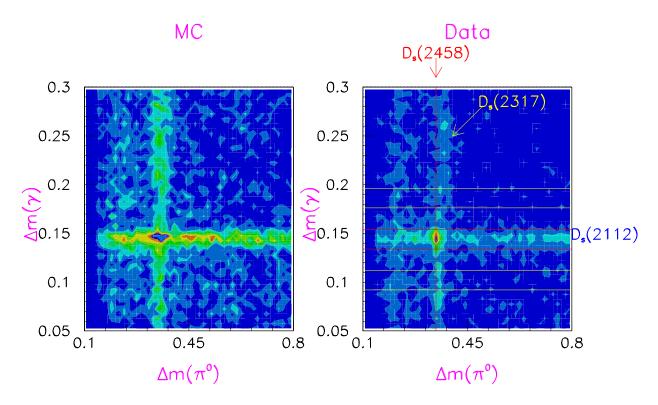
 \Box Confirmation by CLEO (hep-ex/0305017):

 $\Delta m = 350.0 \pm 1.2 \text{ (stat)} \pm 1.0 \text{ (syst)} \text{ MeV}/c^2, N=155 \pm 23$

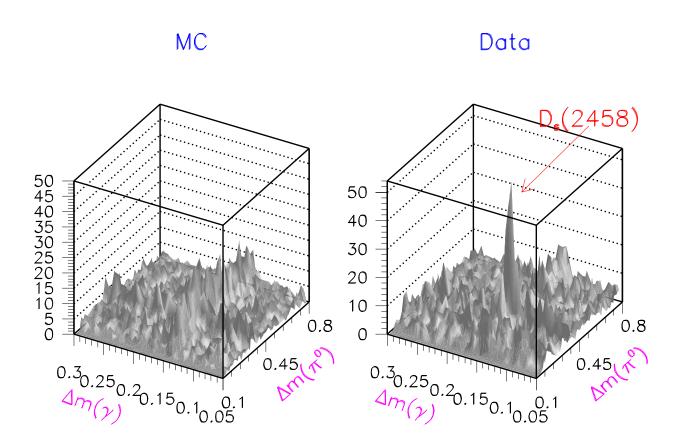
 \square Confirmation by BELLE (hep-ex/0307052):

 $\Delta m = 348.7 \pm 0.5 \text{ (stat) MeV}/c^2, N = 761 \pm 44$

 \square In good agreement with BaBar (91.5 fb⁻¹):

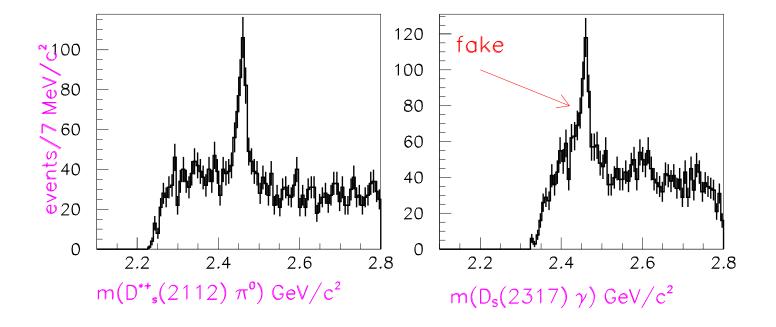

 $\Delta m = 348.4 \pm 0.4 \text{ (stat)} \text{ MeV}/c^2, N = 1948 \pm 104.$

Both CLEO and BELLE use only the $D_s^+ \to \phi \pi^+$ decay mode.


The 2.46 GeV/ c^2 region of $m(D_s^+\pi^0\gamma)$: a new particle or an artifact of kinematics?

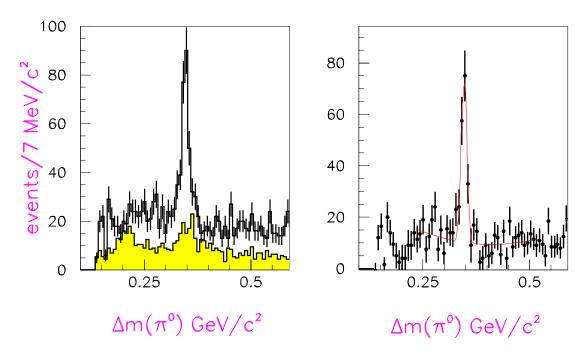
□ In an inclusive environment, the scatter diagrams of

 $\Delta m(\gamma) = m(D_s^+ \gamma) - m(D_s^+)$ vs. $\Delta m(\pi^0) = m(D_s^+ \pi^0 \gamma) - m(D_s^+ \gamma)$ exhibit bands due to $D_s^*(2112)^+$ and $D_{sJ}^*(2317)^+$ which cross near $m(D_s^+ \pi^0 \gamma) = 2.46$ GeV/ c^2 .


The same as Lego plot.

□ Excess of events in the data but not in the Monte Carlo.

Mass distributions.


 \square Data: $D_s^*(2112)^+\pi^0$ and $D_{sJ}^*(2317)^+\gamma$ mass distributions.

 \square Structures at ≈ 2.46 GeV/ c^2 in both $D_s^*(2112)^+\pi^0$ and $D_{sJ}^*(2317)^+\gamma$. At this level, not possible to separate them.

Extraction of the $D_{sJ}(2458)^+$ signal.

 \square Subtract directly the sidebands in the Δm scatterplot:

□ Fitted parameters:

$$\Delta m(\pi^0) = 344.6 \pm 1.2$$

 \square Background peaking at slightly higher mass ($\approx 5 \text{ MeV}$).

Channel Likelihood fit.

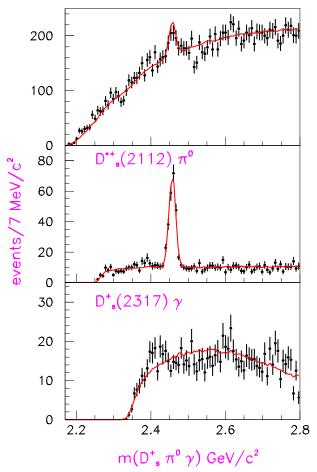
 \Box In order to isolate the signal from backgrounds we have performed a Channel Likelihood fit of the $D_s^+\pi^0\gamma$ system.

P.E. Condon and P.L. Cowell, Phys. Rev. D9, 2558 (1974)

- \Box The fit describes the system as due to a superposition of non-interfering resonances in the $D_s^+\pi^0\gamma$, $D_s^+\pi^0$ and $D_s^+\gamma$ systems.
- □ The Likelihood function is therefore written as:

$$L = x_1 P_1 + x_2 P_2 + \dots + (1 - x_1 - x_2 - \dots)$$

where x_i are the fitted fractions and P_i are normalized Probability Density Functions. The P_i are described in terms of Gaussians which describe the different resonant contributions.


Channel Likelihood fit projections.

□ The fit computes, for each event, a probability to belong to a given contributing channel. The weighted distributions therefore automatically take into account all the reflections.

 $\square D_s^+ \pi^0 \gamma$ mass distribution weighted by $D_s^* (2112)^+$ and $D_{sJ} (2317)^+$:

 \Box No $D_{sJ}(2458)^+$ signal in $D_{sJ}(2317)^+\gamma$.

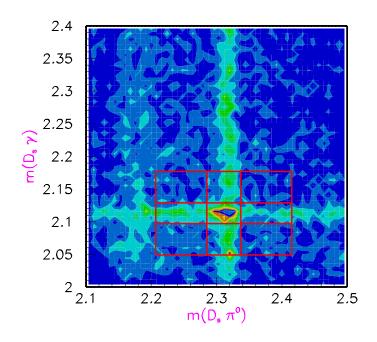
Results from the Channel Likelihood fit.

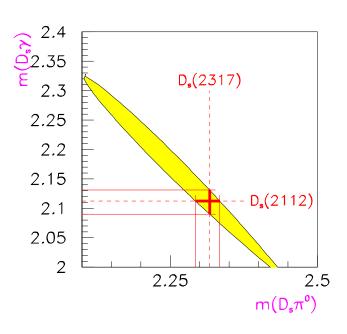
 $\square D_{sJ}(2458)^+$ parameters from a Likelihood scan:

$$m(D_{sJ}(2458)^{+}) = 2458 \pm 1(stat.) \pm 1(syst.)$$
 MeV/c^{2}
 $\sigma = 8.5 \pm 1.0$ MeV/c^{2}

- \square Statistical significance: $\approx 10 \ \sigma$.
- \square Decay rates:

$$N(D_{sJ}(2458)^+ \to D_s^*(2112)^+\pi^0) = 195 \pm 26$$


$$N(D_{sJ}(2458)^+ \to D_{sJ}^*(2317)^+ \gamma) = 0 \pm 22$$


□ Correcting for efficiency we derive the following upper limit:

$$\frac{D_{sJ}(2458)^+ \to D_{sJ}^*(2317)^+ \gamma}{D_{sJ}(2458)^+ \to D_s^*(2112)^+ \pi^0} < 0.22 \qquad 95\% \quad c.l.$$

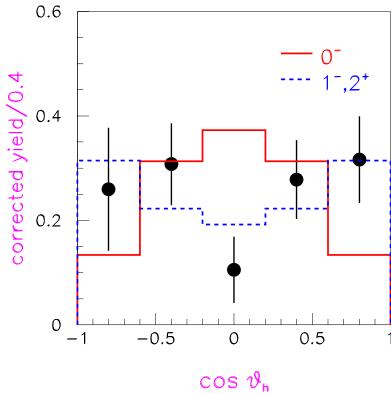
The method of the 9 tiles.

 \square Consider the $m(D_s^+\gamma)$ vs. $m(D_s^+\pi^0)$ scatter diagram:

 \square Subtracting the adjacent tiles it is possible to extract the $D_s^+\gamma$ and $D_s^+\pi^0$ projections.

 $D_{sJ}(2458)^+$ projections.

 $\square D_{sJ}(2458)^+$ projections compared with Monte Carlo simulations for:

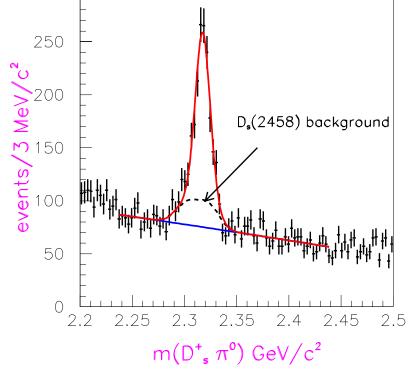

$$D_{sJ}(2458)^{+} \rightarrow D_{s}^{*}(2112)^{+}\pi^{0}$$

$$D_{sJ}(2458)^{+} \rightarrow D_{sJ}^{*}(2317)^{+}\gamma$$

 $\square D_{sJ}(2458)^+ \rightarrow D_s^*(2112)^+ \pi^0$ decay clearly favoured.

Angular analysis.

 \Box Distribution of the helicity angle θ of the γ with respect to the $D_s^*(2112)^+$ direction in the $D_{sJ}(2458)^+$ rest frame.

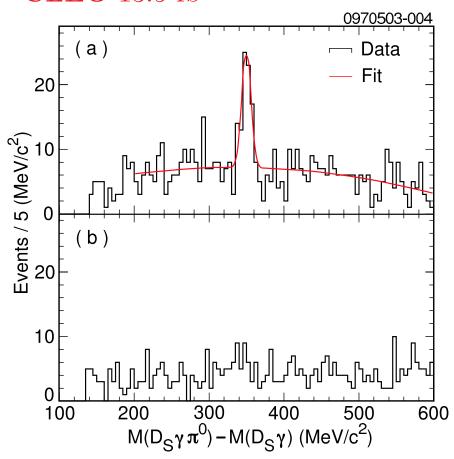


 \Box Inconsistent with $J^P = 0^-$.

New determination of the $D_{sJ}^*(2317)^+$ parameters.

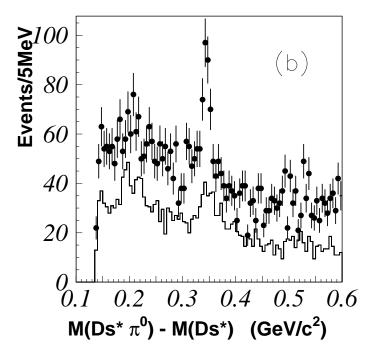
 \square Knowing the $D_{sJ}(2458)^+$ parameters, and assuming decay only to $D_s^*(2112)^+\pi^0$, the reflection near the $D_{sJ}^*(2317)^+$ can be estimated by Monte

Carlo simulation.



 \square Taking this into account, the fitted values of the $D_{sJ}^*(2317)^+$ become:

$$m = 2317.3 \pm 0.4$$
 $\sigma = 7.3 \pm 0.2$ MeV/c^2

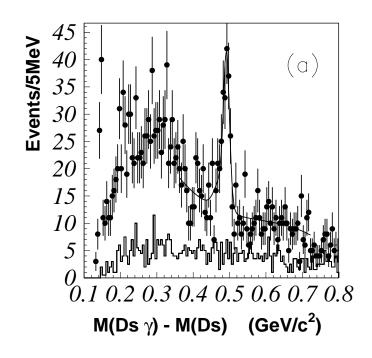

$D_{sJ}(2458)^+$: results from other experiments.

CLEO 13.5 fb^{-1}

$$\Delta m = 349.8 \pm 1.3 \text{ MeV}/c^2$$

 $N = 41 \pm 12$

BELLE 86.9 fb^{-1}

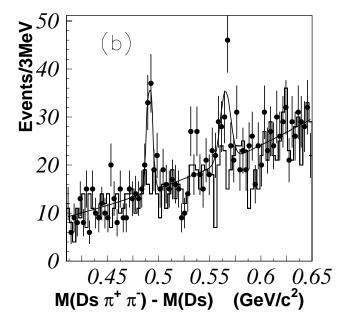

$$\Delta m = 345.4 \pm 1.3 \text{ MeV}/c^2$$

 $N = 126 \pm 25$

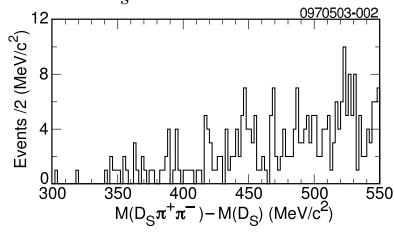
Further results from BELLE.

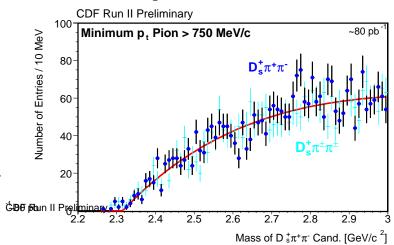
□ Evidence for:

$$B \to DD_{sJ}^*(2317)^+ \quad B \to DD_{sJ}(2458)^+$$


$$D_{sJ}(2458)^+ \to D_s^+ \gamma \text{ (continuum)}$$

- \square Evidence for $D_{sJ}(2458)^+ \to D_s^+ \gamma$: J=0 excluded.
- \square Spin Analysis in B decays: J=1 favoured.


Search for structure in $D_s^+\pi\pi$.



 $\square D_{sJ}(2458)^+ \rightarrow D_s^+ \pi^+ \pi^- \text{ from BELLE.}$

CDF II $D_s^+\pi^+\pi^-$

Experimental Summary $(D_{sJ}^*(2317)^+)$.

 \Box A large (≈ 2200 events), narrow signal has been discovered by BaBar experiment in the inclusively-produced $D_s^+\pi^0$ mass distribution for the D_s^+ decay modes:

$$D_s^+ \to K^+ K^- \pi^+, \qquad D_s^+ \to K^+ K^- \pi^+ \pi^0$$

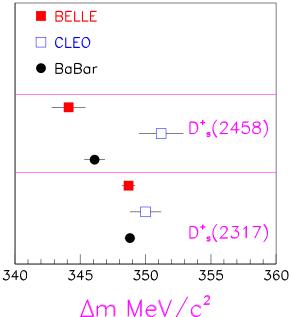
☐ The fitted mass value is:

$$m = 2317.3 \pm 0.4$$
 $(stat.) \pm 1.0(syst.)$ MeV/c²

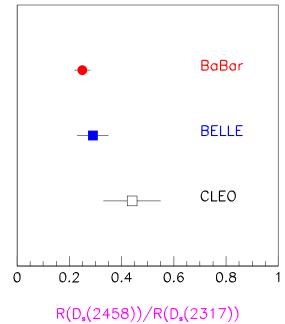
- \Box The measured width is consistent with the experimental resolution, which implies a small intrinsic width ($\Gamma < 10 \text{ MeV}$).
- \Box The structure is not observed in the $D_s^+\gamma$, $D_s^+\gamma\gamma$, $D_s^*(2112)^+\gamma$, $D_s^+\pi^0\pi^0$, $D_s^+\pi^+\pi^-$ nor $D_s^+\pi^0\gamma$ mass distributions.
- \Box The quantum numbers are consistent with being $J^P = 0^+$, but other natural spin-parity assignments cannot be excluded.
- □ This observation has been confirmed by CLEO in continuum and by BELLE in both continuum and B decays.

Experimental Summary on $D_{sJ}(2458)^+$.

- \square BaBar has first shown evidence of structure in the $D_s^+\pi^0\gamma$ mass distribution at ≈ 2.46 GeV/ c^2 . "However, the complexity of the overlapping kinematics of the $D_s^*(2112)^+ \to D_s^+\gamma$ and $D_{sJ}^*(2317)^+ \to D_s^+\pi^0$ requires more detailed study ... in order to arrive at a definitive conclusion." Phys.Rev.Lett. 90 (2003) 242001
- \square CLEO experiment observes $D_s^+(2463)$ state.
- \Box Confirmed by Belle in continuum and B decays, including $D_s^+ \gamma$ and $D_s^+ \pi^+ \pi^-$ decay modes.
- \square BaBar experiment reports the observation of a state at 2.458 GeV/ c^2 decaying to $D_s^*(2112)^+\pi^0$. The parameters of this state are the following:


$$\Delta m = 346.2 \pm 0.9 \ MeV/c^2$$

$$m(D_{sJ}(2458)^+) = 2458.0 \pm 1.0(stat.) \pm 1.0(syst.) \text{ GeV/}c^2$$


- □ The width is consistent with experimental resolution.
- \square The spin analyses favours J=1.

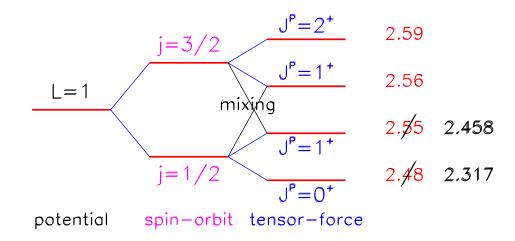
Experimental Summary.

Comparison of Δm and rates from BELLE, CLEO, and BaBar:

 \triangle m MeV/c² \square BaBar measures (for $p^* > 3.5 \text{ GeV/c}$):

$$R = \frac{\sigma(D_{sJ}(2458)^{+})\mathcal{B}(D_{sJ}(2458)^{+} \to D_{s}^{*}(2112)^{+}\pi^{0}}{\sigma(D_{sJ}^{*}(2317)^{+})\mathcal{B}(D_{sJ}^{*}(2317)^{+} \to D_{s}^{+}\pi^{0})} = 0.25 \pm 0.03(stat) \pm 0.03(syst)$$

Some disagreement with CLEO results.


Experimental Summary.

- \square The mass of the $D_{sJ}^*(2317)^+$ is 40 MeV/ c^2 below D^0K threshold.
- \square The mass of the $D_{sJ}(2458)^+$ is 44 MeV/ c^2 below $D^{0*}K$ threshold.
- \Box If the isospin of these states is I=0, since the $D_s^+\pi^0$ and $D_s^{*+}\pi^0$ systems have isospin I=1, these decays violate isospin conservation. This would explain the small widths.
- \Box In this case it is possible that this isospin violating decay proceeds via $\eta \pi^0$ mixing, as proposed by Cho and Wise. Phys.Rev. D49 (1994) 6228.

What can these states be?

 \square Potential Models before $D_{s,I}^*(2317)^+$ predicted masses too high.

S. Godfrey and N. Isgur, Phys. Rev. D32 (1985) 189, S. Godfrey and R. Kokoski, Phys. Rev. D43 (1991) 1679.

 \square After discovery of $D_{sJ}^*(2317)^+$ a class of potential models has some difficulty fitting all states and getting decay patterns right.

R. Cahn and J. Jackson, hep-ph/0305012, S. Godfrey, hep-ph/0305012, P. Colangelo and F. De Fazio, hep-ph/0305140.

□ Perhaps with new potentials all charm, non-charm mesons can be fit.

 \square Also QCD Lattice calculations are in trouble: the mass for a scalar $c\bar{s}$ is expected to be higher than that measured.

G. Bali,hep-ph/0305209.

 \Box Chiral symmetry models predict the observed pattern: the splitting of $D_{sJ}^*(2317)^+$ and $D_{sJ}(2458)^+$ is about the same as $D_s(1969)^+ - D_s^*(2112)^+$. Predict many decay modes, including radiative decay of $D_{sJ}(2458)^+$. W. Bardeen et al., hep-ph/0305049.

What can these states be?

□ Four-quark states or molecules:

T.Barnes, F. Close, H. Lipkin (hep-ph/0305025), Cheng and Hou hep-ph/0305038, K. Terasaki hep-ph/0305213, A. Szczepaniak hep-ph/0305060

- \square Ordinary $c\bar{s}$ states still there to be found.
- \square Expect in this case a large variety of new states with I=0 and I=1.

How can we decide?

- \square Measure radiative decays.
- □ Measure transitions with di-pion emission.
- \square Find still more states.

Conclusions and Outlook.

- \Box The BaBar discovery of a narrow D_s^+ state has opened a new window in particle physics.
- □ This, and related discoveries, will have a large impact on the theory of charmed and beauty meson spectroscopy.
- \square Lots of activity, both experimental and theoretical.
- □ More than 40 papers, written to date, aiming at interpreting these experimental results.