Open Charm Spectroscopy

and Mass Measurements in LHCb.

Antimo Palano

INFN and University of Bari, Italy on behaf of the LHCb Collaboration

Outline:

- New results on charm spectroscopy.
- Results on strange charm spectroscopy.
- Accurate measurement of the D masses.

CHARM 2013, August 31-September 4 2013, Manchester, UK

Charm meson spectroscopy

□ The quark model predicts many states with different quantum numbers in limited mass regions (Godfrey and Isgur, Phys.Rev.D32",189 (1985)).

□ The ground states (D, D^*) , and two of the 1P states, $D_1(2420)$ and $D_2^*(2460)$, are experimentally well established since they have relatively narrow widths (~30 MeV). □ The broad L = 1 states, $D_0^*(2400)$ and $D_1'(2430)$, have been established by the Belle and BaBar experiments in exclusive *B* decays.

 \square BaBar experiment has recently found four new states decaying to $D\pi$ and $D^*\pi$ (Phys.Rev.D82,111101(2010).

 \Box Very complex experimental environment which require confirmation.

Channels and Dataset

 \Box We reconstruct the following final states (arXiv:1307.4556):

$$\mathbf{pp} \to \mathbf{X} \quad \pi^{-} \mathbf{D}^{+} \\ \to K^{-} \pi^{+} \pi^{+}$$

$$\mathbf{pp} \to \mathbf{X} \quad \pi^+ \mathbf{D^0} \\ \to K^- \pi^+$$

$$\mathbf{pp} \to \mathbf{X} \quad \pi^{-} \mathbf{D}^{*+} \\ \to \pi^{+} D^{0} \\ \to K^{-} \pi^{+}$$

at 7 TeV, where **X** represents any collection of charged and neutral particles. \Box The analysis based on ($\approx 1 \ fb^{-1}$) of data. $\Box D^+, D^0$, and D^{*+} signals.

The use of charge-conjugate decay modes is implied.

Data selection.

 \Box Reconstructed D and D^* are combined with another hadron pointing to the same primary vertex.

 \Box Large combinatorial background removed requiring $\cos\theta > 0$.

 \Box Apply a cut at $p_T > 7.5$ GeV/c for all final states.

 \Box 7.9×10⁶, 7.5×10⁶ and 2.1×10⁶ $D^+\pi^-$, $D^0\pi^+$ and $D^{*+}\pi^-$ candidates are obtained.

Experimental resolution and efficiency

 \Box We obtain mass resolution ≈ 4 MeV at the $D_2^*(2460)$ mass similar for all the channels.

 \square Resolution effects negligible when compared to the widths of the resonances under study.

 \Box The $D^{*+}\pi^-$ final state gives information on the spin-parity assignment of a given resonance.

 \Box In the rest frame of the $D^{*+}\pi^-$, we define the abelicity ngle θ_H as the angle between the π^- and the π^+ from the D^{*+} decay.

 $\square \text{ We compute the efficiency as a function of the helicity angle } \theta_H \text{ and find it uniform.}$

• The $D^+\pi^-$ mass spectrum shows a cross-feed from the decay

$$D_1(2420)^0 \text{ or } D_2^*(2460)^0 \to \pi^- D^{*+}(\to D^+ \pi^0 / \gamma) \ (32.3\%)$$

where the π^0/γ is not reconstructed.

- Strong $D_2^*(2460)^0$ signal and weak structures around 2600 and 2750 MeV.
- The wrong-sign $D^+\pi^+$ mass spectrum does not show any structure.

- Strong $D_2^*(2460)^+$ signal and weak structures around 2600 and 2750 MeV.
- The wrong-sign $D^0\pi^-$ mass spectrum shows cross-feeds from:

 $D_1(2420)^0 \text{ or } D_2^*(2460)^0 \to \pi^- D^{*+}(\to D^0 \pi^+)$ (67.7%)

- The $D^{*+}\pi^-$ mass spectrum is dominated by the presence of the $D_1(2420)^0$ and $D_2^*(2460)^0$ signals.
- At higher mass, complex broad structures in the mass region between 2500 and 2800 MeV.
- The wrong-sign $D^{*+}\pi^+$ mass spectrum does not show any structure.
- No cross-feeds in this final state.

Study of the $D^{*+}\pi^-$ angular distributions.

 \Box Expected angular distributions for different spin assignments and MC simulations.

J^P	Helicity Distribution
0^+	decay not allowed
1^{-}	$\propto \sin^2 heta_H$
2^{+}	$\propto \sin^2 heta_H$
3^{-}	$\propto \sin^2 heta_H$
0^{-}	$\propto \cos^2 heta_H$
1^{+}	$\propto 1 + h \cos^2 \theta_H$
2^{-}	$\propto 1 + h \cos^2 \theta_H$

□ States having $J^P = 0^+, 1^-, 2^+, 3^-, ...$ are defined as having "Natural Parity". □ States having $J^P = 0^-, 1^+, 2^-, ...$ are defined as having "Unnatural Parity". □ A resonance decaying to $D\pi$ has "Natural Parity".

Study of the $D^{*+}\pi^-$ angular distributions.

□ We divide the data into three samples: $|\cos \theta_H| > 0.75$, Enhanced Unnatural Parity Sample. $(0.55 \times 10^6 \text{ events}, \text{ Natural Parity suppressed by a factor 11.6})$

 $|\cos \theta_H| < 0.5$, Natural Parity Sample. (0.98 × 10⁶ events, Natural Parity suppressed by a factor 1.5)

 $|\cos \theta_H| > 0.5$, Unnatural Parity Sample. (1.06 × 10⁶ events, Natural Parity suppressed by a factor 3.2)

Fitting model.

 \square Background model:

$$B(m) = P(m)e^{a_1m + a_2m^2} \text{ for } m < m_0$$

$$B(m) = P(m)e^{b_0 + b_1m + b_2m^2} \text{ for } m > m_0$$

where P(m) is the two-body phase space.

 b_0 and b_1 are obtained by imposing continuity on the function and its first derivative.

 \Box Use relativistic Breit-Wigner for $D_2^*(2460)$ and $D_0^*(2400)$ decaying to $D\pi$.

 \Box Simple Breit-Wigner are used for the other structures.

 \Box Each Breit-Wigner is multiplied by the phase-space factor.

 \Box The cross-feed lineshapes from $D_1(2420)$ and $D_2^*(2460)$ appearing in the $D^+\pi^-$ and $D^0\pi^+$ mass spectra are described by a Breit-Wigner function fitted to the data.

Fit to the Enhanced Unnatural Parity Sample.

□ We expect Natural Parity consistent with zero. □ $D_2^*(2460)^0$ yield consistent with zero.

 \Box Observe $D_1(2420)^0$.

 \Box Observe three further structures:

 $D_J(2580)^0, D_J(2740)^0, D_J(3000)^0$

 \Box We expect Enhanced Natural Parity contributions.

 \Box Observe $D_1(2420)^0$ and $D_2^*(2460)^0$.

 \Box Fix the $D_J(2580)^0$, $D_J(2740)^0$, and $D_J(3000)^0$ parameters.

□ Observe two further structures:

 $D_J^*(2650)^0, D_J^*(2760)^0$

Fit to the Unnatural Parity Sample and Total Sample.

□ Unnatural Parity Sample: fix all resonances parameters except for $D_1(2420)^0$. □ Total: all resonances parameters fixed.

Angular distributions (1).

□ Divide the $D^{*+}\pi^-$ sample into 10 equally-spaced $\cos\theta_H$ slices. □ Fit the mass spectra with fixed resonances parameters. Obtain yields. □ Plot yields as functions of $\cos\theta_H$ for the different resonances.

 $\Box D_1(2420)^0$ has $J^P = 1^+$. Fitted with $1 + h\cos^2\theta_H$, $h = 3.30 \pm 0.48$. $\chi^2/\text{ndf} = 0.67/8$

 $\Box D_2^*(2460)^0$ has $J^P = 2^+$. Fitted with $\sin^2 \theta_H$. $\chi^2/\text{ndf} = 8.5/9$

 $\square D_J^*(2650)^0$ and $D_J^*(2760)^0$ are consistent with having Natural Parity.

 \Box Fitted with $sin^2\theta_H$. $\chi^2/ndf = 6.8/9$ and $\chi^2/ndf = 5.8/9$ respectively.

(black: natural parity), (dashed red: unnatural parity), (dotted blue: $J^P = 0^-$)

Angular distributions (3).

 $\Box D_J(2580)^0, D_J(2740)^0, \text{ and } D_J(3000)^0 \text{ are consistent with having Unnatural Parity.}$ Fitted with $1 + hcos^2 \theta_H$. $\Box \chi^2/\text{ndf} = 3.4/8, \chi^2/\text{ndf} = 6.6/8 \text{ and } \chi^2/\text{ndf} = 10/8, \text{ respectively.}$ (black: natural parity), (dashed red: unnatural parity), (dotted blue: $J^P = 0^-, \chi^2/\text{ndf} = 23/9$)

Cross-feeds into the $D\pi$ final states.

 \Box We normalize the $D^{*+}\pi^-$ and $D^+\pi^-$ mass spectra using the sum of the $D_1(2420)^0$ and $D_2^*(2460)^0$ signals and obtain:

 $N(D^{+}\pi^{-}) = N(D^{*+}\pi^{-}) \cdot R_{D^{+}\pi^{-}}, \qquad R_{D^{+}\pi^{-}} = 1.41 \pm 0.02$

 \Box Similarly for the $D^0\pi^+$ final state.

$$N(D^{0}\pi^{+}) = N(D^{*+}\pi^{-}) \cdot R_{D^{0}\pi^{+}}, \qquad R_{D^{0}\pi^{+}} = 1.87 \pm 0.02$$

 \Box We compute MC cross-feeds into the $D\pi$ from the new resonances observed in the $D^{*+}\pi^-$ mass spectrum using the above normalizations.

Fit to the $D^+\pi^-$ and $D^0\pi^+$ mass spectra.

 \Box Cross-feeds (in red) produce a distortion of the $D_2^*(2460)$ and $D_J^*(2650)$ lineshapes.

 \Box For $D_J^*(2650)$ we rely on the results obtained from the $D^{*+}\pi^-$ mass analysis. \Box We observe the $D_J^*(2760)$.

 \Box The fits requires the presence of a broad structure around 3.0 GeV which we label $D_J^*(3000)$.

Resulting resonances parameters, yields and significances.

Resonance	Final state	Mass~(MeV)			Width (MeV)			Yields $\times 10^3$	Sign.
$D_1(2420)^0$	$D^{*+}\pi^{-}$	2419.6 \pm	0.1	± 0.7	35.2 \pm	0.4	\pm 0.9	$210.2 \pm 1.9 \pm 0.7$	
$D_2^*(2460)^0$	$D^{*+}\pi^{-}$	$2460.4~\pm$	0.4	\pm 1.2	$43.2~\pm$	1.2	\pm 3.0	$81.9 \pm 1.2 \pm 0.9$	
$D_{J}^{*}(2650)^{0}$	$D^{*+}\pi^{-}$	$2649.2~\pm$	3.5	\pm 3.5	140.2 \pm	17.1	\pm 18.6	$50.7 \pm 2.2 \pm 2.3$	24.5
$D_{I}^{*}(2760)^{0}$	$D^{*+}\pi^{-}$	$2761.1~\pm$	5.1	\pm 6.5	74.4 \pm	3.4	\pm 37.0	$14.4~\pm~1.7~\pm~1.7$	10.2
$D_{J}^{o}(2580)^{0}$	$D^{*+}\pi^{-}$	$2579.5~\pm$	3.4	\pm 5.5	177.5 \pm	17.8	\pm 46.0	$60.3 \pm \ 3.1 \ \pm \ 3.4$	18.8
$D_J(2740)^0$	$D^{*+}\pi^{-}$	$2737.0~\pm$	3.5	± 11.2	73.2 \pm	13.4	\pm 25.0	$7.7 \pm 1.1 \pm 1.2$	7.2
$D_J(3000)^0$	$D^{*+}\pi^{-}$	$2971.8~\pm$	8.7		188.1 \pm	44.8		9.5 ± 1.1	9.0
$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4~\pm$	0.1	\pm 0.1	$45.6~\pm$	0.4	\pm 1.1	$675.0 \pm 9.0 \pm 1.3$	
$D_{J}^{*}(2760)^{0}$	$D^+\pi^-$	2760.1 \pm	1.1	\pm 3.7	74.4 \pm	3.4	± 19.1	$55.8 \pm 1.3 \pm 10.0$	17.3
$D_{J}^{*}(3000)^{0}$	$D^+\pi^-$	3008.1 \pm	4.0		110.5 \pm	11.5		$17.6~\pm~1.1$	21.2
$D_2^*(2460)^+$	$D^{0}\pi^{+}$	2463.1 \pm	0.2	\pm 0.6	$48.6~\pm$	1.3	\pm 1.9	$341.6 \pm 22.0 \pm 2.0$	
$D_{J}^{\overline{*}}(2760)^{+}$	$D^{0}\pi^{+}$	$2771.7~\pm$	1.7	\pm 3.8	66.7 \pm	6.6	± 10.5	$20.1 \pm 2.2 \pm 1.0$	18.8
$D_{J}^{*}(3000)^{+}$	$D^{0}\pi^{+}$	3008.1 ((fixed))	110.5	(fixed)	1	$7.6~\pm~1.2$	6.6

 \Box Significances are evaluated as $\sqrt{\Delta \chi^2}$ where $\Delta \chi^2$ is the difference between the χ^2 values when a resonance is included or excluded from the fit. \Box Significances are all above 5σ .

 \Box We do not evaluate systematic uncertainties on the parameters of the $D_J^*(3000)/D_J(3000)$ structures because at the edge of the mass spectra.

Discussion (1).

- We observe, in the $D^{*+}\pi^-$ mass spectrum, $D_1(2420)^0$ and measure its spin-parity consistent with $J^P = 1^+$.
- We observe, in the $D^{*+}\pi^-$ and $D^+\pi^-$ mass spectra, the $D_2^*(2460)^0$ resonance and find its spin-parity consistent with $J^P = 2^+$.
- We also observe the $D_2^*(2460)^+$ resonance in the $D^0\pi^+$ mass spectrum.

• The $D_J^*(2650)^0$ resonance could be identified as a $J^P = 1^-$ state (2S $D_1^*(2618)$).

- The $D_J^*(2760)^0$ could be identified as a $J^P = 1^-$ state (1D $D_1^*(2796)$).
- The $D_J(2580)^0$ could be identified with the (2S $D_0(2558)$) state, although $J^P = 0^-$ does not fit well the data.
- The $D_J(2740)^0$ could be identified as the $J^P = 2^-$ (1D $D_2(2801)$) resonance.
- Broad structures are observed around 3.0 GeV in the $D^{*+}\pi^-$ and $D\pi$ mass spectra. They could be superpositions of several states.

Excited D_s states.

 \Box Experimental status of the D_s mesons.

 \Box Large discrepancy between predictions and experiment for $D_{s0}^*(2317)$ and $D_{s1}(2460)$.

 $\square D_{s1}^*(2710)$ observed by BaBar (inclusive) and Belle (B decays).

 $\square D_{sJ}^*(2860)$ and $D_{sJ}(3040)$ observed by BaBar.

 \Box Controversial spin assignment for $D_{sJ}^*(2860)$. Overlap of two states?

 \square First observation of $D_{s1}^*(2710)^+$ and $D_{sJ}^*(2860)^+$ in hadronic collisions.

$D_{s1}^{*}(2710)^{+}$ and $D_{sJ}^{*}(2860)^{+}$ parameters.

$$m(D_{s1}^{*}(2710)^{+}) = 2709.2 \pm 1.9(\text{stat}) \pm 4.5(\text{syst}) \text{ MeV}/c^{2},$$

$$\Gamma(D_{s1}^{*}(2710)^{+}) = 115.8 \pm 7.3(\text{stat}) \pm 12.1(\text{syst}) \text{ MeV}/c^{2},$$

$$m(D_{sJ}^{*}(2860)^{+}) = 2866.1 \pm 1.0(\text{stat}) \pm 6.3(\text{syst}) \text{ MeV}/c^{2},$$

$$\Gamma(D_{sJ}^{*}(2860)^{+}) = 69.9 \pm 3.2(\text{stat}) \pm 6.6(\text{syst}) \text{ MeV}/c^{2}.$$

 \Box Resonances observed in BaBar and Belle have been confirmed. All results are in agreement.

 \Box The statistical uncertainties for all parameters are improved by an overall factor of two with respect to the BaBar measurements in the same decay modes.

 \Box An angular analysis of D^*K samples is needed.

Measurement of the *D* masses.

 $\Box \text{ Use low Q-value modes: } D^0 \to K^- K^+ \overline{K^- \pi^+}, D^0 \to K^- \overline{K^+ \pi^- \pi^+} \text{ and } D_{(s)} \to K^+ \overline{K^- \pi^+}.$

 \Box Main systematics from momentum scale and energy loss correction.

□ Calibrate momentum scale using $B^+ \to J/\psi K^+$ and $B^+ \to J/\psi K^+ \pi^+ \pi^-$. □ LHCb measurements using 1 fb^{-1} (JHEP 06 (2013), 065).

$$M(D^{0}) = 1864.75 \pm 0.15 \text{ (stat)} \pm 0.11 \text{ (syst)} \text{ MeV}/c^{2},$$

$$M(D^{+}) - M(D^{0}) = 4.76 \pm 0.12 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ MeV}/c^{2},$$

$$M(D_{s}^{+}) - M(D^{+}) = 98.68 \pm 0.03 \text{ (stat)} \pm 0.04 \text{ (syst)} \text{ MeV}/c^{2}.$$

 \Box Very recent BaBar measurement: $M(D^0) = 1864.841 \pm 0.048 \pm 0.063$ (arXiv:1308.1151).

 \Box Factor 5 better than PDG average.

Conclusions.

 \Box Charm spectroscopy has made important progress at LHCb.

 \Box In the sector of the D_J spectroscopy we observe two new natural parity and two new unnatural parity resonances to be compared with previous measurements from BaBar.

 \square We also observe further structures in the 3000 MeV mass region.

 \Box In the sector of the D_{sJ} spectroscopy we confirm, with higher statistics, results obtained at B factories and therefore $D_{s1}^*(2710)$ and $D_{sJ}^*(2860)$ are now "established".

- \Box Other analyses are in progress.
- \Box In the near future, we expect new results from the study of B and B_s decays.

 \Box In these exclusive decays will be possible to perform spin analysis and measurements of branching fractions.

Optimization.

 \Box Invariant masses computed as mass differences. For example $m(D^+\pi^-)$ is defined as: $m(D^{+}\pi^{-}) = m(K^{-}\pi^{+}\pi^{+}\pi^{-}) - m(K^{-}\pi^{+}\pi^{+}) + m_{D^{+}}(PDG)$ \Box Signal/background ratio for the observed resonances improves with $p_T(D^{(*)}\pi)$. \Box For the $D^+\pi^-$ mass spectrum we optimize on the strong $D_2^*(2460)^0$ signal. <mark>م</mark> 0.5 \Box Fit the $D^+\pi^-$ mass spectrum with increasing p_T cut. Compute: 0.45 Purity(P) = Signal/(Signal + Background),0.4 0.35 $Significance(S) = Signal / \sqrt{Signal + Background},$ 0.3 $Product: S \cdot P$ v 600 500 400 300

 \Box Choose a cut at $p_T > 7.5$ GeV/c for all final states. \square No improvement is found as a function of the pseudorapidity. \Box After the optimization 7.9×10⁶, 7.5×10⁶ and 2.1×10⁶ $D^+\pi^-$, $D^0\pi^+$ and $D^{*+}\pi^-$ candidates are obtained.

Fits quality, cross checks and systematic uncertainties

\Box Summary of the fits to the different mass spectra.

Final state	Selection	Fit Range	Number	Candidates	χ^2/ndf
		$({ m MeV})$	of bins	$(\times 10^{6})$	
$D^+\pi^-$	Total	2050-3170	280	7.90	551/261
$D^{0}\pi^{+}$	Total	2050-3170	280	7.50	351/262
$D^{*+}\pi^{-}$	Total	2180 - 3170	247	2.04	438/234
$D^{*+}\pi^{-}$	Natural			0.98	263/229
	$parity \ sample$				
$D^{*+}\pi^{-}$	Unnatural			1.06	364/234
	parity sample				
$D^{*+}\pi^{-}$	$Enhanced \ unnatural \ parity$			0.55	317/230
	sample				

□ Cross checks on the fits results and stability have been performed.

- The p_T cut has been lowered to 7.0 GeV/c: results are in agreement within the statistical errors.
- For each mass spectrum we generate and fit 500 new mass spectra obtained by Poisson fluctuations of each bin content.

□ The following systematic uncertainties have been evaluated on the resonances masses and yields.

- We make use of different background models.
- For each mass spectrum we generate and fit 500 new mass spectra with resonances and background yields fixed to the fit results. The background parameters are allowed to vary within $\pm 3\sigma$ from the fitted values.
- In the $D\pi$ mass spectra the simple Breit-Wigner are replaced by relativistic BW.
- Fixed parameters resonances have been relaxed one by one.