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Zeno dynamics yields ordinary constraints
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The dynamics of a quantum system undergoing frequent measurefgaatgum Zeno effegtis investi-
gated. Using asymptotic analysis, the system is found to evolve unitarily in a proper subspace of the total
Hilbert space. For measurements represented by spatial projections, the generator of the “Zeno dynamics” is
the Hamiltonian with Dirichlet boundary conditions.
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Frequent measurement can slow the time evolution of anultidimensional measurement is not at all exotic, and in
qguantum system, hindering transitions to states differenparticular, applies to the most basic quantum measurement:
from the initial one[1,2]. This phenomenon, known as the position. The latter is the subject of the present paper.
quantum Zeno effedQZE), follows from general features of ~ We introduce notation. Consider a quantum sys@@m
the Schrdinger equation that yield quadratic behavior of thewhose states belong to the Hilbert spate and whose
survival probability at short timef3,4]. Interfering with a  €volution is described by the unitary operatd(t)
transition at a later stage in its progress leads to a second€Xp(—iHt), whereH is a time-independent lower-bounded
non-Markovian phenomenon, known as the inverse or antiHamiltonian. LetE be a projection operator that does not
Zeno effect[5—8], in which decay is accelerated. Both ef- commute with the HamiltoniafE,H]+# 0, andEH = Hg the
fects have recently been seen in the same experimental setggbspace defined by it. The initial density maipix of sys-

[9]. tem Q is taken to belong tG{g

However, the QZE does not necessarily freeze everything.

On the contrary, for a projection onto a multidimensional Po=EpoE, Trpo=1. @
subspace, the system may evolve away from its initial stater . . .
although it remains in the subspace defined by the “measure-h.e state_ olQ after a series OE-observations at timef
ment.” This continuing time evolutionvithin the projected =ITIN (j=1,...N) is
subspace we catjuantum Zeno dynamic# is often over- N _ t _ N
looked, although it is readily understandable in terms of a V(M =Vn(T)poVi(T),  VN(T=[EU(T/N)E] )
theorem on the QZIE2] that we will recall below.

~ The aim of this paper is to show that Zeno dynamicsang the probability to find the system e (“survival prob-
yields ordinary constraints. In particular, suppose a systerabi”tyn) is
has HamiltoniarH and the measuremefthat will be made
frquentl)) js checking that the system. is within a part?cular P(N)(T)=Tr[VN(T)pOVL(T)]. 3)
spatial region. Then the Zeno dynamics that results is gov-
erned by the same Hamiltonian, but with Dirichlet boundaryQur attention is focused on the limiting operator
conditions on the boundary of the spatial region associated

with the projection. Moreover, the Hamiltonian with these WV(T)= lim V(T). (4)
boundary conditions is self adjoint and remains reversible N—o

within the Zeno subspace. This shows that irreversibility is . ) o

not compulsory, as noted f10]. Misra and Sudarshd2] proved that if the limit exists, then

Some of our results are already known in the mathematithe operator$(T) form a one-parameter semigroup, and the
cal literature[11], namely, the case of a free particle. How- final state is
ever, our method of proof is completely differe@nd per- .
haps more transparent to the physicistd extends easily to p(T)= ’\lllmeN(T)=V(T)poVT(T)- 6)
the case of nonzero potential. N
At the experimgntal level, besidg8], the QZE has bee_n The probability to find the system it is
tested on oscillating systemjd2]. Although these experi-
ments have invigorated studies on this issue, they deal with P(T)= lim PN(T)=1. (6)
one-dimensional projector&@and therefore one-dimensional N0
Zeno subspacgsthe system is forced to remain in its initial
state. This is also true for interesting quantum optical appli-This is the QZE. If the particle is constantly checked for
cations[13]. The present paper therefore enters an experiwhether it has remained iHg, it never makes a transition to
mentally uncharted area, although the property of being &Hg)™*.
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A few comments are in order. First, the final stafer) inducing the wave function to vanish on the boundaries
depends on the characteristics of the model investigated and0, L (Dirichlet boundary conditions
on the measurement performébe specific forms of/ and We now prove our assertion. Let the particle be initially
V depend onE). Moreover, the physical mechanism that (t=0) in A. We recall the propagator in the position repre-
ensures the conservation of probabilities within the relevansentation 14,15
subspace hinges on the short-time behavior of the survival

probability: probability leaks out of the subspatg: like G(x,t;y)=(X|[EAU(DEAly) = x,0)(X[U(1)|y) x,(¥)

t? for short times. Since the infinitis- limit suppresses this _ )

loss, one may inquire under what circumstanté¥) actu- —y (%) m im(x—y) (y), (12
ally forms a group, yielding reversible dynamics within the Xa 2mith 2ht XaY)s

Zeno subspace.

In this paper, we show that Zeno dynamics for a positionvheret=T/N is the time when the first measurement is car-
measurement yields a particular kind of dynamics within theied out and the particle found &, . To study the properties
subspace defined by that measurement, namely, unitary evef G we choose a complete basislif(A)
lution with the restricted Hamiltonian, and with the domain 5
of that (self-adjoin} operator defined by Dirichlet boundary _ _ \ﬁ . naX _
conditions. This elucidates the reversible features of the evo- Un(X) = (x|un) = L sm( L ) n=12..., 19
lution for a wide class of physical models. As a spinoff, our
proof provides a rigorous regularization of the example conAt this point, one should not confuse the selection of a basis
sidered in10] (where it was suggested that the Trotter prod-for the space with the selection of a domain for the Hamil-
uct formula could be used to demonstrate the rgsult tonian. For the free particle on the interval with Dirichlet

We start with the simplest spatial projectio@.is a free  boundary conditions{u,} provides a basis of eigenfunc-
particle of massn on the real line, and the measurement is ations, but even if one took Neumaitar whatever boundary
determination of whether or not it is in the interval ~ conditions(leading to a different self-adjoint operatahe
=[0,L]CR. The Hamiltonian and the corresponding evolu- basis(13) could still be used. The functiodsi,} would sim-
tion operator are ply not be eigenfunctions. Even though this last observation

is well known, correspondence prior to publication has con-
2

p ) vinced us of the need to emphasize these facts of functional
H=55 U=exp—itH). (7} analysis for clarity. In this basis,
H is a positive-definite self-adjoint operator &f(R) and _ _ﬁznzfrz
U(t) is unitary. We study the evolution of the particle when Hzun) =Eq[un),  En= omL2 (14)
it undergoes frequent measurements defined by the projector
and the matrix elements & are
Ea= | dxx (X)]|x){x]|, 8
= | o 0ot ® )= (Un EAUDEA Uy
where)(A is the characteristic function _ de JLd m im(x—y)2
=, X o Y Un(X) \/Zwitﬁ ex 7t un(y).
1 for xeA=[0L]
X,(x)= 0 otherwise ’ © (19
] o ) Letr=x—-y, R=(x+y)/2, and\ =m/2At, so that
Thus, E, is the multiplication operator by the functiogy .
We study the following process. We prepare a particle in a N (L ro(R)
state with support irA, let it evolve under the action of its Gmn(N) = Gf de drun(R+r/2)
Hamiltonian, perform frequer, measurements during the 0 ~ro(®)
time interval[0,T], and study the evolution of the system X Uy(R—r/2)exdinr?], (16)
within the subspacé{g, =E,H. We will show that the dy-
namics inHe, is governed by the evolution operator wherer o(R) =L —|L—2R|. We now use the asymptotic ex-
pansion
V(T)=exp(—iTHZ)E,, (10 X
a ) 2
with g()\): \/ GJ:ade(X)emx :gstaﬁ)\)+gboun({)\)1
1
p? 0 for xeA a7
Hz=om Va0, ValO=1 o Giherwise Y where
This is the operator obtained in the ling#t). In other words, _ '_ " -2
the system behaves as if it were confined\ihy rigid walls, Osial M) =T(0) + 4\ F(O+0("™ (18
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and N [ro(R)
\/.—J drun(R+r/2)us(R—r/2)exgirr?]
17 J —ro(R)
om—i[f(a)ﬂ(—a)woa*’% (19 &
Foound M) = e TN =um(R)un(R)+Kﬁ[um(RJrr/Z)un(R—r/Z)],:O

+0O(N"%). (20)

are the contributions of the stationary point 0 and of the  (Note that the contribution of the boundary vanishes identi-
boundary, respectively. By expanding the inner integral incally.) Using this result, we integrate by parts and after a
Eq. (16) as in Egs(17)—(19), one gets straightforward calculation obtain

- it —h* d? 32 it p® 32
Gmn(t):fo dR um(R)un(R)_%um(R)% ﬁun(R) +O(t ):<um|un>_% Un ﬁ Unp +O(t )
it
= Omn| 1- 7 En +0(t%?). (21)

With this formula, we may carry out the limit required in Ed). At time T, in the representatiofi3), the propagator becomes

G T =(MUTNy=1lim > Gy (TIN)Gpy n (T/N)- -Gy n(TIN)= 8¢ TEn /%, (22)

N—oo N1 ... NN-1

This is precisely the propagator of a particle in a square weltegionA the total HamiltoniarH should be lower bounded.
with Dirichlet boundary conditions. This in turn proves that The measurement performed is again application of the pro-
H; is given in Eqg.(11) and has eigenbasid3). Note also jector (8) and we study the short-time propagator

that thet®? contribution in Eq.(21) drops out in theN— o . 5
limit since it appears abl X O(1/N%?), GOty =x () \/ m exp{lm(x—y)
At this point (and for reasons similar to those mentioned v A 2mith 2ht
earliep it is worth emphasizing that the basis given in Eq. :
(13) is only one of manyinfinite in facy possibilities for a e 4_ M}X (y). (24)
basis for the interval. Any one of these would be valid, but 2h A

not all would be equally convenient. Thus, with a basis
whose functions did not vanish at the endpoints, the domiThe basis to be used for representing the propagator is again
nant contribution of orden "2 in gpound\) Would have that of the Hamiltonian with Dirichlet boundary conditions
given a nondiagonal term in Eq0)—(22). The matrix rep- in [O,L]
resentation of5 (in this basi$ would in that case still need to

be diagonalized, leading back to the matrix we have found Hju)=
using a more convenient basis. Our point is that one may

p2
%+V)|Un>:En|un>- Lln(x)lxzo,L:O'

always choose to use the bagis,} of Eq. (13). For that (29
choice, the calculation is easiest and the resulting interpreta-
tion transparent. As before (=x—y, R=(x+Yy)/2, A\=m/2At),
At this point, we have recovered, using rather different N fo(R) r
techniques, the result of Friedméhl]. Continuing to use  G,,(\)= \/.—f dRJ druy R+ 5
our approach of asymptotic analysis, the result may be gen- ImJo ~ro(R) 2
eralized to a wide class of systems. Let r
0 > e—itV(R+r/2)/2hun< R— 5 e itV(R=1/2)/2h ginr?
H=_-—+V, U(t)=exp —itH), 23
o (t)=exp(—itH) (23 -

whereV is a regular potential(lt may be unbounded from Using the asymptotic expansiofl7)—(19), a calculation
below, for example/(x) =Fx, although within the projected identical to the previous one yields
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—52 g2 nonconvex and/or multiply-connected projection domains,
the only difficulty being that the integration domain in Eq.
(30) must be broken up. It is interesting to notice that at
those points at which the boundary fails to have a continu-
+0(t%? ously turning tangent plane, the asymptotic contribution of
the discontinuity in the boundary in E(82) would be of yet
higher order in\.
Um> +0(t%?) In conclusion, for traditional position measurements,
namely projections onto spatial regions, we have shown that
Zeno dynamics uniquely determines the boundary condi-
+0(t%? (27)  tions, and that they turn out to be of Dirichlet type. This is
also relevant for problems related to the consistent histories
approacH17-19, where different boundary conditions were
proposed. For us, the frequent imposition of a projection, the
G T)= 8y TEn 1, (28)  traditional idealization of a measurement, provides all the
decohering of interfering alternatives that is needed. On the
Again, the simplicity of the proof is due to the choice of the gther hand, in the works just cited, one seeks a restricted
baSiS(25), SatiSfying Dirichlet bOUndary conditions. propagator(using the pa‘[h decomposition expansim])
We have also obtained an improvement with respect tgnd such interference can occur.
earlier approaches to this problem. The aforementioned theo- A second issue discussed in these waespecially[18])
rem by Misra and Sudarshd@] requires that the Hamil- s the validity of the Trotter product formula in certain cases.
tonian be lower bounded from the outset. However, we nee@\gain, our implicit use of this formuldin Eq. (24), etc] is
only require that the Hamiltonian be lower bounded in thenothing more than its use for a particle in an ordinary poten-
Zeno subspace. Despite the fact that for unbounded potefia (in particular, the Trotter formula isot used in connec-
tials (such asV=Fx)H may not be lower bounded on the tion with the potentially singular projection operation by
real line, the evolution in the Zeno SUbSpace is governed bYE" ) This is because the propagator of Ea4) provides

un(R)um( R) - %un( R)

L
o) | R 2m g’

+V(R) |un(R)

2

p

it
=(Un|Um) — %<Un

it
=Onml 1— zEn

and the limiting propagator at time again reads

the Hamiltonian time evolution under aequencef operations: the particle
5 evolves under the Hamiltoniai23) (on the entire lingfor a
P V() for  xeA time t, and then one applies the projectiofleft and right
Hz=5—+Va(X), Va(x)= . b an PP pro) g
2m +o  otherwise multiplication by the operatoE,). Our results are also rel-

(29) evant for understanding the physical features of “decoherent
S ) free” subspaces, which are of great interest in quantum com-
that can be lower bounded # yielding abona fidegroup putation[21]. The Zeno mechanism not only forces the sys-

for the evolution operators. tem to remain in a given subspace, it also constrains its

The above calculation and conclusions may readily beéjubdynamics in this space, determining the behavior of the

generalized to higher dimensions, so long as the measurg;. . fnction on the boundary and vielding a unitatsco-
ment projects onto a set ii" with a smooth boundar{ex- y Y g arye

fini b £ DoV X K herence freeevolution. Besides its theoretical interest, this
cepﬁ, at most, a finite number o pom_t € agan tal &Y feature might lead to potential applications and practical
eR" and let the measurement projection be defined b¥mplementations of the Zeno constraints

n S . . X .
ACR", which is not necessarily bounded. Again setting e present paper has implications for the notion of “hard

=x=y, R=(x+y)/2, Eq.(26) becomes wall,” as used for example in elementary quantum mechan-
N\ M2 ics. Everyone would agre@ve expeck that this notion is an
Gmn(N) = —) f de drup,(R+r1/2) idealization. However, in many cases where this idealization
tm A D(R) is useful the “wall” is dynamic rather than static, the result

x e WV(RHI22 (R_r/2) of some fluctuating atomic presence. In this article, we have
n a sufficient condition for the validity of this notion in a dy-
Xe—itV(R—r/Z)/2ﬁei)\r2, (30) namic situation. Moreover, there is a quantitative framework
(arising from our asymptotic analysis and finite-time-interval

whereD(R) is the transformed integration domain forThe ~ QZE effects for gauging the effects of less than perfect hard

n-dimensional asymptotic expansio(is)—(19) read[16] walls.
i
_ o -2
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