

MIXING e vite medie del CHARM

Alexis POMPILI (Università & I.N.F.N. di Bari) per la Collaborazione BaBar

XIV – IFAE Parma

Sessione Quark Pesanti – 4 Aprile 2002

Differenze di vite medie nei decadimenti del D⁰ Nuovi limiti su y (parametro di mixing del charm) : – metodo ed estrazione delle vite medie – sistematiche e resultati

x, **y** : Introduzione

x, y : Metodi di ricerca

Sperimentalmente si cerca di misurare/porre limiti alla transizione $D^0 \rightarrow \overline{D}^0$

3 tipi di esperimenti sono sensibili ad una **combinazione di x & y :**

1) Ricerche WRONG–SIGN in decadimenti ADRONICI

Si studia l'evoluzione temporale dei decadimenti $D^0 \to K^+ \pi^$ cercando un segnale $D^0 \to \overline{D}^0 \to K^+ \pi^-$

Complicazione: vi è una differenza di fase forte non nota fra i decadimenti CF e DCS

2) Ricerche WRONG–SIGN in decadimenti SEMILEPTONICI

Si studiano i decadimenti $D^0 \to \overline{D}^0 \to K^+ l^- \nu$

Non richiede una buona risoluzione temporale, il tag leptonico è più pulito, i fondi elevati (V)

3) Ricerca di DIFFERENZA DI VITA MEDIA ΔΓ y [se CP conservata]

Richiede una (o più) coppie di misure di vite medie per decadimenti in stati a CP definito

Alexis Pompili (Università & INFN Bari)

XIV - IFAE Parma 2002

 $x^2 + y^2$

 \mathbf{x}^2 , \mathbf{y}

Ricerca di differenza di vita media

Asimmetria delle rates di dec. dei D neutri in autostati CP⁺(pari) and CP⁻ (dispari) :

$$y_{CP} = \frac{\hat{\Gamma}(CP^+) - \hat{\Gamma}(CP^-)}{\hat{\Gamma}(CP^+) + \hat{\Gamma}(CP^-)} = \frac{\hat{\Gamma}(CP^+)}{\bar{\Gamma}(CP^\pm \text{ equal mix})} - 1 = \frac{\mathcal{T}(D^0 \to K^- \pi^+)}{\mathcal{T}(D^0 \to K^- K^+)} - 1$$

$$K^-K^+(\pi^-\pi^+) \text{ è autostato } CP^+ \& K^-\pi^+ \text{ assunto quale eguale mistura di } CP^+, CP^-$$

Estraendo le rates fittando con una pura exp. le rates di dec. dipendenti dal tempo :

$$y_{CP} \approx y \cos \varphi - \frac{1}{2} (|q/p|^2 - 1) \times \sin \varphi$$

$$y_{CP} \approx y$$

Alexis Pompili (Università & INFN Bari)

Metodo di ricostruzione del tempo proprio

Criteri di selezione dei candidati D^o

L'analisi usa : $\begin{cases}
57.8 \text{ fb}^{-1} \text{ (dati 2000+2001) \& seleziona eventi dal continuo } c\overline{c} \\
\text{dati simulati (Geant4) : } \approx 30 \text{ fb}^{-1} q\overline{q} \text{ generico \& campionidi segnale}
\end{cases}$

Tracciamento[DCH+SVT], **vertexing**[SVT], **PID**[DIRC+(DCH+SVT)] cruciali

ALTA QUALITA' per TRACCE & RISOLUZIONE di VERTICE (almeno 6 SVT-hits per π_s)

BONTA' del FIT per entrambi i **VERTICI** del D⁰ e del D*: $P(\chi^2_{FIT}) > 1\%$

REIEZIONE D* da decadimento dei B: $p_{D^0}^{Y(4S)} \ge 2.5 \ GeV/c$ **SOLO** $c\overline{c}$

IDENTIFICAZIONE di PARTICELLE applicata ad entrambi i prodotti del D^0 **K** : criterio di selezione forte ; π : selezione & μ -veto

REIEZIONE FONDO combinatorio dovuto a π **di basso p**: taglio di *elicità*

 \Rightarrow TAGLIO su δm : finestra $\pm 2[3]MeV$ intorno picco per π_{s} con[senza] DCH—hits

Alexis Pompili (Università & INFN Bari)

BABAR

Identificazione dei K

Alexis Pompili (Università & INFN Bari)

Test con il MC : *pull* di tempo proprio

Alexis Pompili (Università & INFN Bari)

Distribuzioni di tempo proprio e fit resultante

 $K^{-}\pi^{+}$

BABAR

K⁻K⁺

 $\pi^-\pi^+$

Punti: DATI | Istogramma: RISULTATO FIT | Istogramma pieno: FONDO dal FIT

Alexis Pompili (Università & INFN Bari)

Rapporto di vite medie: SISTEMATICHE – I

La misura di vita media del D⁰ è una misura di ELEVATA PRECISIONE [incertezza statistica per il campione di CFD è di circa 1.3*fs* cioé 3/1000]

A tale livello di precisione sono necessari studi molto accurati delle sorgenti di incertezze sistematiche (tracciamento, vertexing, allineamenti)

N.B.: – bias medio di 1.5µm nella posizione del vertice si traduce in 3*fs* di bias nella vita media – shift di massa di 1*MeV* dovuto ad un bias nel momento implica 0.3*fs* di bias nella vita media

Qui non presentiamo una misura di vita media del D⁰ poiché l'incertezza sistematica complessiva (circa 3–4*fs*) può essere compressa con ulteriore studio.

Si è verificato, su un sotto-campione limitato, la piena compatibilità del risultato del fit sia col nostro check di HF2001 $[412\pm2(\text{stat.})]fs$ sia col PDG $[412.6\pm2.8]fs$

BABAR

Molti effetti sistematici sulla vita media si elidono nel RAPPORTO di vite medie

Alexis Pompili (Università & INFN Bari)

Rapporto di vite medie y : SISTEMATICHE – II

Incertezze sistematiche sulla y calcolate usando grandi campioni MC di segnale

Dati simulati sono stati modificati con variazioni reflettenti incertezze in...

- conoscenza del rivelatore

ABAR

- criteri di selezione degli eventi
- livello e composizione del fondo
- posizione e dimensioni del beamspot

Test sistematici sull'allineamento interno dell'SVT usando $e^+e^- \rightarrow \gamma\gamma \rightarrow 4 \ prongs$

	Incertezza	su <mark>y</mark> (%)
SORGENTE di INCERTEZZA	KK	ππ
TRACCIAMENTO	+0.2 / -0.2	+0.9 / -0.9
IDENTIFICAZIONE di PARTIC.	+0.2 / -0.2	+0.4 / -0.4
FONDI	+0.2 / -0.2	+0.6 / -0.6
ALLINEAMENTO-VERTEXING	+0.2 / -0.1	+0.3 / -0.1
STATISTICA del MC	+0.4 / -0.6	+0.4 / -0.9
SOMMA IN QUAIRATURA	+0.6 / -0.7	+1.2 / -1.4

campione di controllo a vita media 0

 $\mathbf{y} \approx \frac{\boldsymbol{\mathcal{T}}(K^{-}\pi^{+})}{\boldsymbol{\mathcal{T}}(K^{-}K^{+})} - 1$

La stima di y nel MC non mostra alcun bias entro l'errore statistico che viene considerato come una ulteriore incertezza sistematica.

Alexis Pompili (Università & INFN Bari)

Alexis Pompili (Università & INFN Bari)

Ruolo della differenza di fase forte $\delta_{K\pi}$

BaBar

 $\delta_{K\pi}$ è cruciale; solo recentemente dei lavori teorici ne predicono valori sensibilmente diversi da 0 !

[Falk et al., **PRD 65**, 054034 (2002) Bergmann et al., **PLB 486**, 418 (2000)]

In un intervallo ragionevole dei parametri di rottura della simmetria SU(3), valori >45° non sono ammessi.

Attualmente il valore "sperimentalmente" preferito è 110°, scenario nel quale $y \approx 0 \& x > 0$

Alexis Pompili (Università & INFN Bari)

Limiti su x, y dall'analisi dei decadimenti K π wrong-sign pronti presto

Sara' utile considerare anche decad. $K\pi\pi^0$ wrong-sign

BABAR

Attuale sensibilità dell'ord. di **10**-2 [**alcune unità x 10**-3 con 0.5ab -1 @ Belle & BaBar]

Alexis Pompili (Università & INFN Bari)

CONCLUSIONI & PROSPETTIVE – II

Inoltre ...

TRANSPARENZE di RISERVA

Ricerca nei decadimenti adronici wrong-sign

 δ : differenza di fase forte fra DCSD & CFD

Si cerca una deviazione dall'exp. nell'evoluzione temp. dei dec. wrong-sign dei D neutri:

