

Observation of two narrow mesons in the $D_s^+ \pi^0$ **and** $D_s^+ \pi^0 \gamma$ **final states**

Results from BABAR, CLEO & Belle

Alexis POMPILI (University & I.N.F.N. of Bari) [BABAR Collaboration]

QCD@Work 2003 Conversano - 15 June 03

Outline

Charm physics @ B-factories – reconstruction method issues

Observation of the first new state - features

Feedback/explanations by theorists

Evidence for a second new state - features

Summary and conclusions

Spectroscopy of *CS* **states**

Potential models of [heavy-quark | light-quark] mesons have had so far reasonable success in describing the spectroscopy of the *D*, *D_s*, *B*, *B_s* systems

S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985); S. Godfrey and R. Kokoski, Phys. Rev. D43, 1679 (1991), M. Di Pierro and E. Eichten, Phys. Rev. D64, 114004 (2001)

Charm Physics @ B-factories

e ⁺ e ⁻ colliders @ Y(4S)	Beams	Data taking	Det./Expt.	$\int Ldt \ [*]$
CESR (Cornell)	Symmetric	1990-1999	CLEO-II	$13.5 fb^{-1}$
PEP-II (SLAC)	Asymmetric	Start: 1999	BABAR	$91.5 fb^{-1}$
KEK-B (Tsukuba)	Asymmetric	Start: 1999	Belle	$86.9fb^{-1}$

[*] *Integrated Luminosity* relative to the data sample **used** for the results presented **here**

Charm Physics from Continuum Production

By using inclusive continuum events ... combinatorial bkg is strongly reduced !

Reconstruction Method & Selection Criteria (from BABAR)

Further background rejection

Select quasi-two body decay modes $[\phi \pi^+, \overline{K}^{*0}K^+]$

400

200

000

800

600

400

200

0

2.5

2 1.5

60

1

0.5

1

BABAR

K*

3.5

2 disjoint sub-samples

Mass Spectra : $K^+K^-\pi^+$, $\gamma\gamma$, $K^+K^-\pi^+\pi^0$, $D_s^+\gamma\gamma$

QCD @ Work 2003

D_s+π⁰ mass spectra and fits [**BABAR** hep-ex/0304021, 12 April @ PRL]

$D_{sJ}^{*}(2317)$ Decay Angular Dist'n

Tests for Reflections

NO $D_{sJ}^{*}(2317)$ signal found using $e^{+}e^{-} \rightarrow c\overline{c}$ simulation of all known charmed states and decays

NO $D_{sJ}^{*}(2317)$ signal found when exchanging π -*K* identification hypotheses [no D^{+}, D^{0}, D^{*} seen]

J^{p} =? & Other $D_{sJ}^{*}(2317)$ Decay Modes

For a parity conserving decay to $D_s^+[0^-]\pi^0$, only *natural* spin-parity series is allowed: $J^p = 0^+, 1^-, 2^+, \dots$

- **IF** $J^{p} = 0^{+}$ (suggested by low mass & compatible with helicity dist'n)...
 - ... it cannot decay into $D_{s}^{+}[0^{-}]\gamma$
 - ... whereas... e.-m. decay into $D_s^{*+}[1^-]\gamma$ is allowed (by parity & angular momentum conservation)

On the other hand, IF $J^{p} = 1^{+}$, it could strongly decay into $D_{s}^{+}\pi^{+}\pi^{-}$ [I-conserving, OZI-suppressed] IF $J^{p} = 0^{+}$, it cannot ($0^{+} \bigotimes 3$ pseudoscalars)!

"Theorists sent back to their drawing boards" [from: SLAC Press Release]

10 papers in May 1-20 ! 2 main classes of interpretations :

a) Within a quark model representation $[D_{sJ}^*(2317) \text{ still a } c\bar{s} \text{ state}]$

Cahn & Jackson	hep-ph/0305012	Modified potential model in standard $C\overline{S}$ spectroscopy
van Beveren & Rupp	hep-ph/0305035	Quasi-bound $c\overline{s}$ in unitarized meson model
Bardeen, Eichten & Hill	hep-ph/0305049	Chiral Perturbation theory + HQET
Godfrey	hep-ph/0305122	Revision needed for masses! Crucial is the B.R. for decay $\rightarrow D_s^* \gamma$
Colangelo & De Fazio	hep-ph/0305140	Heavy quark spin-flavor sym.+ Vector Meson Dom. Ansatz

b) quark model explanations **unlikely**: different type of state (*tetraquark*)

14

Barnes, Close & Lipkin	hep-ph/0305025	molecular type 4-quark state [DK molecule]	
Cheng & Hou	hep-ph/0305038	4-quark state $[c\overline{s}(n\overline{n}), n = u, d]$	
Szczepaniak	hep-ph/0305060	Dπ atom	
Bali	hep-ph/0305209	Lattice predictions on masses consistent with $c\overline{s}$ quark model	

QCD @ Work 2003

$X(2460)^+ \rightarrow D_s^+ \pi^0 \gamma$: is it really a new state?

YES! Evidence of a new state @ 2.46 GeV/c² into $D_{c}^{*+}\pi^{0}$

D_{SJ}^* states in exclusive decays of B mesons [by BELLE]

Dominant exclusive process for the two D_{sJ}^* production in *B* decays is : $B \rightarrow DD_{sJ}^*$

QCD @ Work 2003

Summary & Conclusions

≫

Two narrow states have been observed, in the inclusive $D_s \pi^0 \& D_s^* \pi^0$ invariant mass distributions, near 2.317*GeV*/c² & 2.460*GeV*/c². The widths [Γ <10*MeV*/c²] are consistent with experimental resolution. The smaller intrinsic widths are due to isospin-violation in their decay. The most likely assignment for their spin-parity is 0⁺ & 1⁺.

They do not fit well into the existing potential models for $c\overline{s}$ spectroscopy.

The mass splittings m[$D_{sJ}^*(2317)$]-m[$D_s(1969)$] & m[$D_{sJ}^*(2460)$]-m[$D_s^*(2112)$] are consistent with being equal as predicted by *Bardeen et al.* (BEH) if these are 0⁺ & 1⁺ states.

The B.R. Upper Limit for the decay of $D_s^*(2317)$ into $D_s^*\gamma$, $D_s\gamma$ and $D_s\pi^+\pi^-$ [w.r.t. $D_s\pi^0$] and the preliminary B.R. measurement for the decay of $D_s^*(2460)$ into $D_s\gamma$ [w.r.t. $D_s^*\pi^0$] are consistent with BEH predictions.

Most results are **compatible** with models based on HQET and chiral symmetry, which predict that 0⁺ & 1⁺ are the chiral partners of the 0⁻ & 1⁻ states, with same mass splitting.

Interesting times ahead both for experimentalists & theorists.

18

QCD @ Work 2003

Few more numbers...

QCD @ Work 2003