Exercise/Hands-on #5

Advanced fitting

Statistical Data Analysis for HEP

Prof. Alexis Pompili (University of Bari Aldo Moro)*

Erasmus⁺ Teaching Mobility Program / 16-20 October 2023 @ Sofia Physics Faculty

Note: This material has been revised/updated on the 26.11.2023 (the code may slightly differ from the one used in October, however it is entrely provided in the final slides)

* <u>alexis.pompili@ba.infn.it</u> (or <u>alexis.pompili@cern.ch</u>)

Bibliography

Inspired by part of the theory visualization & exercises by Wouter Verkerke :

https://indico.cern.ch/event/72320/contributions/2082589/attachments/1037201/1478048/roofit-intro-roostats-v11a.pdf https://indico.cern.ch/event/305391/contributions/701304/attachments/580262/798889/Verkerke_Statistics_L2.pdf

See also :

- his slides for the Ferrara School 2009: https://www.nikhef.nl/~verkerke/ferrara)
- his slides for IN2P3 School 2014: https://indico.in2p3.fr/event/9742/contributions/50419/attachments/40828/50594/sos2014_systprof_v38.pdf

A good reference book is : Luca Lista, Statistical methods for Data Analysis in Particle Physics, Springer, 2nd /3rd Edition

	Physics Letters B 734 (2014) 261–281
In this Lab exercise we use CMS data used for the paper <u>https://doi.org/10.1016/j.physletb.2014.05.055</u>	Contents lists available at ScienceDirect
	Physics Letters B
	ELSEVIER www.elsevier.com/locate/physletb
	Observation of a peaking structure in the J/ $\psi\phi$ mass spectrum from $B^\pm \to J/\psi\phi K^\pm$ decays
	CMS Collaboration*
	CERN, Switzerland

With reference to the code in the macro **yield.C** ...

- Get the histogram of the $J/\psi(\mu\mu)\phi(KK)K$ invariant mass (the signal represents the 3-body decay $B^{\pm} \rightarrow J/\psi \phi K^{\pm}$):

```
TFile f1("DatasetAandB_KaonTrackRefit_Bwin_new_21aug13.root","READ");
TH1D *hist = (TH1D*)f1.Get("myJpsiKKKmass_all");
```

- Declare & initialize the variable to represent the invariant mass and prepare the corresponding RooPlot pointer:

```
RooRealVar y("y","m(J/#psi #phi K)[GeV]",5.15,5.45);
RooPlot* yframe = y.frame("");
```

- Import the binned data by creating the RooDataHist object from the histogram and plot it:

```
RooDataHist BmassExt(hist->GetName(),hist->GetTitle(),RooArgSet(y),RooFit::Import(*hist, kFALSE));
BmassExt.plotOn(yframe);
//myC->cd(); // decomment to plot
//yframe->Draw(); // decomment to plot
```

Build the negative log-lokelihood (nll)

```
Build the model: - a gaussian for the signal (2 parameters: mass and width) ;
- a Chebyshev of 2<sup>nd</sup> order (2 parameters) for the background.
```

Based on these two PDFs, build the full PDF to make an extended fit:

```
RooRealVar nsig("nsig","n. of signal cands",2500.,2000.,3800.);
RooRealVar nbkg("nbkg","n. of bkg cands",2000.,0.,200000.);
//
RooAddPdf model_extended("model_extended","gauss+cheby EXT",RooArgList(gausse,chebye),RooArgList(nsig,nbkg));
```

Create a function object that represents the negative-log-likelihood (nll) by using the method RooAbsPdf::createNLL(RooAbsData&); the returned object is of type RooAbsReal*

```
RooAbsReal* nll = model_extended.createNLL(BmassExt);
```

In this way we explicitly constructed the likelihood (function of PDF/data combination) that can be used as any RooFit function object.

<u>Note</u>: likelihood can be created by a calculation that can be parallelized (suppose for instance on 4 cores): RooAbsReal* nll = model extended.createNLL(BmassExt,NumCPU(4));

MINUIT session

Let us invoke **MINUIT** to perform the binned extended fit.

First we can create a **MINUIT** minimizer object:

RooMinuit m(*nll);

Calling MIGRAD we get the **central values** (*best estimates*) for the parameters when convergence is reached:

m.migrad();

	MIGRAD FAILS TO FIND IMPROVEMENT
	MIGRAD MINIMIZATION HAS CONVERGED.
	MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
	COVARIANCE MATRIX CALCULATED SUCCESSFULLY
	FCN=-1,15354e+06 FROM MIGRAD STATUS=CONVERGED 532 CALLS 533 TOTAL
	EDM=0,00035446 STRATEGY= 1 ERROR MATRIX ACCURATE
	EXT_PARAMETER STEP FIRST
	NO, NAME VALUE ERROR SIZE DERIVATIVE
	1 c0e -2.25841e-01 5.55732e-03 4.09669e-06 -6.98549e+02
)	2 c1e -1.08452e-02 6.02446e-03 4.04505e-06 1.24095e+03
	3 mge 5.27943e+00 5.31398e-04 7.92138e-02 6.65397e-02
	4 nbkg 9,55524e+04 3,48579e+02 2,32333e-03 6,58743e-01
	5 nsig 2.92321e+03 1.70487e+02 9.92199e-02 -9.14745e-03
	6 wge 9,48373e-03 5,96383e-04 6,96549e-02 1,25538e-01
	ERR DEF= 0.5
	EXTERNAL ERROR MATRIX, NDIM= 25 NPAR= 6 ERR DEF=0,5
	3.088e-05 3.173e-08 1.521e-07 -8.477e-02 8.560e-02 2.114e-07
	3,173e-08 3,629e-05 -6,934e-08 -4,304e-01 4,346e-01 1,017e-06
	1,521e-07 -6,934e-08 2,835e-07 -2,503e-03 2,542e-03 1,914e-08
	-8,4//e-02 -4,304e-01 -2,503e-03 1,215e+05 -2,620e+04 -6,305e-02
	8,560e-02 4,346e-01 2,542e-03 -2,620e+04 2,942e+04 6,383e-02
	2,114e-V/ 1,V1/e-Vb 1,914e-V8 -5,305e-V2 5,383e-V2 3,5/4e-V/
	PHRHMETER LURRELHTION LUEFFILIENTS
	NU, GLUBHL I Z 3 4 5 6
	1 0,10984 1,000 0,001 0,091 -0,044 0,090 0,064
	2 0,42489 0,001 1,000 -0,022 -0,205 0,421 0,282
	4 0,44033 -0,044 -0,203 -0,013 1,000 -0,438 -0,303 E 0,74907 -0,000 -0,494 -0,090 -0,470 -4,000 -0,699
	5 0,71207 0,030 0,421 0,020 -0,430 1,000 0,622 C 0,63537 0,064 0,303 0,060 -0,707 0,633 1,000
	0 0,02027 0,004 0,202 0,000 -0,303 0,022 1,000

To recalculate the errors and the covariance matrix in an accurate way (still in parabolic assumption) we use HESSE, while central values (by Migrad) are conserved.

m.hesse();

Extended vs not-extended fits: a comparison - I

Difference can be hardly appreciated: mass and width are about identical (see also next slide)! Also they have very similar $\tilde{\chi}_{fit}^2$ Extended fit has the advantage to provide <u>directly as output</u> also the number of B⁺ candidates (nsig)

Alexis Pompili (University of Bari Aldo Moro) - Mini-Course / Erasmus⁺ Teaching Mobility / October 2023

NOT-extended	NO	T-exten	ded
--------------	----	---------	-----

-1	لحط	لحط	1 J	ل م	لحط	لحط	1 J	لحط	لحط	L-
9	P 1	P 1		2	P 9	P 9		P 9	P 9	P .

9 **HESSE 2500

COVARIANCE MATRIX CALCULATED SUCCESSEULY	CUVHRIHNUE MHIRIX CHECOLHIED SUCCESSFULLY
	FCN=-1,15354e+06 FROM HESSE STATUS=OK 40 CALLS 573 TOTA
FUN-TIBYBS FRUIT RESE STRIUS-UN SI CHELS 500 TUTHE	EDM=0.000362648 STRATEGY= 1 ERROR MATRIX ACCURATE
EUMEL,554520-VS STRHIEGTET ERRUR MHTRIX HULUKHTE	EXT PARAMETER INTERNAL INTERNAL
EXT PHRHMETER INTERNHL INTERNHL	NO, NAME VALUE ERROR STEP SIZE VALUE
NO, NAME VALUE ERROR STEP SIZE VALUE	1 c0e -2.25841e-01 5.55902e-03 1.63867e-07 -2.25841e-04
1 c0 -2,25828e-01 5,55891e-03 2,64024e-07 -2,25828e-04	2 c1e -1.08452e-02 6.05944e-03 1.61802e-07 -1.08452e-05
2 c1 -1.09184e-02 6.05941e-03 5.21376e-08 -1.09184e-05	3 mge 5.27943e+00 5.30310e-04 3.16855e-03 9.53869e+00
3 fsig 2.96640e-02 1.77569e-03 7.21237e-05 -1.91699e+00	4 nbkg 9.55524e+04 3.51136e+02 9.29332e-05 -4.44908e-02
4 mg 5.27943e+00 5.30028e-04 1.01863e-03 -2.85771e+02	5 nsig 2.92321e+03 1.74070e+02 3.96880e-03 -6.25739e+00
5 wg 9.47402e-03 6.07750e-04 8.94182e-04 9.41424e+01	6 wge 9,48373e-03 6,08532e-04 2,78620e-03 2,50293e+01
ERR DEF= 0.5	ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 5 ERR DEF=0.5	EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 6 ERR DEF=0.5
3.090e-05 6.145e-08 -9.119e-07 1.530e-07 2.245e-07	3.090e-05 6.228e-08 1.532e-07 -8.983e-02 8.986e-02 2.249e-07
6.145e-08 3.672e-05 -4.649e-06 -6.319e-08 1.105e-06	6,228e-08 3,672e-05 -6,359e-08 -4,579e-01 4,580e-01 1,106e-06
	1.532e-07 -6.359e-08 2.823e-07 -2.776e-03 2.778e-03 1.440e-08
1530-07 - 5319-08 - 2829-08 2820-07 1 421-08	-8,983e-02 -4,579e-01 -2,776e-03 1,233e+05 -2,775e+04 -6,864e-02
$2.245_{-0.7}$ 1 10506 _6 96707 1 42109 Z 71207	8.986e-02 4.580e-01 2.778e-03 -2.775e+04 3.069e+04 6.867e-02
2,243E-07 1,103E-00 -0,303E-07 1,421E-00 3,712E-07	2,249e-07 1,106e-06 1,440e-08 -6,864e-02 6,867e-02 3,722e-07
	PARAMETER CORRELATION COEFFICIENTS
NU, GLUBHL 1 2 3 4 5	NO, GLOBAL 1 2 3 4 5 6
1 0,11250 1,000 0,002 -0,092 0,052 0,066	1 0,11253 1,000 0,002 0,052 -0,046 0,092 0,066
2 0,43581 0,002 1,000 -0,432 -0,020 0,299	2 0,43584 0,002 1,000 -0,020 -0,215 0,431 0,299
3 0.69297 -0.092 -0.432 1.000 -0.030 -0.644	3 0.07496 0.052 -0.020 1.000 -0.015 0.030 0.044
4 0.07459 0.052 -0.020 -0.030 1.000 0.044	4 0.45348 -0.046 -0.215 -0.015 1.000 -0.451 -0.320
5 0.64456 0.066 0.299 -0.644 0.044 1.000	5 0,72800 0,092 0,431 0,030 -0,451 1,000 0,643
datatatatatatatat	6 0,64446 0,066 0,299 0,044 -0,320 0,643 1,000
$m = (5279,43 \pm 0.53)MeV$ $\sigma = (9,4740 \pm 0,6078)MeV$	$m = (52/9,43 \pm 0.53)MeV$ $\sigma = (9,4837 \pm 0,6085)MeV$

Extended

** 18 **H	IESSE	3000					

COVARIANCE	MATRIX CALC	ULATED SU	CCESSFULL	.Y			
FCN=-1,1535	4e+06 FROM	HESSE	STATUS=0	Ж	4	0 CALLS	573 TOTAL
	ED	M=0.00036	2648 9	STRATEGY:	= 1	ERROR MATE	RIX ACCURATE
EXT PARAME	TER			II	NTERNAL	INTER	NAL
NO. NAME	: VALUE		ERROR	S	TEP SIZE	VALU	JE
1 c0e	-2,25	841e-01	5,559026	e-03 1.	.63867e-	07 -2,2584	41e-04
2 c1e	-1.08	452e-02	6.059446	e-03 1.	61802e-	07 -1.084	52e-05
3 mge	5.27	943e+00	5.303106	e-04 3.	16855e-	03 9.5386	69e+00
4 nĎko	9,55	524e+04	3.511366	e+02 9	29332e-	05 -4,4490	08e-02
5 nsig	2.92	321e+03	1.740706	e+02 3	.96880e-	03 -6.2573	39e+00
6 wge	9,48	373e-03	6,085326	e-04 2.	.78620e-	03 2,502	33e+01
		El	RR DEF= (),5			'
EXTERNAL ER	ROR MATRIX.	NDIM=	25 N	√PAR= 6	ERR	DEF=0.5	
3.090e-05	6.228e-08	1.532e-0	7 -8,9830	e-02 8.9	986e-02	2,249e-07	
6,228e-08	3.672e-05	-6,359e-0	8 -4.5796	e-01 4.	580e-01	1.106e-06	
1.532e-07	-6.359e-08	2.823e-0	7 -2.7766	e-03 2.7	778e-03	1.440e-08	
-8,983e-02	-4.579e-01	-2.776e-0	3 1.2336	e+05 -2.1	775e+04	-6.864e-02	
8,986e-02	4.580e-01	2.778e-0	3 -2.7756	e+04 3.0	069e+04	6.867e-02	
2.249e-07	1.106e-06	1.440e-0	8 -6.864	-02 6.8	867e-02	3.722e-07	
PARAMETER	CORRELATION	COEFFICI	ENTS				
NO.	GLOBAL	1 2	3	4	5	6	
1 0	.11253 1.	000 0.00	2 0.052	-0.046	0.092	0.066	
2 č	.43584 0.	002 1.00	0 -0.020	-0.215	0.431	0.299	
ž	07496 0	052 -0 02	0 1 000	-0.015	0 030	0 044	
	145748 -0	046 -0 21	5 -0 015	1 000 -	-0 151 -	0 320	
	172800 01	092 0 47	1 0 070	-0 451	1 000	0 643	
0 8	0 34446	VEE 0 29	NKO O P	-0 320	0 643	1 000	
0 0	·•••••••• ·••	000 0,23	5 0.044	0.320	V+043	1+000	
m - (5	270 / 2 -		MoV	σ –	(0 10)	$27 \perp 04$	

Asymmetric uncertainties

******* To get asymmetric error (central 5 23 **MINOS 3000 ****** values and parabolic are the same) FCN=-1.15354e+06 FROM MINOS STATUS=SUCCESSFUL 132 CALLS 705 TOTAL for a specific parameter, like nsig: EDM=0,000362648 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER PARABOLIC MINOS ERRORS NO. NAME VALUE ERROR NEGATIVE POSITIVE m.minos(nsig); -2.25841e-01 5.55902e-03 1 c0e 2 c1e -1.08452e-02 6.05944e-03 5.27943e+00 5.30310e-04 3 mge 9.55524e+04 nbkg. 3.51136e+02 2.92321e+03 -1.74275e+02 To additionally print the result just 1.74070e+02 1.76453e+02 5 nsig 6 6.08532e-04 9.48373e-03 wge do: nsig.Print(); ERR DEF= 0.5 RooRealVar::nsig = 2923.21 +/- (-174.275.176.453) L(2000 - 3800) ****** 23 **MINOS 3000 To get asymmetric error for ****** **all** the parameters : FCN=-1.15354e+06 FROM MINOS 1275 TOTAL STATUS=SUCCESSFUL 702 CALLS ERROR MATRIX ACCURATE EDM=0.000362648 STRATEGY= 1 m.minos(); EXT PARAMETER PARABOLIC MINOS ERRORS NAME VALUE ERROR NEGATIVE POSITIVE NO. -2.25841e-01 5.55902e-03 -5.54067e-03 c0e 5.57848e-03 1 c1e -1.08452e-02 6.05944e-03 -6.12080e-03 6.00134e-03 Note: asymmetric errors can 5.27943e+00 -5.28542e-04 5.34442e-04 3 mge 5.30310e-04 slightly change if you execute 9.55524e+04 nbkg 3.51136e+02 -3.50289e+02 3.52220e+02 2.92321e+03 1.74070e+02 -1.74275e+02 1.76448e+02 5 nsig MINOS for 1 or all parameters 6 wge 9.48373e-03 6.08532e-04 -5.99390e-04 6.22600e-04 ERR DEF= 0.5 (in this case only ... upper uncertainty changes) RooRealVar::nsig = 2923.21 +/- (-174.275.176.448) L(2000 - 3800)

Alexis Pompili (University of Bari Aldo Moro) - Mini-Course / Erasmus⁺ Teaching Mobility / October 2023

After executing the *not extended* fit ...

```
// double cands = fsig.getVal()*myEntries; // in case you want to use it later as a variable
//
cout << "\n # of entries = " << myEntries << " of which # signal candidates is = " << fsig.getVal()*myEntries << " +/- " << fsig.getError()*myEntries << endl;</pre>
```


Alexis Pompili (University of Bari Aldo Moro) - Mini-Course / Erasmus⁺ Teaching Mobility / October 2023

How-to-calculate the normalized chi-squared $\widetilde{\chi}_{fit}^2$ - I

In the code of the macro, I propose two different ways to extract the $\tilde{\chi}_{fit}^2$ of the binned ML fit. We apply both for the *not extended* fit. We will prefer the 2nd approach and choose it for the *extended* fit.

```
// Note: will try two approaches
      1st approach
// --https://root.cern.ch/doc/master/classRooPlot.html
    Syntax: chiSquare (const char *pdfname, const char *histname, int nFitParam=0) const
11
// Description : Calculate and return reduced chi-squared between a curve and a histogram.
// Syntax: chiSquare (int nFitParam=0) const
    Description: Shortcut for RooPlot::chiSquare(const char* pdfname, const char* histname, int nFitParam=nullptr)
//
RooPlot* xframeChi2 = x.frame("");
Bmass.plotOn(xframeChi2);
                                                  // histogram (type RooDataHist)
model.plotOn(xframeChi2,RooFit::LineColor(kRed)); // curve
11
RooArgSet* floatPars = model.getParameters(Bmass);
int numFreeParams = floatPars->getSize();
                                                                      (A)
cout << "\n # of free fit params is = " << numFreeParams << endl;
11
// normalized chiSquared is given by chi2 divided by ndof = (# bins of the fit range - #free params)
// though, the following is given already normalized!
Double_t chi2Norm = xframeChi2->chiSquare(numFreeParams);
cout << "\n the Chi2 for the not-extended fit is = " << chi2Norm << endl;
                                                                             (B)
11
```

How-to-calculate the normalized chi-squared $\tilde{\chi}_{fit}^2$ - II

Alexis Pompili (University of Bari Aldo Moro) - Mini-Course / Erasmus⁺ Teaching Mobility / October 2023

Correlation Matrix

It is possible to save the status of the fit, including the information about the convariance matrix:

RooFitResult* fitres = m.save();

It is possible to visualize the correlation matrix:

It is also possible to visualize errors & correlation matrix elements:

Visualization of correlated errors - II

But why ERRDEF=0.5 and 2.0 are considered? This is a reminder.

Well, do not forget that a PDF can be converted into a Likelihood function \mathcal{L} by "exchanging" the vector of observations \vec{x} with the vector of parameters $\vec{\theta}$! For only one parameter, say μ , the likelihood is a function of it, namely $\mathcal{L}(\mu)$, and $\ln \mathcal{L}(\mu)$ is a parabola!

Note : if you put the "-" in front of it, thus getting the neg-log-likelihood, $-\ln \mathcal{L}(\mu)$, the parabola changes sign and "points" upwards instead of downwards.

Extension: Now suppose we've 2 parameters of interest; in this case you can imagine a paraboloid instead of a parabola with different aperture when projecting in 1-dim. The "multivariate" uncertainty is then represented by an elliptic contour.

Visualization of correlated errors - III

RooPlot* contourFrame = m.contour(nsig,wge,1,2,3,0,0,0); // gives the 3 contours obtained for 1, 2 and 3 sigmas
contourFrame->SetTitle("Minuit contour plots at 1,2 and 3 sigmas");
contourFrame->SetTitleOffset(1.38,"Y");
contourFrame->Draw();
myC->SaveAs("./paramContours_nsig_wge.png");
Minuit contour plots at 1,2 and 3 sigmas

It starts the MNCONTOUR calculation of 50 point on three contours (for ERRDEF = 0.5, 2.0 and 4.5). Each point is identified by a pair of values of parameters 5 (nsig) and 6 (wge) on the scatter plot.

As you can check ... the three sets of 50 pairs of values

are printed on the screen @ execution time.

Note: the contour with ERRDEF=0.5 is the same one obtained earlier with a different command.

It is possible to propagate the errors (stored in the covariance matrix of a fit result) to a PDF projection:

```
model_extended.plotOn(yframe, VisualizeError(*fitres));
yframe->Draw();
```

To get the points' errors over the cyan shadowed region describing the uncertainty we need to add the following two lines (to get the "trick" done):

```
BmassExt.plotOn(yframe);
yframe->Draw("Esame");
```


Visualization of the fit log-likelihood function and of the Profile Likelihood ratio

We can obtain the best estimate for **nsig** & the **MINOS** uncertainty **corresponding** to the interval provided by the PL ratio :

Code of the macro yield. C - I

// To run it:	
// root> .L yield.C	
// root> main()	
#include <troot.h></troot.h>	
#include <tfile.h></tfile.h>	
#include <th1.h></th1.h>	
#include <tf1.h></tf1.h>	
#include <tf2.h></tf2.h>	
#include <tformula.h></tformula.h>	
#include <tstyle.h></tstyle.h>	
#include <tcanvas.n></tcanvas.n>	
#include <tprotile.h></tprotile.h>	
#include <istring.n></istring.n>	
#include (ILine.n>	
#include (TMad.n>	
#include (Math.n>	
#include (Tlatex.n>	
#include diagrams	
#include <tpavelabel.b></tpavelabel.b>	
using namespace RooFit;	
////////////////////inizio main	
int main() {	
gROOT->SetStyle("Plain");	
gstyle-SetUp(Stat(10))	
gstyle->Set(ltleUffset(1.2,"");	
//////////////////////////////////////	
Sunnan and a sunnan and a sunnan and a sunnan and a sunnan sunnan sunnan sunnan sunnan sunnan sunnan sunnan su	
TFile f1("DatasetAandB KaonTrackRefit Bwin new 21aug13.root","READ"):	
TH1D *hist = (TH1D*)f1.Get("myJpsiKKKmass all");	
// in alternativa c'e' anche l'istogramma myJpsiKKKmass tight	
// # of bins:	
<pre>int nBins = hist->GetNbinsX();</pre>	
int entries = hist->GetEntries(); // this containes also overflow so I recalculate by hand as follows:	
int myEntries;	
for (int 1=0;1<60;1++)	
{	
<pre>myEntries += hist->GetBinContent(1+1);</pre>	
}	-

Code of the macro yield. C - II

```
11
RooRealVar x("x","m(J/#psi #phi K)[GeV]",5.15,5.45);
RooDataHist Bmass(hist->GetName(),hist->GetTitle(),RooArgSet(x),RooFit::Import(*hist, kFALSE));
11
Float_t begin = 5.15;
Float_t end = 5.45;
11
RooPlot* xframe = x.frame("");
Bmass.plotOn(xframe);
1111
myC->cd();
11
// -- SIGNAL
RooRealVar mg("mg", "Gaussian's mean", 5.28, 5.275, 5.285);
RooRealVar wg("wg", "Gaussian's width", 0.010, 0.005, 0.015);
RooGaussian gauss1("gauss1","Gauss(x,mg,wg)",x,mg,wg);
// -- BKG
RooRealVar c0("c0","1st coeff",0.5,-1000.,1000.);
RooRealVar c1("c1","2nd coeff",-0.5,-1000.,1000.);
//--RooRealVar c2("c2","3rd coeff",0.1,-1000.,1000.); // 2nd order degree is enough here
RooChebychev cheby("cheby", "Chebyshev", x, RooArgList(c0,c1)); // 2 coeff. means 2nd order polynominal
11
// -- TOTAL pdf : f*gauss1 + (1-f)*cheby
RooRealVar fsig("fsig", "narrow fraction", 0.05, 0.0, 1.0);
RooAddPdf model("model", "gauss1+cheby", RooArgList(gauss1, cheby), fsig); // configured in this way this is not extended
11
// -- Execute FIT
// model.fitTo(Bmass,RooFit::Minos(kTRUE)); // let us give explicitely also the FitRange:
model.fitTo(Bmass,RooFit::Minos(kTRUE),Range(begin,end));
model.plotOn(xframe,RooFit::LineColor(kRed));
model.plotOn(xframe,RooFit::Components(cheby),RooFit::LineStyle(kDashed));
model.paramOn(xframe, Parameters(RooArgSet(mg,wg,fsig)), Layout(0.53,0.9,0.9)); // 3rd is up
11
// double cands = fsig.getVal()*myEntries; // in case you want to use it later as a variable
11
cout << "\n # of entries = " << myEntries << " of which # signal candidates is = " << fsig.getVal()*myEntries << " +/- " << fsig.getError()*myEntries << endl;
11
xframe->SetTitle("Not extended fit : just fsig and (1-fsig)");
xframe->Draw();
11
```

Code of the macro yield.C - III

```
11
// -- calculate a chiSquared (from a curve and a histogram in a RooPlot)
11
// Note: will try two approaches
11
// -- 1st approach
11
// --https://root.cern.ch/doc/master/classRooPlot.html
    Syntax: chiSquare (const char *pdfname, const char *histname, int nFitParam=0) const
//
// Description : Calculate and return reduced chi-squared between a curve and a histogram.
// Syntax: chiSquare (int nFitParam=0) const
    Description: Shortcut for RooPlot::chiSquare(const char* pdfname, const char* histname, int nFitParam=nullptr)
11
RooPlot* xframeChi2 = x.frame("");
                                               // histogram (type RooDataHist)
Bmass.plotOn(xframeChi2);
model.plotOn(xframeChi2,RooFit::LineColor(kRed)); // curve
11
RooArgSet* floatPars = model.getParameters(Bmass);
int numFreeParams = floatPars->getSize();
cout << "\n # of free fit params is = " << numFreeParams << endl;
11
// normalized chisquared is given by chi2 divided by ndof = (# bins of the fit range - #free params)
// though, the following is given already normalized!
Double_t chi2Norm = xframeChi2->chiSquare(numFreeParams);
cout << "\n the Chi2 for the not-extended fit is = " << chi2Norm << endl;
11
```

Code of the macro yield. C - IV

```
11
// -- 2nd approach
11
RooAbsReal* chi2 = model.createChi2(Bmass,Range(begin,end));
// if extended ... add Extended(true): createChi2(Bmass,Range(begin,end),Extended(true))
// because in this way the prediction of the total number of events is taken from the extended pdf and not from the histogram
cout << "\n chi2 (not normalized) is = " << chi2->getVal() << endl;
// maybe this is the best way but be careful with the parameters you pass to the createChi2 function
// since it does not divide by ndf, i.e. the number of non-zero bins minus the number of parameters;
// you have to do this manually afterwards!
11
int nDOF = nBins - numFreeParams;
cout << "\n nDOF is = " << nDOF << endl:
double chi2NormCalc = (chi2->getVal()) / nDOF;
cout << "\n chi2 (normalized by manual calculation) is = " << chi2NormCalc << endl;
11
// Still, this method doesn't get it right if your pdf is continuous,
// because it just takes the pdf value in the bin center.
// If this is a problem for you, you can consider wrapping the pdf in a RooBinSamplingPdf - to be explored -
// which turns the continuous pdf into a binned pdf where the values for each bin are obtained by integration.
// However, this can be important only in case of steep functions
// where value at the center of the bin and integral over the bin may differ; this is not the case here!
11
model.plotOn(xframeChi2,RooFit::Components(cheby),RooFit::LineStyle(kDashed));
model.paramOn(xframeChi2, Parameters(RooArgSet(mg,wg,fsig)), Layout(0.53,0.9,0.9));
11
TLatex* myLatChi2 = new TLatex(5.35,400.,Form("#chi^{2}=%f",chi2NormCalc));
xframeChi2->addObject(myLatChi2);
11
// -- let me write the # of candidates estimated by the fit (via fsig):
TLatex* myLatCands = new TLatex(5.318,2600.,Form("nsig=%.1f",fsig.getVal()*myEntries));
TLatex* myLatCands1 = new TLatex(5.38,2600.,Form("#pm%.1f",fsig.getError()*myEntries)); // it rounds as expected
myLatCands->SetTextSize(0.038);
myLatCands1->SetTextSize(0.038);
xframeChi2->addObject(myLatCands);
xframeChi2->addObject(myLatCands1);
11
xframeChi2->SetTitle("Not extended fit : just fsig");
xframeChi2->SetYTitle("Candidates/(5MeV)");
xframeChi2->SetTitleOffset(1.32, "Y");
xframeChi2->Draw();
11
myC->SaveAs("./myBmass.png");
//gSystem->Sleep(20000);
11
myC->Update();
myC->cd();
11
```

A. Pompili (UniBA) / Erasmus⁺ Teaching Mobility / October 2023 21

```
11
mvC->Divide(1.1):
11
RooRealVar y("y","m(J/#psi #phi K)[GeV]",5.15,5.45);
RooPlot* yframe = y.frame("");
11
RooDataHist BmassExt(hist->GetName(),hist->GetTitle(),RooArgSet(y),RooFit::Import(*hist, kFALSE));
BmassExt.plotOn(vframe);
//myC->cd();
                  // decomment to plot
//yframe->Draw(); // decomment to plot
11
RooRealVar mge("mge", "Gaussian's mean", 5.28, 5.275, 5.285);
RooRealVar wge("wge", "Gaussian's width", 0.01, 0.005, 0.015);
RooGaussian gausse("gausse", "Gauss(y,mge,wge)", y,mge,wge);
11
RooRealVar c0e("c0e","1st coeff",0.5,-1000,1000);
RooRealVar c1e("c1e","2nd coeff",-0.5,-1000,1000);
//--RooRealVar c1e("c2e","3rd coeff",-0.5,-1000,1000)
11
RooChebychev chebye("chebye", "Chebyshev", y, RooArgList(c0e, c1e));
RooRealVar nsig("nsig", "n. of signal cands", 2500., 2000., 3800.);
RooRealVar nbkg("nbkg", "n. of bkg cands", 2000., 0., 200000.);
11
RooAddPdf model_extended("model_extended","gauss+cheby EXT",RooArgList(gausse,chebye),RooArgList(nsig,nbkg));
11
RooAbsReal* nll = model_extended.createNLL(BmassExt);
RooMinuit m(*nll);
m.migrad();
m.hesse();
// m.minos(nsig); // get asymmetric just for parameter "nsig"
m.minos(); // get asymmetric for all parameters
11
nsig.Print();
11
RooArgSet* floatParsExt = model_extended.getParameters(BmassExt);
int numFreeParamsExt = floatParsExt->getSize();
cout << "\n # of free extended-fit params is = " << numFreeParamsExt << endl;</pre>
11
int nDOFExt = nBins - numFreeParamsExt;
cout << "\n nDOF is = " << nDOFExt << endl;</pre>
RooAbsReal* chi2Ext = model_extended.createChi2(BmassExt,Range(begin,end));
double chi2NormExtCalc = (chi2Ext->getVal()) / nDOF;
cout << "\n chi2 (normalized by manual calculation) is = " << chi2NormExtCalc << endl;</pre>
11
11
RooFitResult* fitres = m.save();
gStyle->SetPalette(1); //- for better color choice
fitres->correlationHist()->Draw("colz");
myC->SaveAs("./myCorrelationMatrix.png");
myC->Update();
myC->cd();
11
model_extended.plotOn(yframe,RooFit::LineColor(kRed));
model_extended.plotOn(yframe,RooFit::Components(chebye),RooFit::LineStyle(kDashed));
model_extended.paramOn(yframe, Parameters(RooArgSet(mge,wge,nsig,nbkg)), Layout(0.53,0.9,0.9));
yframe->SetTitle("Extended fit : nsig and nbkg");
11
TLatex* myLatExt = new TLatex(5.35,400.,Form("#chi^{2}=%f",chi2NormExtCalc));
yframe->addObject(myLatExt);
yframe->SetYTitle("Candidates/(5MeV)");
yframe->SetTitleOffset(1.32,"Y");
yframe->Draw();
11
myC->SaveAs("./myBmassExtended.png");
myC->Update();
```

Code of the macro yield.C - V

Code of the macro yield.C - VI

```
11
// -- fit is done but now we want to derive more info from the RooFitResult object
11
model_extended.plotOn(yframe, VisualizeError(*fitres));
vframe->Draw();
BmassExt.plotOn(yframe);
vframe->Draw("Esame");
myC->SaveAs("./myErrorVisualization.png");
myC->Update();
myC->cd();
11
11---
////RooAbsPdf* paramPDF = fitres->createHessePdf(RooArgSet(nsig,wge)); //not working
11
RooPlot* paramFrame = new RooPlot(nsig,wge);
fitres->plotOn(paramFrame, nsig, wge);
paramFrame->SetTitleOffset(1.38, "Y");
paramFrame->Draw();
myC->SaveAs("./pdfParamVisualization_nsig_wge.png"); // it gives just a visualization with the 1sigma ellipse
myC->Update();
myC->cd();
11
// -- the following is more useful than the previous
11
RooPlot* contourFrame = m.contour(nsig,wge,1,2,3,0,0,0); // gives the 3 contours obtained for 1, 2 and 3 sigmas
contourFrame->SetTitle("Minuit contour plots at 1,2 and 3 sigmas");
contourFrame->SetTitleOffset(1.38, "Y");
contourFrame->Draw();
myC->SaveAs("./paramContours_nsig_wge.png");
myC->Update();
myC->cd();
11
```

```
11
  ///////////// now plot Likelihood and Profile Likelihood Ratio functions :
  11
 myC->Divide(1,1);
  11
 // plot the likelihood as a function of the parameter of interest (here nsig):
 RooPlot* nsig_frame = nsig.frame(RooFit::Bins(60),RooFit::Range(2000,3800));
 nll->plotOn(nsig_frame,RooFit::ShiftToZero(),RooFit::LineStyle(kDashed),LineColor(kBlue));
  11
 // make the Profile Likelihood ratio (that can be represented as a regular RooFit function)
  RooAbsReal* pll_nsig = nll->createProfile(nsig);
  pll_nsig->plotOn(nsig_frame,RooFit::ShiftToZero(),LineColor(kRed));
 nsig_frame->SetMinimum(-1);
 nsig_frame->SetMaximum(5);
 nsig_frame->Draw();
  11
 TLine *line0 = new TLine(2000,0,3800,0);
 line0->SetLineColor(1);
 line0->SetLineWidth(2);
 line0->SetLineStyle(2);
 line0->Draw("same");
  11
 TLine *line05 = new TLine(2000,0.5,3800,0.5);
 line05->SetLineColor(1);
 line05->SetLineWidth(2);
 line05->SetLineStyle(2);
 line05->Draw("same");
  11
 TLine *lineN1 = new TLine(3100,-1.,3100,0.5);
 lineN1->SetLineColor(2);
 lineN1->SetLineWidth(1);
 lineN1->SetLineStyle(2);
 lineN1->Draw("same");
  11
 TLine *lineN2 = new TLine(2749,-1.,2749,0.5);
 lineN2->SetLineColor(2);
 lineN2->SetLineWidth(1);
 lineN2->SetLineStyle(2);
 lineN2->Draw("same");
  11
 myC->SaveAs("./myLikelihood.png");
  myC->Update();
  myC->cd();
  11
  delete myC;
  11
  gROOT->Reset();
  gROOT->Clear();
 11
return 0;
```

}

Code of the macro yield.C - VII