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PART 1A - CORE



INTRODUCTION: Theory of Probability
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The goals of a (experimental) Particle Physicist - I

MEASUREMENTS

1

DISCOVERIES

HIGGS BOSON𝑚" = 173.49 ± 1.07
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The goals of a (experimental) Particle Physicist - II

2

In modern particle physics experiments, event data are recorded by a - usually complex - system of detectors.

Measurements of particle position, particle momentum/energy, time, decay angles etc… are recorded in the event data

and are characterized by fluctuations (due to randomness & dilution effects). 

Event data are all different from each other because of:
- Intrinsic randomness of the physics process(es) (Quantum Mechanics: P ∝ |A|2)
- Detector response is somewhat random (fluctuations, resolutions, efficiencies, ….)

Some sort of Condition Database records the experimental conditions (alignment, cooling, dead channels, DQM info, ...) 
which are taken into account when reconstructing the event data.

Tipically, a large number of events are collected by an experiment, each event usually containing large amounts of data à
what we study are distributions of physical observables (e.g., the mass of a particle, the lifetime, etc.)
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The goals of a (experimental) Particle Physicist - III

3

Distributions of measured quantities in data:
are predicted by a theory model,
depend on some theory parameters,
e.g.: particle mass, cross section, etc.

Given our data sample, we want to:
- measure theory parameters,

e.g.: mt= 173.49 ± 1.07 GeV, mH =125.38 GeV
- answer questions about the nature of data

Is there a Higgs boson? è Yes!  (strong evidence? Quantify!)
Is there a Dark Matter?  è No evidence, so far…
If not, what is the range of theory parameters compatible with the 
observed data? What parameter range can we exclude?

We should use probability theory on our data and our theory model in order to extract information 
that will address our questions, that is to say we use statistics for data analysis.
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Relation between Probability & Inference - I

THEORETICAL MODEL DATA (pseudo-data[**])PROBABILITY[*]

Data fluctuate according to the randomness
of the physical process governed by a 
(underlying) physical law 
(that the Theory Model should represent)

4

Known (or assumed correct) the physical process of generation of data (probabilistic model)
… we are able to evaluate the probability of the different outcomes of an experiment

[**] when we generate Data according to a model (Monte Carlo generators) we speak about pseudo-data
[*] because of the randomness of the process/law ... the calculation of probabilites is involved
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Relation between Probability & Inference - I

THEORETICAL MODEL DATAPROBABILITY

Data fluctuate according to the randomness
of the physical process governed by a 
(underlying) physical law 
(that the Theory Model should represent)

4

THEORETICAL MODEL DATAINFERENCE

Model parameters in the Theory Model can 
be estimated with an uncertainty due to 
fluctuations in the finite data sample

In the statistical inference the approach is somehow reverted w.r.t. the theory of probability:
the physical process or law is under investigation and the statistical methods & techiques try to
induce the characteristics of the process on the basis of the (finite) experimental observations

(the word induction here implies both inductive and deductive mental approach along the analysis procedure) 
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Concept of Probability - I

5

Many processes in nature have uncertain outcomes (their result cannot be predicted in advance).

Note: often in physics : an event is meant as an elementary event, i.e. it represents a single outcome;
on the countrary, in statistics : an event can represent - in general - a subset of possible outcomes.

It is useful to introduce the concept of random variable: it represents the outcome of a repeatable experiment whose result 
is uncertain. Then an event consists of the occurrence of a certain particular condition about the value of the random variable 
resulting from an experiment (in simple words: it is a possible outcome of an experiment). 

Classical probability : if 𝑁 is the total number of possible outcomes (“cases”) of a random variable,
if 𝑛 is the number of favourable cases for which an event 𝐴 is realized,
the probability of an event 𝑨 is: 𝐏(𝑨) = 𝒏

𝑵

(P.S.Laplace, 1749-1827)
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Concept of Probability - II

6

Most experiments in Physics can be repeated under the same - or at least very similar - conditions.
Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed. 
The result of an experiment may be used to address questions about natural phenomena, … 
... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability. 
Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:
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Concept of Probability - II

6

Most experiments in Physics can be repeated under the same - or at least very similar - conditions.
Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed. 
The result of an experiment may be used to address questions about natural phenomena, … 
... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability. 
Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:

𝐏 𝑬𝒊 = 𝒍𝒊𝒎
𝑵𝒊
𝑵

Frequentist probability : is the fraction of the number (𝑁:) of possible occurrences of an event 𝐸:
over the total number of events (𝑁) in a repeatable experiment, 
in the limit of a very large number of experiments:

(R.Von Mises, 1883-1953)

𝑵 → ∞

Note: - this limit must be intended in an experimental (non mathematical!) sense
- the true value of the probability would be found only repeating ∞ times the (repeatable) experiment
- in many cases, experience shows that the frequentist probability tends to the classical one

(thanks to the Law of large numbers) [ex.: roll a not-loaded dice & execute a large number of rolls] (see 2 slides later)
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Concept of Probability - II

6

Most experiments in Physics can be repeated under the same - or at least very similar - conditions.
Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed. 
The result of an experiment may be used to address questions about natural phenomena, … 
... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability. 
Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:

𝐏 𝑬𝒊 = 𝒍𝒊𝒎
𝑵𝒊
𝑵

Frequentist probability : is the fraction of the number (𝑁:) of possible occurrences of an event 𝐸:
over the total number of events (𝑁) in a repeatable experiment, 
in the limit of a very large number of experiments:

(R.Von Mises, 1883-1953)

Bayesian probability applies also to an hypothesis or statement that can be true (or false): the probability of a certain 
hypothesis (or theory) is represented by the degree-of-belief (subjective) that the hypothesis is true (or false).

𝑵 → ∞

Note: - this limit must be intended in an experimental (non mathematical!) sense
- the true value of the probability would be found only repeating ∞ times the (repeatable) experiment
- in many cases, experience shows that the frequentist probability tends to the classical one

(thanks to the Law of large numbers) [ex.: roll a not-loaded dice & execute a large number of rolls] (see next slide)
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Law of large numbers (in a nutshell)

7

Assuming to repeat 𝑁 times an experiment whose outcome is a RV 𝑥 having a given probability distribution, 
the average (it will be called sampling mean later)  - that is itself a RV - is expressed as: �̅� =

𝑥@ + ⋯+ 𝑥C
𝑁

An elementary example is provided by rolling the dice:

the average of 𝑁 rolls of the type 𝑥: that can assume 
the values (1,2,3,4,5,6) changes with 𝑁 and its distribution 
becomes more and more peacked as 𝑁 increases; 
eventually for 𝑁 → ∞ the distribution becomers a Dirac’s 𝛿
centered at the value < 𝑥 >=

1 + 2 + 3 + 4 + 5 + 6
6

= 3.5

This convergence represents how the law of large numbers “works”:
large values of 𝑁 correspond to smaller fluctuations of the result and 
to a visible convergence towards the expect value of 3.5. 
Ideally - when 𝑁 → ∞ - �̅� would be no longer a RV but would take 
the single possible value 3.5

�̅�

𝑁

< 𝑥 >

The law of large numbers has many empirical verifications for the vast majority of random experiments 
and has a broad validity range.
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Interpretation of Probability

8

We have just introduced two different interpretations of the probability: Frequentist & Bayesian probabilities;
note that both are consistent with Kolmogorov axioms.

Frequentist probability refers to a relative frequency that can be evaluated for repeatable experiments
(for instance when we measure particle scatterings or radioactive decays).
In this course we will assume/use/refer-to … this concept of probability.

Bayesian probability refers to a subjective probability where instead of outcomes we have hypotheses 
(statements that can be true or false).

In particle physics the frequency interpretation is often most useful, but subjective probability can provide 
more natural treatment of non-repeatable phenomena (for instance the probability that Higgs boson exists,
or in handling systematic uncertainties).

In most cases the two approaches give (asymptotically) similar results.
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Axiomatic approach to Probability

9

To formalize - in a correct mathematical way - the concept probability, A.N.Kolmogorov (1903-1987) 
proposed (1933) an axiomatic approach (the set theory can help intuitively to handle axioms and theorems):  

Axiom-1

Axiom-2

Axiom-3: property of additivity :

- being… Ω the set of possible outcomes, 𝐸 ∈ Ω a certain possible outcome/result/event) 

: 𝑃 Ω = 1 (i.e. the experiment must have a result) [it’s the normalization condition !] 

: 𝑃 𝐸 ∈ Ω ≥ 0

𝑃 O
:
𝐸: =P

:

𝑃 𝐸: for ALL 𝐸: being DISJOINT

union
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Axiomatic approach to Probability

9

To formalize - in a correct mathematical way - the concept probability, A.N.Kolmogorov (1903-1987) 
proposed (1933) an axiomatic approach (the set theory can help intuitively to handle axioms and theorems):  

Axiom-1

Axiom-2

Axiom-3: property of additivity :

- being… Ω the set of possible outcomes, 𝐸 ∈ Ω a certain possible outcome/result/event) 

: 𝑃 Ω = 1 (i.e. the experiment must have a result) [it’s the normalization condition !] 

: 𝑃 𝐸 ∈ Ω ≥ 0

Every concept/definition of probability is required to be compatible with the axiomatic probabiity and with the derived …

… properties:

… & theorems:  Additivity theorem :

𝑃 𝐸 = 1 − 𝑃 𝐸∗ , 𝑃 𝐸 ∈ Ω ≤ 1, 𝑃 ∅ = 0

𝑃 𝐸@ ∪ 𝐸W = 𝑃 𝐸@ + 𝑃 𝐸W − 𝑃 𝐸@ ∩ 𝐸W

𝑃 O
:
𝐸: =P

:

𝑃 𝐸: for ALL 𝐸: being DISJOINT

with 𝐸@ , 𝐸W ∈ Ω GENERIC
(→ NOT NECESSARILY DISJOINT)

includes Axiom-3 if 𝐸@ , 𝐸W are disjoint : 𝑃 𝐸@ ∩ 𝐸W = 0 ⇒ 𝑃 𝐸@ ∪ 𝐸W = 𝑃 𝐸@ + 𝑃 𝐸W

union

intersection

relative 
complement

(it can be easily demonstrated see later)
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Joint Probability

10

Joint probability :                         : probability that two events (𝐴 & 𝐵) happen concurrently𝑃 𝐴 ∩ 𝐵

= 0 IF 𝐴 & 𝐵 DISJOINT (𝐴 ∩ 𝐵 = ∅) 

= 𝑃 𝐴 h 𝑃 𝐵

= 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∪ 𝐵 IF 𝐴 & 𝐵 GENERIC from the Additivity Theorem! (*) 

IF 𝐴 & 𝐵 INDEPENDENT

To deal with non independent events we have to introduce the concept of conditional probability (next slide)

(*) 𝑃 𝐸@ ∪ 𝐸W = 𝑃 𝐸@ + 𝑃 𝐸W − 𝑃 𝐸@ ∩ 𝐸W ⇔ 𝑃 𝐸@ ∩ 𝐸W = 𝑃 𝐸@ + 𝑃 𝐸W − 𝑃 𝐸@ ∪ 𝐸W
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Conditional Probability

11

Suppose to restrict the possible outcomes of an experiment to the subset 𝐴 ⊂ Ω and introduce the …  

Conditional probability :                    : probability of event 𝐸 given the restriction 𝐴 ⊂ Ω𝑃 𝐸|𝐴

Note: if 𝐴∗ ≠ ∅ it holds 𝑃 𝐸|𝐴 > 𝑃 𝐸 ; this introduces the need to “renormalize” the conditional probability: 𝑃 𝐴|𝐴 ≡ 1

𝐴∗

𝛀

𝐴

The following properties hold:

𝛀𝐴@

𝐴W
𝐴@ ∩ 𝐴W

2) ratios of probabilities should not change 
with the applied restriction:

1) 𝑃 𝐴W|𝐴@ = 𝑃 𝐴@ ∩ 𝐴W|𝐴@ [see figure]

𝑃 𝐴@ ∩ 𝐴W
𝑃 𝐴@

=
𝑃 𝐴@ ∩ 𝐴W|𝐴@
𝑃 𝐴@|𝐴@

Putting together (1) & (2) :

1
𝑃 𝐴@ ∩ 𝐴W
𝑃 𝐴@

= 𝑃 𝐴W|𝐴@

For completeness (and coherence) we define : 𝑃 𝐴W 𝐴@ = 0 𝐼𝐹 𝑃 𝐴@ =0

We can now formally define the conditional probability: 𝑃 𝐵|𝐴 =
𝑃(𝐵 ∩ 𝐴)
𝑃(𝐴) : probability of event 𝐵 given

the event A already happened
For independent events: 𝑃 𝐵|𝐴 =

𝑃(𝐵 ∩ 𝐴)
𝑃 𝐴

=
𝑃 𝐵 h 𝑃(𝐴)

𝑃 𝐴
= 𝑃 𝐵 (just another way to express independence)

Note: it can be demonstrated that is satisfies the axioms of Kolmogorov
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Intuitive illustration of the conditional probability within the set theory
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Bayes’ theorem - I (simple version)

13

This famous theorem by T.Bayes relates the two conditional probabilities 𝑃 𝐵|𝐴 with 𝑃 𝐴|𝐵 where 𝐴, 𝐵 ∈ Ω

𝑃 𝐵|𝐴 =
𝑃(𝐵 ∩ 𝐴)
𝑃(𝐴)

(T.Bayes, 1702-1761) 

We’ve already written                                    but …

…we can equally write (𝐴, 𝐵 are exchangeable): 𝑃 𝐴|𝐵 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

Putting together: 𝑃 𝐴|𝐵 h 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵|𝐴 h 𝑃 𝐴 . Thus : 𝑃 𝐴|𝐵 = 𝑃 𝐵|𝐴 h
𝑃 𝐴
𝑃 𝐵
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Bayes theorem - II (extended version)

14

We derived the basic version of the Bayes’ theorem: : 𝑃 𝐴|𝐵 = 𝑃 𝐵|𝐴 h
𝑃 𝐴
𝑃 𝐵

A generalization/extension of the theorem can be obtained by introducing …
… the Law of the total probability as follows:

if we have sets of events 𝐴: 𝑖 that are disjoint and fully cover 𝛀 (namely Ω = ⋃: 𝐴: ) 

and if 𝑩 ∈ 𝛀 is a generic event, we can calculate 𝑃 𝐵 exploiting the fact that 

𝐵 = 𝐵 ∩ Ω = 𝐵 ∩ ⋃: 𝐴: = ⋃:(𝐵 ∩ 𝐴:) and (𝐵 ∩ 𝐴:) are disjoint, 

and thus, the total probability can be obtained by the following sum:

𝑷 𝑩 = 𝑃 O
:

(𝐵 ∩ 𝐴:) =P
:

𝑃(𝐵 ∩ 𝐴:) =P
:

𝑃(𝐵|𝐴:) h 𝑃(𝐴:) representing the so called Law of total probability

Now Bayes’ theorem can be rewritten in its extended version (with 𝐴 and 𝐵 subsets of Ω): 𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 h 𝑃 𝐴

∑𝒊𝑷(𝑩|𝑨𝒊) h 𝑷(𝑨𝒊)

Note: nothing forbids A to be one of the 𝐴:, say 𝐴v) :

𝛀

𝐴@

𝐴w

𝐴W
𝐴C

definition of conditional probabilityAxiom of additivity

𝑩

𝑃 𝐴v|𝐵 =
𝑃 𝐵|𝐴v h 𝑃 𝐴v
∑𝒊𝑷(𝑩|𝑨𝒊) h 𝑷(𝑨𝒊)
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Bayes theorem - III (discussion) [note: on textbooks a-priori is called prior]
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This theorem can be discussed in a frequentist context (in which a probability cannot be associated to an hypothesis!),
[and it can be helpful when designing an experiment ] in the following way:

(the so called a-priori probability)

subset of events of interest

𝑃 𝐴|𝐵 = 𝑃 𝐵|𝐴 h
𝑃 𝐴
𝑃(𝐵) (tipically estimated in previous experiment(s) or …

suggested by a model used in generating simulated events, etc…

detection/reconstruction/selection

general detection/reconstruction/selection efficiency

production probability of the events of interest

(performs the task to ensure normalization)

probability to detect/reconstruct/select the specific kind of events of interest
(it includes the acceptance and the efficiency effects in relation to the 
characteristics of the particular events of interest)

probability to detect/reconstruct/select 
the specific kind of events of interest 
given a positive response by our 
detector/reconstruction algorithm/selector
(the so called a-posteriori probability,
i.e. after having carried out the experiment)
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Bayes’s theorem - IV (discussion)       [note: on textbooks a-priori/a-posteriori is called prior/posterior]

16

The factor most relevant in the previous expression would be the a-priori probability 𝑷 𝑨 because it can represent many 
concepts in different contexts. For instance, it can refer to:
- a previous empirical result/measurement
- a complex description used in a simulation (Monte Carlo) where all the previous knowledge is implemented
- a prediction from theory or from an assumed model
- a hypothesis (this makes sense in a Bayesian context; 

for the frequentist, a hypothesis is not a RV, and a probability can’t be associated to it)

Considering also the applications that are discussed in the in-depth part, it is worthy to stress the importance of the following 
aspect: the Bayes theorem provides a prescription about how to move from an a-priori to an a-posteriori probability after 
having  carried out an experiment/test.

In the bayesian context 𝑷 𝑨 can be a degree of belief (subjective) that the hypothesis that a certain theory is correct is true.
Neglecting the normalization term at the denominator, the Bayes theorem assumes the following form:

𝑷 𝒕𝒉𝒆𝒐𝒓𝒚|𝒅𝒂𝒕𝒂 ∝ 𝑷(𝒅𝒂𝒕𝒂|𝒕𝒉𝒆𝒐𝒓𝒚) h 𝑷(𝒕𝒉𝒆𝒐𝒓𝒚)
LIKELIHOODPOSTERIOR PROBABILITY PRIOR PROBABILITY

hypothesis experimental result

``Bayesian statistics provides no fundamental rule for assigning the prior probabiity to a theory, but once this has been done, it says how one’s degree of belief 
should change in the light of experimental data’’ (G. Cowan). 
``Bayesian statistics is appropirate only when it is desired (or unavoidable)  to put physicist’s prior beliefs explicitely into the statistical analysis ’’ (F. James).
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Bayes Theorem application to the composition of a particle beam - I

17

𝜇
𝜋

𝛀 = 𝜇 ∪ 𝜋
[𝜇, 𝜋 are disjoint]

Assume we are given a particles’ beam with 90% of pions (𝜋) and 10% of muons (𝜇): 𝑃 𝜋 = 0.9, 𝑃 𝜇 = 0.1
To carry out a test beam we would better need muons, and thus suppose we can use 
an equipment T (trigger/selector) which filters muons at the expense of pions.
This filtering is characterized by the following performances:

- efficiency of the selection for muons:

- efficiency of the selection for pions:

𝜀 𝜇 = 0.95

𝜀 𝜋 = 0.05

𝑷 𝑻 𝝁 = 𝟎. 𝟗𝟓

𝑷 𝑻 𝝅 = 𝟎. 𝟎𝟓

: triggered if 𝝁

: triggered if 𝝅

Let’s calculate: 1) the total efficiency of the trigger/selector, 2) the 𝝁 enrichment i.e. 𝑃 𝜇 𝑇

(this is a source of contamination for the muons!!)

𝜺𝒕𝒐𝒕 = 𝑃 𝑇 = 𝑃 𝑇 𝜇 h 𝑃 𝜇 + 𝑃 𝑇 𝜋 h 𝑃 𝜋 =

(2)

(1)

total probability law

With this trigger only the
14% of the particles in 
the beam are selected! 

0.95 h 0.1 + 0.05 h 0.9 = 0.095 + 0.045 = 0.14 ≡ 14%

𝑷 𝝁 𝑻 =
𝑃 𝑇 𝜇 h 𝑃 𝜇

𝑃 𝑇 𝜇 h 𝑃 𝜇 + 𝑃 𝑇 𝜋 h 𝑃 𝜋
=
𝑃 𝑇 𝜇 h 𝑃 𝜇

𝜺𝒕𝒐𝒕
=

Bayes Theorem

0.95 h 0.1
0.14

=
0.095
0.14

= 0.679 ≡ 67.9%
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By applying this trigger … the 
pions:muons ratio in the beam 
goes from 90:10 to ~32:68



Bayes Theorem application to the composition of a particle beam - II

18

When the problem under study by applying the Bayes theorem is not complicated… this graphical method can be useful: 

#𝜋 = 900 #𝜇 = 100

#𝛀 = 1,000

(10%)(90%)

(5%)(95%)

= 45
#𝜇

(5%) (95%)

#𝜇 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

#𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
=

95
45 + 95 =

95
140 ≈ 68%

(particles in the beam)

(𝜋 discarded) #𝜋 selected
(𝜇 discarded)

selected
= 95

#𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

#𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑡𝑜𝑡𝑎𝑙
=
95 + 45
1000 =

140
1000 = 14%
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CHARACTERISTICS of MEASUREMENTS
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STATISTICAL & SYSTEMATICS UNCERTAINTIES - I

19

When we carry out an experimental measurement we must separate the purely statistical component from those
“non statistical” (called systematics components):

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 “𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑢𝑒” ± 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ± 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∶ 𝑚 �  �¡
¢£ ¢¤

A good measurement requires to be able to reduce as much as possible both uncertainties. 

IF we have accumulated not much data (low statistics)… we can afford a conservative evaluation of the sources 
of systematics uncertainties (approximated by excess)

IF we have accumulated a lot of data (high statistics)… the statistical uncertainty will be relatively small and… 
…we cannot afford a conservative evaluation of systematics uncertainties:

we must evaluate the systematics effect with good accuracy with
the aim to bring the systematic uncertainties to the same level of
the statistical uncertainty !

A.Pompili Statistical Data Analysis for HEP
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Recap: @ “low” statistics :

@ “high” statistics :

we can afford

we must work so that systematic uncertainty≈ statistical uncertainty (relatively small)

systematic uncertainty≤ statistical uncertainty (relatively large)

If the problem is particular difficult to require the execution - on a computing machine - of the simulation (MC) of your 

physical system under exam, in order to compare real and simulated data, … 

… it can happen to identify a systematic error (“bias”) in the real data and to correct the measurement (central value)

according to a correction (“shift”) derived from the data-MC comparison.

In this circumstance the statistical uncertainty on the measurement carried out on the simulated data must be considered 

a systematic uncertainty for the (corrected) measurement in real data. 

This implies the need to have enough statistics for your simulated data samples (importance to produce enough simulated data).

A.Pompili Statistical Data Analysis for HEP

Phys. Rev. Lett. 82 (1999) 4586
Example: https://arxiv.org/pdf/hep-ex/9902011.pdf (CLEO experiment’s charmed mesons lifetime measurement) [see next slide]

https://arxiv.org/pdf/hep-ex/9902011.pdf
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(1)
(2) (3)

(1)

(2)

(3)
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(1)
(2)
(3)
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Precision of a measurement:  term that expresses that the result of a measurement can be obtained with great detail
(many significative cyphers).

Numerically, it is represented by the random (or “statistical”) uncertainty !

Accuracy of a measurement: term that expresses the maximum possible deviation of the result of a measurement from 
the result of an ideal measurement; thus it is associated to the maximum systematic error
that the experimental instrumentation can introduce in the measurement.

Numerically, it’s represented by the maximum “systematic” uncertainty that the used instrumentation/method can introduce!

Wrapping up: A precise measurement is a measurement affected by a very small statistical uncertainty;
The systematic uncertainties cannot be eliminated but enough (hopefully strongly) reduceable.

An accurate measurement is a measurement affected by a minimized systematic uncertainty
(or anyway, lower than the statistical uncertainty;
The systematic uncertainties cannot be eliminated but hopefully can be minimized.

A.Pompili Statistical Data Analysis for HEP
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Demonstration of  the additivity theorem
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Let us consider the general case in which are not disjoint and thus have a not null intersection A ∩ 𝐵 ≠ ∅ .

From the theory set it is easy to be convinced that the following two expressions hold:
A ∪ 𝐵 = A ∪ 𝐵 − (A ∩ 𝐵)(1)

(2) 𝐵 = 𝐵 − (A ∩ 𝐵) ∪ (A ∩ 𝐵)

We can now apply the Kolmogorov axioms (property of additivity)  for the disjoint (sets of) events: 

− A and [𝐵 − (A ∩ 𝐵)] are disjoint:  

− (A ∩ 𝐵) and [𝐵 − A ∩ 𝐵 ] are disjoint:  

𝑃 A ∪ 𝐵 = 𝑃 A + 𝑃( 𝐵 − A ∩ 𝐵 )

𝑃 𝐵 = 𝑃 [B − A ∩ 𝐵 ] + 𝑃 A ∩ 𝐵

(3)

(4)

Subtracting member by member the (4) from (3) one gets: 

𝑃 A ∪ 𝐵 − 𝑃 𝐵 = 𝑃 A + 𝑃 𝐵 − A ∩ 𝐵 − 𝑃 [B − A ∩ 𝐵 ] − 𝑃 A ∩ 𝐵

𝑃 A ∪ 𝐵 = 𝑃 A + 𝑃 𝐵 − 𝑃 A ∩ 𝐵 QED



Role of  the Bayes’s Theorem
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From a Scientific American article of 2006 (*):

(*) https://www.scientificamerican.com/article/what-is-bayess-theorem-an/
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particle beam

𝐷@ 𝐷W𝑫

detector under study

Detection efficiencies are probabilities !  (*)

To measure the detection efficiency of the detector under test 
we need to select all and only the particles that cross the system 
and are detected by both “telescope” detectors 𝐷@ & 𝐷W (that 
are read in time coincidence). 
The intersection expresses the time coincidence in the sense that
the probability to have a particle of the beam detected by both of 
them is given by 𝑃 𝐷@ ∩ 𝐷W [reminder: intersection is a logical-AND]!

Of course, 𝑃 𝐷@ ∩ 𝐷W is a joint probability but note that the two “telescope” detectors work independently, thus:

As seen in previous slide, 𝑃 𝐷@ ∩ 𝐷W can also be expressed in terms of conditional probability as follows:
and since the detectors work independently it holds 𝑃 𝐷W|𝐷@ = 𝑃 𝐷W and thus the (#).

𝑃 𝐷@ ∩ 𝐷W = 𝑃 𝐷@ h 𝑃 𝐷W

𝑃 𝐷@ ∩ 𝐷W = 𝑃 𝐷W|𝐷@ h 𝑃 𝐷@

The total efficiency of the telescope can be calculated to know the useful particle flux to study the detector under test.
Obviously … for a telescope with 2 similar detectors (i.e. identical efficiencies 𝜀@ = 𝜀W ≡ 𝜀ª) we get (*):

(#)

𝜀"«",W ≡ 𝑃 𝐷@ ∩ 𝐷W = 𝑃 𝐷@ h 𝑃 𝐷W ≡ 𝜀@ h 𝜀W = 𝜀ªW
(#)(*)

A.Pompili Statistical Data Analysis for HEP
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particle beam

𝐷@ 𝐷W𝑫

detector under study

Adding a third detector as in the figure implies …
to have detector  𝐷@ in coincidence with any of one between 𝐷W & 𝐷w ! 

The involved joint probability is now: 𝑃 𝐷@ ∩ (𝐷W ∪ 𝐷w )

Since also the detectors 𝐷W & 𝐷w work independently it holds: 𝑃 𝐷W ∩ 𝐷w = 𝑃 𝐷W h 𝑃 𝐷w

𝐷w

Now we get : 𝑃 𝐷@ ∩ (𝐷W ∪ 𝐷w ) = 𝑃 𝐷@ h 𝑃 𝐷W ∪ 𝐷w = 𝑃 𝐷@ h [𝑃 𝐷W + 𝑃 𝐷w − 𝑃 𝐷W ∩ 𝐷w ]

[ reminder : intersection is a logical-AND, union is a logical-OR ]

additivity theorem

Overall : 𝑃 𝐷@ ∩ (𝐷W ∪ 𝐷w ) = 𝑃 𝐷@ h [𝑃 𝐷W + 𝑃 𝐷w − 𝑃 𝐷W ∩ 𝐷w ] = 𝑃 𝐷@ h [𝑃 𝐷W + 𝑃 𝐷w − 𝑃 𝐷W h 𝑃 𝐷w ]

In this way the total efficiency of the telescope can be easily calculated as :

𝜺𝒕𝒐𝒕,𝟑 ≡ 𝑃 𝐷@ ∩ (𝐷W ∪ 𝐷w ) = 𝑃 𝐷@ h [𝑃 𝐷W + 𝑃 𝐷w − 𝑃 𝐷W h 𝑃 𝐷w ] = 𝜀ª h [2𝜀ª − 𝜀ªW] = 𝜀ªW h [2 − 𝜀ª] ≡ 𝜀"«",W h [2 − 𝜀ª]

A.Pompili Statistical Data Analysis for HEP
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particle beam

𝐷W 𝐷w𝑫

detector under study

Adding a fourth detector as in the figure implies that …
… we can have detector  𝐷@ in coincidence with any of one between 𝐷w & 𝐷
… and the same holds for 𝐷W !

The involved joint probability is now: 𝑃( 𝐷@ ∪ 𝐷W) ∩ (𝐷w ∪ 𝐷 )

Since the detectors 𝐷@(w) & 𝐷W()
work independently it holds: 

𝑃 𝐷@ ∩ 𝐷W = 𝑃 𝐷@ h 𝑃 𝐷W

𝐷

Now we get :

= [𝑃 𝐷@ + 𝑃 𝐷W − 𝑃 𝐷@ ∩ 𝐷W ] h [𝑃 𝐷w + 𝑃 𝐷 − 𝑃 𝐷w ∩ 𝐷 ]additivity theorem

Overall :

𝐷@

𝑃( 𝐷@ ∪ 𝐷W) ∩ (𝐷W ∪ 𝐷w ) = 𝑃 𝐷@ ∪ 𝐷W h 𝑃 𝐷w ∪ 𝐷 =

≡ [𝑃 𝐷@ + 𝑃 𝐷W − 𝑃 𝐷@ ∩ 𝐷W ] h [𝑃 𝐷w + 𝑃 𝐷 − 𝑃 𝐷w ∩ 𝐷 ]

𝑃 𝐷w ∩ 𝐷 = 𝑃 𝐷w h 𝑃 𝐷

= [𝑃 𝐷@ + 𝑃 𝐷W − 𝑃 𝐷@ h 𝑃 𝐷W ] h [𝑃 𝐷w + 𝑃 𝐷 − 𝑃 𝐷w) h 𝑃(𝐷 ]

𝜺𝒕𝒐𝒕,𝟒 = 𝑃 𝐷@ ∪ 𝐷W) ∩ (𝐷w ∪ 𝐷 = 2𝜀ª − 𝜀ªW h 2𝜀ª − 𝜀ªW = 𝜀ª h [2 − 𝜀ª] h 𝜀ª h 2 − 𝜀ª =

= 𝜀ªW h 2 − 𝜀ª W

= 𝜺𝒕𝒐𝒕,𝟐 h 𝟐 − 𝜺𝑫 𝟐
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Summarizing up: 

2 detectors:

3 detectors:

4 detectors:

𝜀"«",W = 0.64

𝜺𝒕𝒐𝒕,𝟑 = 𝜀"«",W h [2 − 𝜀ª]

𝜺𝒕𝒐𝒕,𝟒 = 𝜺𝒕𝒐𝒕,𝟐 h 𝟐 − 𝜺𝑫 𝟐 = 𝜀"«",w h 2 − 𝜀ª

… which shows that adding one more detector, either upstream or downstream, introduces a multiplicative factor 2 − 𝜀ª >1      
which therefore increases the overall efficiency!

Numerically, let’s assume                    … then𝜀ª = 0.8

𝜀"«",w = 2 − 0.8 h 0.64 ≈ 0.77

𝜀"«", = 2 − 0.8 2 h 0.77 ≈ 0.92

A telescope is usually built by 4 identical detectors (2 upstream and 2 downstream) and this ensures to be using, 
during the test beam, most of the MIPs of the beam inpinging the detector (i.e. more than 90%). 

𝜀"«",W = 𝜀ªW
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Bayes Theorem application to an epidemiological use case - I

30

Assume to know that if a person is really ill the probability that the medical test gives a positive result is very high (say 98%);
of course the test will have also some small probability (say 2%) to  give a false positive result on an healthy person.
If a random person is tested positive and diagnosed with an ilness … what is the probability that he/she is effectively ill?
A common mistake (for who doesn’t know the Bayes theorem!) is to think that this probability would be simply (98-2)%=96%.
We will discuss that in the next slides.

Preliminarily let’s discuss an example of application of the Law of total probability in the epidemiological context:

An illness M hits in 1 year 10% of men and 5% of women. 
If the population Ω of 10,000 people is composed by 45% of men and 55% of women, …
… find the expected number of ill persons in a year.  

In this case we have Ω = 𝑈 ∪ 𝐷 with 𝐴@ ≡ 𝐷 and 𝐴W ≡ 𝑈 that are disjoint! 

𝛀
𝑈

𝐷

The law of total probability is:

𝑷 𝑴 = ∑:¶@,W 𝑃(𝐵|𝐴:) h 𝑃(𝐴:) ≡ 𝑃 𝑀 𝐷 h 𝑃 𝐷 + 𝑃 𝑀 𝑈 h 𝑃 𝑈 = 0.05 h 0.55 + 0.1 h 0.45 = 0.0725

i.e. the expected ill population is 7.25% of the total one, and the expected number of ill persons is: 10,000 h 0.0725 = 725
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Consider an illness M hitting the 0.1% of the population.
A medical test (to be used in population screening) is characterized by the following performances:
- it gives positive result at 98% for an ill person
- it has the 3% of probability to give positive result for an healthy person
Question: what is the probability of being ill if the test gives a positive result? 𝑀

𝑆

𝛀 = 𝑆 ∪𝑀
The data: - probability of being ill:

- probability of being healthy:

[𝑆,𝑀 are disjoint]

- efficiency of the test (positive if ill):
- contamination (“fake rate”) of the test 

(positive in spite of being heathy): 𝑷 + 𝑺 = 𝟎. 𝟎𝟑

𝑃 𝑆 = 0.999
𝑃 𝑀 = 0.001

𝑷 + 𝑴 = 𝟎. 𝟗𝟖 …this implies also:

…this implies also:

𝑃 − 𝑀 = 0.02

𝑃 − 𝑆 = 0.97

To answer the question, I need to evaluate: 𝑷 𝑴 + . This can be done just by applying the (extended) Bayes Theorem:

𝑷 𝑴 + =
𝑷 + 𝑴 h 𝑷 𝑴

𝑷 + 𝑴 h 𝑷 𝑴 + 𝑷(+|𝑺) h 𝑷(𝑺) =
0.98 h 0.001

0.98 h 0.001 + (0.03 h 0.999) ≅ 0.0317 ≈ 3.2%

The result seems counter-intuitive!
Too low!?!  Still it is correct !=

𝑷 (+∩𝑴)
𝑷 (+∩𝑴) + 𝑷 (+∩ 𝑺) ≈

0.001
0.001 + 0.03

≈
0.001
0.03

=
1
30

Note: 𝑷 𝑴 plays a crucial role together with the “fake rate” 𝑷(+|𝑺). 
Considering 𝑷 𝑴 cannot be changed what matters is 𝑷 + 𝑺 ; a better quality test would have 𝑃 + 𝑆 = 0.003 so that 𝑃 𝑀 + ≈ 25%

A.Pompili Statistical Data Analysis for HEP
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The correct interpretation (and usefulness) of the screening of the population relies on the difference between
- prior probability (of being ill): 0.1%
- posterior probability (of being ill): 3.2%  ,
…namely how changes the probability to be ill (because belonging to a certain population) in light of a positive resulting test !
Of course, the lowest fake rate of the test the better !

When the problem under study by applying the Bayes theorem is not complicated… this graphical method can be useful: 

#𝑆 = 9,990 #𝑀 = 10

#𝛀 = 10,000

(0.1%)(99.9%)

(3%)(97%)

#− ≅ 9,690 #+ ≅ 300 #− ≅ 0 #+ ≅ 10

(2%) (98%)

probability to be ill if positive  =
#𝑀
# + 𝑡𝑜𝑡

≅
10

300 + 10 ≈ 3.2%
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Bayes Theorem application to an epidemiological use case : double screening - I

33A.Pompili Statistical Data Analysis for HEP

Let us immagine to be able to repeat the medical test (“double screening”): the two consecutive tests are labelled 𝑻𝟏 and 𝑻𝟐.

Earlier we evaluated 𝑃 𝑀 𝑇 and in particular 𝑃 𝑀 + ; now we are interested in 𝑷 𝑴 𝑻𝟏, 𝑻𝟐 and in particular 𝑷 𝑴 +,+ !

Step-1)

Step-2)

Step-3)

For the Bayes theorem we can write: 𝑷 𝑴 𝑻𝟏, 𝑻𝟐 = 𝑃 𝑇@, 𝑇W 𝑀 h
𝑃(𝑀)

𝑃(𝑇@, 𝑇W)

Reasonably assuming the two tests are independent it is possible to express the joint probabilty as a factorization :

𝑃 𝑇@, 𝑇W = 𝑃(𝑇@) h 𝑃(𝑇W) … as well as (applying the restriction) … 𝑃 𝑇@, 𝑇W|𝑀 = 𝑃(𝑇@|𝑀) h 𝑃(𝑇W|𝑀)

Putting all together we get: 𝑷 𝑴 𝑻𝟏, 𝑻𝟐 = 𝑃 (𝑇@|𝑀) h 𝑃(𝑇W|𝑀) h
𝑃(𝑀)

𝑃(𝑇@) h 𝑃(𝑇W)

Step-4) For the total probability law we can write: 𝑃 𝑇@,W = 𝑃 𝑇@,W|𝑀 h 𝑃(𝑀)+ 𝑃 𝑇@,W|𝑆 h 𝑃(𝑆)

…thus obtaining 𝑃 𝑇@ h 𝑃 𝑇W = 𝑃 𝑇@|𝑀 h 𝑃 𝑀 + 𝑃 𝑇@|𝑆 h 𝑃 𝑆 h 𝑃 𝑇W|𝑀 h 𝑃 𝑀 + 𝑃 𝑇W|𝑆 h 𝑃 𝑆 = (next slde)
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= 𝑃 𝑇@|𝑀 h 𝑃2 𝑀 h 𝑃 𝑇W|𝑀 ] + [𝑃 𝑇@|𝑀 h 𝑃 𝑀 h 𝑃 𝑇W|𝑆 h 𝑃 𝑆 ] + [𝑃 𝑇@|𝑆 h 𝑃 𝑆 h 𝑃 𝑇W|𝑀 h 𝑃 𝑀 ] + [𝑃 𝑇@|𝑆 h 𝑃2 𝑆 h 𝑃 𝑇W|𝑆 =

= 𝑃 𝑇@|𝑀 h 𝑃 𝑇W|𝑀 h 𝑃 𝑀 + 𝑃 𝑇@|𝑆 h 𝑃 𝑇W|𝑆 h 𝑃 𝑆

= 𝟎

≡ 𝑥@𝑥W𝑥W + 𝑥@𝑦W𝑥𝑦 + 𝑥W𝑦@𝑥𝑦 + 𝑦@𝑦W𝑦W =

𝑥 + 𝑦 = 1 ⇔ 𝑃 𝑀 + 𝑃 𝑆 = 1

𝑥@𝑥W𝑥(1 − 𝑦) + 𝑥@𝑦W𝑥𝑦 + 𝑥W𝑦@𝑥𝑦 + 𝑦@𝑦W𝑦(1 − 𝑥) =

= 𝑥@𝑥W𝑥 − 𝑥@𝑥W𝑥𝑦 + 𝑥@𝑦W𝑥𝑦 + 𝑥W𝑦@𝑥𝑦 + 𝑦@𝑦W𝑦 − 𝑦@𝑦W𝑥𝑦) = 𝑥@𝑥W𝑥 + 𝑦@𝑦W𝑦 + 𝑥𝑦[−𝑥@𝑥W + 𝑥@𝑦W + 𝑥W𝑦@ − 𝑦@𝑦W]

(it can be demonstrated 
with further algebra)

Therefore, wrapping up: 𝑷 𝑴 𝑻𝟏, 𝑻𝟐 =
𝑃(𝑇@|𝑀) h 𝑃(𝑇W|𝑀) h 𝑃(𝑀)

𝑃 𝑇@|𝑀 h 𝑃 𝑇W|𝑀 h 𝑃 𝑀 + 𝑃 𝑇@|𝑆 h 𝑃 𝑇W|𝑆 h 𝑃 𝑆

For our specific case: 𝑷 𝑴 +,+ =
𝑃(+|𝑀) h 𝑃(+|𝑀) h 𝑃(𝑀)

𝑃 +|𝑀 h 𝑃 +|𝑀 h 𝑃 𝑀 + 𝑃 +|𝑆 h 𝑃 +|𝑆 h 𝑃 𝑆
=

0.98 h 0.98 h 0.001
0.98 h 0.98 h 0.001 + (0.03 h 0.03 h 0.999)

≅

Conclusion: Given a test with an efficiency of 98% and a false positives rate (fake rate) of 3% ,
the a-priori (=pre-test) probability to be ill is 0.1%; after a positive test it grows to 3.2%;
by doing a second test giving again a positive result the illness probabilty rises to 51.6%.
These percentages further rise if the fake rate lowers.

≅
0.00096
0.00186 ≅ 0.516 ≈ 52%



Bayes Theorem application to an epidemiological use case : double screening - II

35A.Pompili Statistical Data Analysis for HEP

let’s reconsider

There is a simpler way to proceed (more compliant to the bayesian approach) to obtain the same result :

=
0.031066

0.031066 + 0.029049
=
0.031066
0.060115

≅ 0.5168 ≈ 52%

𝑃 𝑀 𝑇@, 𝑇W = 𝑃 (𝑇@|𝑀) h 𝑃(𝑇W|𝑀) h
𝑃(𝑀)

𝑃(𝑇@) h 𝑃(𝑇W)

… and reshuffle the factors as follows: 𝑃 𝑀 𝑇@, 𝑇W =
𝑃(𝑇W|𝑀)
𝑃(𝑇W)

h
𝑃 (𝑇@|𝑀) h 𝑃(𝑀)

𝑃(𝑇@)

𝑃(𝑀|𝑇@) : a-posteriori probability after the 1st test

In other words the a-posteriori probability of the 1st test becomes the a-priori (prior) probability for the 2nd test ! 

In our specific case the calculation is much straightforward :
[note that 𝑃′(+) and thus 𝑃′ 𝑀 and 𝑃¿ 𝑆 = 1 − 𝑃′ 𝑀 … refer now to the situation of the population after the 1st screening ]

𝑃 𝑀 +,+ =
𝑃(+|𝑀)
𝑃′(+)

h 𝑃 𝑀 + =
𝑃 + 𝑀 𝑃 𝑀 +

𝑃 + 𝑀 h 𝑃′ 𝑀 + 𝑃 + 𝑆 h 𝑃′ 𝑆
=

0.98 h 0.0317
0.98 h 0.0317 + (0.03 h (1 − 0.0317))



Bayes Theorem application to multiple (iterative) tests
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What we have just seen can be formalized in the Bayesian approach as follows: 

𝑷𝒏 𝑨𝒌 𝑩 =
𝑃(𝐵|𝐴v) h 𝑃Á�@ (𝐴v)
∑: 𝑃(𝐵|𝐴:) h 𝑃Á�@ (𝐴:)

in the iteration 𝑛 the a-priori probability is taken as the a-posteriori probability of the iteration 𝑛 − 1:

with 𝑖 = 1, … , 𝑘, … , 𝑁


