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Content of this part:  - Least Square Fit. Minimum 𝝌𝟐 and its connection with ML fit. Goodness-of-fit.
- Extraction of a physical signal. Neyman-Pearson Lemma and Likelihood ratio.



Minimum 𝝌𝟐 fit, its connection with ML fit & Goodness-of-fit
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In the Least Squares Method (Metodo dei Minimi Quadrati) consider n measurements (of the type 𝑦% ± 𝜎%) corresponding  
to values 𝑥% of the variable 𝑥. Assume we have a model for the dependence of 𝑦 on the variable 𝑥 given by a function:  

𝑦 = 𝑓(𝑥; �⃗�) where �⃗� = (𝜃0, … , 𝜃3) is a set of unknown parameters [see an example in next slide]

IF the measurements 𝑦% are, each, distributed around the value 𝑦 = 𝑓 𝑥%; �⃗� according to a Gaussian with st. dev. 𝜎%,
the likelihood function for this problem can be written as a product of n	Gaussian	PDFs:
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just a constant if 𝜎%
are known & fixed: 
can be dropped
when minimizing 

it is a 𝝌𝟐 variable
Thus, the quantity −2ln𝐿 �⃗�; �⃗� = 𝜒E(�⃗�) is minimized.

𝐋𝐞𝐚𝐬𝐭 𝐒𝐪𝐮𝐚𝐫𝐞𝐝 𝐌𝐞𝐭𝐡𝐨𝐝 − 𝐈

residuals ≡ r

NOTE: this minimization is called Least Squares method ! 
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𝐋𝐞𝐚𝐬𝐭 𝐒𝐪𝐮𝐚𝐫𝐞𝐝 𝐌𝐞𝐭𝐡𝐨𝐝 − 𝐈𝐈

An example of fit performed with the minimum 𝝌𝟐 method (within ROOT) can be borrowed by L.Lista’s book  (Fig. 5.5): 

Residuals are randomly distributed around zero 
IF the data are distributed according to the 
assumed model 𝑦 = f x; A, B = Ax𝑒GjK

NOTE: in the simplest case of a linear function 𝑦 = A + Bx
the minimum 𝝌𝟐 problem can be solved analitically
(L.Lista’s book, section 5.12.1) [linear regression]
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Minimum 𝝌𝟐 method for Binned Data (𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦𝐬)

The situation just considered has wide similarities with the case of binning a distribution of a random variable
when a large number of repeated measurements of this r.v. is available. 
In this case the binning choice is natural because computing an unbinned likelihood function may become unpractical 
(since intensive computing power is needed and machine precision may also become an issue).
By binning the distribution of the r.v. of interest and taking care to choose a number of bins N much smaller than the 
number of measurements 𝒏𝒊 (𝒊 = 𝟏,… ,𝑵) for each 𝒊-bin, in order to ensure an enough large 𝑛% and thus a good 
Gaussian approximation for the Poisson distribution that would in principle describe the number of entries in a bin, …
… we are in the case in which, dropping again the constant term(s), we can write −2ln𝐿 as:
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… by having substituted, in the previous expression                                                            ,  

𝑦% with the observed # of entries 𝑛%

𝑓 𝑥%; �⃗� with the expected # of 
entries 𝜇%(�⃗�)

the variance 𝜎%E with the expected
observed # of entries 𝜇% 𝑛%

−𝟐𝒍𝒏𝑳(𝒏𝒊; 𝝁𝒊(�⃗�)) =S
𝒊@𝟏

𝒏 𝒏𝒊 − 𝝁𝒊 �⃗�
𝟐

𝝁𝒊𝒏𝒊
≡ 𝝌𝑷𝒆𝒂𝒓𝒔𝒐𝒏𝑵𝒆𝒚𝒎𝒂𝒏𝟐

Note that

(Poisson)
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… and that IF the binning is enough fine: 𝝁𝒊 𝜽 ≅ 𝒇 𝒙𝒊; 𝜽 𝜹𝒙𝒊 … with
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𝝌𝟐 and Goodness of Fit - I

One advantage of the minimum 𝝌𝟐 method is that the expected distribution of the minimum 𝝌𝟐 value (denoted by        )
is known and is given by the 𝝌𝟐 distribution with a # of degrees of freedom equal to the # of measurements n minus the 
# of fit parameters m. 
This is a general property. In the “histogram case” that we are considering, …
… the # of degrees of freedom is equal to the # of bins N minus the # of fit parameters k	:

�𝝌𝟐

The minimum 𝝌𝟐 value (denoted by       ) can be used as a measurement/quantification of the goodness of fit (GOF).
Let’s argue this important statement by introducing first the concept of p-value.

�𝝌𝟐

n.d.o.f. = 𝑵− 𝒌

𝒑 − 𝐯𝐚𝐥𝐮𝐞 ∶ probability that a 𝝌𝟐 greater or equal to the minimum value �𝝌𝟐 is obtained from a random fit 
according to the assumed model  

If data follow the assumed Gaussian distributions, the p−value is expected to be a r.v. uniformly distributed from 0 to 1!
This comes from a general property of cumulative distributions (see next slide [#]).
Obtaining a small p−value of the fit can be a symptom of a poor description of the assumed theoretical model in the fit.
For this reason, the minimum 𝝌𝟐 value (�𝝌𝟐) can be used as a measurement of the goodness of fit.
Practically it is a matter of setting a threshold to determine whether or not a fit can be considered acceptable or not;
for istance a p−value>0.05	will discard on average 5% of the cases (due to the possibility of statitical fluctuations)
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𝝌𝟐 and Goodness of Fit - II

[#] Given a PDF,          , its cumulative distribution is defined as:𝑓(𝑥) F 𝑥 = �
G�
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It can be easily demonstrated that the PDF           of the transformed variable                   is uniform between 0 and 1:y ≡ F(𝑥)P(y)
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Binned Poissonian Fits 𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦𝐬 𝐰𝐢𝐭𝐡 𝐬𝐦𝐚𝐥𝐥 # 𝐨𝐟 𝐞𝐧𝐭𝐫𝐢𝐞𝐬 − 𝐈

If the Gaussian approximation for the Poisson distribution does not hold because, in many of the N bins, 𝑛% is not large enough
… we are obliged to use a Poissonian model, that is of course valid for small # of entries. 
In this case the negative log likelihood −2ln𝐿 can be written,

…instead of                                                                                           …  as:

Using the approach proposed by Baker-Cousins the likelihood can be divided by its maximum value which does not 
depend on the unknown parameters (rather it is based on their best estimates) and does not change the fit result. 
In this way we deal with a negative log likelihood ratio (that we denote with    ):
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… that we can rewrite, with good approximation, exchanging 𝜇% with 𝑛% :
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Binned Poissonian Fits 𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦𝐬 𝐰𝐢𝐭𝐡 𝐬𝐦𝐚𝐥𝐥 # 𝐨𝐟 𝐞𝐧𝐭𝐫𝐢𝐞𝐬 − 𝐈𝐈

Now, the important result derives from the Wilks’ theorem (it deals with likelihood ratios; will be discussed in the in-depth part):
If the model is correct … the distribution of the minimum value of 𝝀 can be asymptotically approximated

by a 𝝌𝟐 distribution with a n.d.o.f. = (# bins - # fit parameters)!

For this reason, the neg-log-likelihood ratio 𝝀 is denoted as 𝝌𝝀𝟐 in (5.71-5.72) equations of L.Lista’s book.

The 𝝌𝝀𝟐 can be used to determine a p-value that provides a measure of the goodness-of-fit, as previously discussed 
for the situation in which Gaussian approximation is valid and the neg-log-likelihood is a “genuine” 𝝌𝟐. 

However, the asymptotic approximation will not hold if the # of measurements is not sufficiently large 
and, consequently, the distribution of 𝝌𝝀𝟐 will deviate from a 𝝌𝟐 distribution.

In this cases the distribution can still be determined by generating a sufficiently number of Monte Carlo pseudo-
experiments that reproduce the theoretical PDF (MC toys), and thus the p-value can be computed accordingly.
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𝝌𝟐 and Goodness of Fit - III / comparison with ML fits

It must be noted that :

Unlike minimum 𝝌𝟐 fits, in general, for Maximum Likelihood fits the value of -2lnL for which the likelihood function is 
maximized does not provide a measurement of the goodness of the fit.

What can be still done in this case ?

1) IF the ML fit is binned it is possible to calculate both an overall normalized 𝝌𝟐and bin-by-bin pulls

2) IF the ML fit is genuinely unbinned you can still bin a posteriori (after the fit) and proceed as in (1)

3a) you can still distinguish which model (implemented in the PDF) is the best among several by   

considering the minimum among the minimum values of -2lnL	for each model

3b) It is possible to obtain in some cases a goodness-of-fit measurement by finding the ratio of the    

likelihood functions evaluated in two different hypotheses since Wilks’ theorem ensures that …

a likelihood ratio, under some conditions that hold in particular circumstances, is asymptotically

distributed as a 𝝌𝟐 for a large number of repeated measurements.
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EXTRACTION of a physical SIGNAL
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Neyman-Pearson Lemma & Likelihood Ratio - I

As we have discussed in a previous part of the course devoted to hypothesis testing and the ROC curve, 
the extraction of a physical signal is obtained by applying a set of selection criteria based on some variables/observables 
(a single variable - or a combination of variables - is called test statistic) to select signal while rejecting background(s). 
The selection algorithm based upon a specific set can be represented by a ROC curve in the plane representing 
the signal efficiency against the contamination level (misidentification probability or probability of background’s survival). 

The performance of a selection criterion can be considered optimal if it achieves the smallest misidentification probability
for a desired/target value of the selection efficiency.
Suppose having different test statistics and the corresponding different ROC curves; 
for a given signal efficiency the curves provide different misidentification probabilities:

Sig-eff

misID-prob
(0,0)

(1,1)

According to the Neyman-Pearson lemma:

the optimal test statitistic is given by the ratio of the likelihood functions
𝐿 �⃗�|𝐻0 and 𝐿 �⃗�|𝐻· evaluated for the observed data sample �⃗� under
the two hypotheses 𝐻0 & 𝐻· :

𝜆 �⃗� =
𝐿 �⃗�|𝐻0
𝐿 �⃗�|𝐻·

In what sense it is optimal? 
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Neyman-Pearson Lemma & Likelihood Ratio - II

The likelihood ratio as test statistic is optimal in the sense that… for a fixed background misidentification 
probability a, the selection that corresponds to the largest possible signal selection efficiency 1-b is given by:

… where, by varying the “cut_value” 𝑘¹ the required/targeted value of a may be achieved.𝜆 �⃗� =
𝐿 �⃗�|𝐻0
𝐿 �⃗�|𝐻·

≥ 𝑘¹

𝑡 �⃗�

𝐻0𝐻·

𝒌𝜶

𝟏 − 𝜷

𝜶

In other words… the likelihood ratio is the test statistic that 
optimally minimizes the overlap between the two PDFs 
for the background and the signal hypotheses (H0 and H1).

This Lemma provides the selection that achieves the optimal performances only if the joint multi-dimensional 
PDFs characterizing our problem are known! However in many realsitic cases it is not easy to determine the 
correct model and approximated solution are adopted, like numerical methods and Machine-Learning algorithms
(Neural Networks or Boosted Decision Trees) that may find selections with performances close to the optimal 
limit given by the Lemma.
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Neyman-Pearson Lemma & Likelihood Ratio - III

𝜆 �⃗� =
𝐿 �⃗�|𝐻0
𝐿 �⃗�|𝐻·

=
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IF the variables 𝑥0, … , 𝑥A that characterize our problem are independent, the likelihood function can be factorized
into the product of one-dimentional marginal PDFs:    

In this case (namely factorization holds), optimal selection performances are achieved, according to the Lemma ! 

In real analysis life the variables we deal with are not independent (remember that uncorrelated variables are not 
necessarly independent!), but still the factorized expression can be used as discriminant even if performances will 
not be optimal anymore. 
The quantity to be used as test statistic is the so-called Projective Likelihood Ratio:

Note: the marginalized PDFs can be obtained using Monte Carlo training samples 
to produce distributions corresponding with enough good approximation to the marginal PDFs.

𝜆 𝑥0, … , 𝑥A =
∏%@0
A 𝑓%(𝑥%|𝐻0)

∏%@0
A 𝑓%(𝑥%|𝐻·)
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Multivariate-based selection with Machine Learning

The Neyman-Pearson Lemma sets up an upper limit to the performance of any possible selection, from those 
classical cut-based selections to the most recently introduced  Machine-Learning algorithms which can often go  
close to the performance of an ideal selection based on the likelihood ratio.

The most powerful approximate methods, implemented by means of computer algorithms, are organized as follows.
The algorithm receives as input a set of discriminant variables, each of which individually does not allow to reach 
an optimal selection power, and computes an output that combines the input variables. 
The computation of the output value is based on an often very large set of parameters.
The discriminant output is taken as test statistic and is adopted to select the signal with the desired efficiency by 
means of a single cut on the value of the output. 

An optimal choice of the parameters can allow to achieve the best possible performances.
The usual strategy consists in tuning the discriminant parameters providing as input to the algorithm large datasets 
distributed according either the H0	and the H1 hypotheses. Typically distributions according to background 
hypothesis are taken from real data, often using control samples, while signal-like distributions according to the H1
hypothesis are derived by simulated data (Monte Carlo). By comparing the discirminant output to the true origin 
of the dataset the parameters are modified. This process is called training and the algorithms that use such kind of 
training samples are called supervised machine learning algorithms. 
The typical problem of this process is called overtraining and it is depicted in Fig. 9.6 of L.Lista’s book.
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