
The basis of the estimation of the local (*) statistical significance of a physics signal

A.Pompili - SDAL course - Exercise 11

(*) “local” implies that the physical signal is already known and we are confirming it;
in the case of presence of a new physical signal we need to consider the Look-Elsewhere-Effect and 
we would have to compute a “global” statistical significance which requires more effort (beyond the scope of this course)
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𝝀 𝝁 =
ℒ(𝜇,

((⃗𝜃)

ℒ(�̂�, (⃗𝜃)

…𝑤ℎ𝑒𝑟𝑒
((⃗𝜃 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 �⃗� 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ℒ 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝜇

…𝑤ℎ𝑒𝑟𝑒 A𝜇 𝑎𝑛𝑑 (⃗𝜃 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ℒ

To test a hypothesized value of 𝜇 … we consider the Profile Likelihood Ratio (here �⃗� represents a set of nuisance parameters):

𝝁 : signal strength of hypothesized signal; it can be considered properly a signal yield only when 𝜇 is constrained to be 𝜇 ≥ 0 .

Profile Likelihood Ratio & Test statistic

Profile Likelihood Function

Intuitively it measures the level of agreement between data and the hypothesized value of 𝜇 : 𝜆 𝜇 =
ℒ(𝜇)
ℒ(�̂�) ⇒

low 𝜆 ⇒ poor

high 𝜆 ⇒ good
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𝝀 𝝁 =
ℒ(𝜇,

((⃗𝜃)

ℒ(�̂�, (⃗𝜃)

…𝑤ℎ𝑒𝑟𝑒
((⃗𝜃 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 �⃗� 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ℒ 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝜇

…𝑤ℎ𝑒𝑟𝑒 A𝜇 𝑎𝑛𝑑 (⃗𝜃 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ℒ

In the case of 𝜇 = 0,𝑁𝐿𝐿0(𝑁𝐿𝐿1) indicates the bkg−only(sig+bkg) hypothesis.
The sig+bkg hypothesis can be represented by either 𝜇 ≥ 0 or 𝜇 ≠ 0. We will consider both cases in the following.

𝑡O = −2𝑙𝑛𝜆 𝜇 = −2 𝑙𝑛ℒ(𝜇,
((⃗𝜃) − 𝑙𝑛ℒ(�̂�, (⃗𝜃) = 2 −𝑙𝑛ℒ 𝜇,

((⃗𝜃 − −𝑙𝑛ℒ(�̂�, (⃗𝜃) ≡ 2 S Δ𝑁𝐿𝐿Test statistic : 

𝑁𝐿𝐿0 𝑁𝐿𝐿1

This test statistic can be used for a test of 𝜇 = 0 for purposes of establishing the existence of a signal process.   

To test a hypothesized value of 𝜇 … we consider the Profile Likelihood Ratio (here �⃗� represents a set of nuisance parameters):

𝝁 : signal strength of hypothesized signal; it can be considered properly a signal yield only when 𝜇 is constrained to be 𝜇 ≥ 0 .

where 𝑁𝐿𝐿0(𝑁𝐿𝐿1) indicates the Neg-Log-Likelihood associated to the null-0 (alternative-1) hypotheses 

Δ𝑁𝐿𝐿 ≡ 𝑁𝐿𝐿0 − 𝑁𝐿𝐿1

Profile Likelihood Ratio & Test statistic

Profile Likelihood Function

Note: 𝝀 𝝁 has the important advantage that - for a sufficiently large event sample - its distribution approaches a … 
… well defined form (according to Wilks’ Theorem) [see later]. This is true also in presence of adjustable nuisance parameters.

Intuitively it measures the level of agreement between data and the hypothesized value of 𝜇 : 𝜆 𝜇 =
ℒ(𝜇)
ℒ(�̂�) ⇒

low 𝜆 ⇒ poor

high 𝜆 ⇒ good
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In general, by denoting with 𝑓 the p.d.f. of the test statistic 𝑡O, 
the p-value of the hypothesized value of 𝜇 for an observed 𝑡O (denoted as 𝑡O,UVW) can be expressed as:

𝑝O = X
YZ,[\]

^

𝑓 𝑡O 𝜇 𝑑𝑡O
value of the test statistic observed in the data

p-value & Statistical Significance - I 

In HEP we usually convert the 𝑝-value into an equivalent significance (𝑍), defined such 
that a Gaussian distributed variable 𝑥 found 𝑍 standard deviations above its null mean 
has an upper-tail probability equal to 𝑝 (the one-sided definition is used here as it gives 
𝑍 = 0 for 𝑝 = 0.5 ).
Once introduced the cumulative distribution Φ (c.d.f.) of the Standard Gaussian one has:

From: EPJ C 71 (2011) 1554

Φ 𝑍 = X
c^

d
𝐺 𝑥 0,1 𝑑𝑥 = 1 − X

d

^
𝐺 𝑥 0,1 𝑑𝑥 = 1 − 𝑝d

…thus, the following expression for 𝑍 can be derived: 𝑍 = Φcf 1 − 𝑝d

In HEP the observation/discovery requires at least 𝒁 = 𝟓 namely 𝒑 = 𝟐. 𝟖𝟕 S 𝟏𝟎c𝟕;

Viceversa to exclude a signal hypothesis at 95% C.L. , 𝑝 = 0.05 corresponds to 𝑍 = 1.64.

…where Φcf is the inverse of the c.d.f and is called quantile of the Standard Gaussian.

𝐺 𝑥 0,1

0
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In the case of a single parameter of interest (the strength parameter 𝜇) it is possible to find an approximate distribution for 
the profile likelihood ratio. 
Consider a test of 𝜇 which can be either 𝜇 = 0 (for discovery) or 𝜇 ≠ 0 (for upper limit) and suppose the data are distributed 
according to a strength parameter 𝜇’.

Wald (1943) showed that                                                                    [known as Wald approximation]

… where �̂� follows a Gaussian distribution with mean 𝜇’ & standard deviation 𝜎
[i.e. E �̂� = 𝜇’, 𝜎 derived from Cov. Matrix] and 𝑁 represents the data sample size.

Generally, this is introduced to quantify how sensitive we are to a potential discovery, 
e.g. by a given median significance assuming some nonzero strength parameter 𝜇’.

In the large limit sample (𝑁 → ∞) we can neglect the O ⁄1 𝑁 term:         𝒕𝝁 = −2𝑙𝑛𝜆 𝜇 ≅ (OcAO)y

zy

… and one can show that 𝒕𝝁 follows a non-central 𝜒f| distribution, with the non-centrality term being Λ = (OcO~)y

zy
:

−2𝑙𝑛𝜆 𝜇 =
(𝜇 − �̂�)|

𝜎| + O ⁄1 𝑁

p-value & Statistical Significance - II 

𝒇 𝒕𝝁, 𝜦 ≅
1
2𝜋

S
1

2 𝒕𝝁
S 𝑒 ⁄cf |( 𝒕𝝁� �)y + 𝑒 ⁄cf |( 𝒕𝝁c �)y

𝑓 𝑡O, 𝜇′

median 𝑡O, 𝜇′
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p-value & Statistical Significance - III 

It can be checked […] that the cumulative distribution of 𝒕𝝁 is:

In the special case 𝜇 = 𝜇′ (and thus Λ = 0) … 𝒕𝝁 follows a central 𝜒f| distribution [a result shown earlier by Wilks (1938)] :

𝒇 𝒕𝝁|𝝁 ≅
1
2𝜋

S
1

2 𝒕𝝁
S 𝑒 ⁄cf | 𝒕𝝁

y
+ 𝑒 ⁄cf | 𝒕𝝁

y
=

1
2𝜋

S
1

2 𝒕𝝁
S 2𝑒c ⁄f |YZ =

1
2𝜋

S
1
𝒕𝝁
S 𝑒c

f
| YZ ≡

1
2𝜋

S
1
𝒕𝝁
S 𝑒c

f
| 𝒕𝝁

y

where Φ is the c.d.f. of the standard Gaussian𝑭 𝒕𝝁|𝝁 ≅ 2Φ 𝑡O − 1

The p-value of a hypothetical value of 𝜇 for an observed value of 𝒕𝝁 is:

𝑝O = X
YZ,[\]

^

𝑓 𝑡O 𝜇 𝑑𝑡O = 1 − X
c^

YZ,[\]

𝑓 𝑡O 𝜇 𝑑𝑡O = 1 − 𝐹 𝑡O|𝜇 ≅ 2 1 − Φ 𝑡O

… and the significance corresponding to the p-value is, by rewriting the expression 𝑍 = Φcf 1 − 𝑝d :

𝒁𝝁 = Φcf 1 − 𝑝O = Φcf 1 − 2 1 − Φ 𝑡O = Φcf 1 − 2 + 2Φ 𝑡O = 𝜱c𝟏 𝟐𝜱 𝒕𝝁 − 𝟏

= Φcf 2Φ 𝑡O − 2 S f
|
= Φcf 2Φ 𝑡O − 2Φ 0 = 2 S ΦcfΦ 𝑡O − ΦcfΦ 0 = 2( 𝑡O − 0) ≡ 2 𝑡O…that can be further simplified:

… where… 𝒕𝝁 = −2𝑙𝑛𝜆 𝜇
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A new test statistic for 𝜇 ≥ 0

We often assume that the presence of a signal can only increase the mean event rate beyond what is expected from bkg alone,
namely 𝜇 ≥ 0. To take this into account we need to introduce a new test statistic denoted as �𝑡O. 
For a model where 𝜇 ≥ 0, if one finds data such that �̂� < 0 (�̂� is the effective estimator, that can be negative), then the best 
level of agreement between data and any physical value of occurs for 𝜇 = 0. Thus, the new test statistic is defined as follows:

�𝑡O = −2𝑙𝑛 �𝜆 𝜇 =

−2𝑙𝑛
ℒ(𝜇,

��⃗𝜃(𝜇))

ℒ(�̂�, �⃗𝜃)

−2𝑙𝑛
ℒ(𝜇, �⃗𝜃(𝜇))

ℒ(0, �⃗𝜃(0))
, �̂� < 0

, �̂� ≥ 0

Again (as done with 𝑡O) we can quantify the level of disagreement 
between data & the hypothesized value of 𝜇 with the p-value … 𝑝O = X

�YZ,[\]

^

𝑓 �𝑡O 𝜇 𝑑 �𝑡O
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Test statistic for discovery of a positive signal - I 

An important special case of the statistic �𝑡O is used to test 𝜇 = 0 in a class of model where we assume 𝜇 ≥ 0:
rejecting the 𝜇 = 0 hypothesis effectively leads to the discovery of a new signal.

For this important case the special notation �̃�O�� ≡ �𝑡� = 𝑞� is used. Using the �𝑡O definition with 𝜇 = 0 we can write:   

𝑞� = �𝑡� = −2𝑙𝑛 �𝜆 0 = 𝜆 0 = 𝜆 𝜇 = 0 =
ℒ(0,

��⃗𝜃(0))

ℒ(�̂�, �⃗𝜃)

−2𝑙𝑛𝜆(0)

, �̂� < 0

, �̂� ≥ 0

0

where, of course,
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Test statistic for discovery of a positive signal - I 

An important special case of the statistic �𝑡O is used to test 𝜇 = 0 in a class of model where we assume 𝜇 ≥ 0:
rejecting the 𝜇 = 0 hypothesis effectively leads to the discovery of a new signal.

For this important case the special notation �̃�O�� ≡ �𝑡� = 𝑞� is used. Using the �𝑡O definition with 𝜇 = 0 we can write:   

𝑞� = �𝑡� = −2𝑙𝑛 �𝜆 0 = 𝜆 0 = 𝜆 𝜇 = 0 =
ℒ(0,

��⃗𝜃(0))

ℒ(�̂�, �⃗𝜃)

−2𝑙𝑛𝜆(0)

, �̂� < 0

, �̂� ≥ 0

0

where, of course,

Note that the difference with the case of the test statistic 𝑡�, also used to test 𝜇 = 0, is that in that case one may reject the
𝜇 = 0 hypothesis  for either an upward or a downward fluctuation. This is appropriate when a (new) phenomenon could lead 
to an increase or decrease in the number of events found (in other word in a counting event rate). 
More typically, in an invariant mass spectrum, the appearance of a resonance/peak/structure can be associated to an upward 
fluctuation (if bkg has to mimic this excess found in the data distribution). In the latter case assuming 𝜇 ≥ 0 makes sense.

When using 𝑞�, however, we consider the data to show lack of agreement with the bkg-only hypothesis only if �̂� > 0.
Namely a value of �̂� below 0 may indeed constitute evidence against the bkg-only model but this type of discrepancy 
does not show that the data contain signal events, but rather would point to some systematic errors/effects. 
However typically we assume that systematic uncertainties are dealt with by the nuisance parameters.
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Assuming the validity of the Wald approximation, written 
with 𝜇 = 0, and in the large limit sample (𝑁 → ∞) one has:

Test statistic for discovery of a positive signal - II 

To quantify the level of disagreement between the data and the 𝜇 = 0 hypothesis of using the observed value of 𝑞� …
… we compute the p-value similarly to what done previously with 𝑡O :

𝑞� = X
��,[\]

^

𝑓 𝑞� 0 𝑑𝑞�
value of the test statistic observed in the data

p.d.f. of the statistic 𝑞� under assumption of bkg-only hypothesis (𝜇 = 0) 

𝑞� =
−2𝑙𝑛𝜆(0) ≅

�̂�|

𝜎|

0
… where �̂� follows a Gaussian distrib. 
with mean 𝜇′ and standard deviation 𝜎

, �̂� ≥ 0

, �̂� < 0

For the special case of 𝜇′= 0 (= 𝜇) … the p.d.f. reduces to the following easy form: 𝑓 𝑞� 0 = f
|
𝛿 𝑞� + f

|
f
|�
S f

𝒒𝟎
S 𝑒c

�
y ��

delta function at 0

equal mixture 

1 d.o.f. chi-square distrib.
1
2𝜒f

|

The corresponding cumulative distribution of 𝒒𝟎 is (can be checked):  

𝐹 𝑞�|0 ≅ Φ 𝑞�
called “half chi-square” distribution
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Test statistic for discovery of a positive signal - III 

Now the p-value of a hypothetical value of 𝜇 for an observed value of 𝒒𝒐 is :

𝑝� = X
��,[\]

^

𝑓 𝑞� 0 𝑑𝑞� = 1 − X
c^

��,[\]

𝑓 𝑞� 0 𝑑𝑞� = 1 − 𝐹 𝑞�|0 ≅ 1 − Φ 𝑞�

… and the significance corresponding to this p-value is, 
by rewriting the expression 𝑍 = Φcf 1 − 𝑝d :

𝑝�

𝑍� = Φcf 1 − 𝑝� ≅ Φcf 1 − 1 + Φ 𝑞� = Φcf Φ 𝑞� = 𝑞�

…where 𝑞� is the test statistic under assumption of bkg-only hypothesis (𝜇 = 0), namely 𝑞� = �̃�O��, 
with �̃�O = 𝒕𝝁 = −2𝑙𝑛𝜆 𝜇 under the assumption that 𝜇 ≥ 0.

Thus: under the assumption that 𝜇 ≥ 0 : 𝑞� = 2 −𝑙𝑛ℒ 𝜇 = 0, ��𝜃 − −𝑙𝑛ℒ(�̂� ≥ 0, �𝜃) ≡ 2 [𝑁𝐿𝐿0 − 𝑁𝐿𝐿1] &(*) 𝑍� ≅ 𝑞� = 2(𝜆�− 𝜆f)

in the large limit sample (𝑁 → ∞) & in the Wald approximation and for Wilks’ theorem (assuming its application conditions hold). 

With these assumptions, the asymptotic form of the p.d.f. of the test statistic 𝑞� is: 𝑓 𝑞� 𝜇 = 0 = f
|
𝛿 𝑞� + f

|
𝜒f|

𝜆� ≡ 𝑁𝐿𝐿0 = −𝑙𝑛 (Likelihood for the null hypothesis/bkg-only (𝜇 = 0))(*) using the simplified notation:
𝜆f ≡ 𝑁𝐿𝐿1 = −𝑙𝑛 (Likelihood for the hypothesis/sig+bkg (𝜇 ≥ 0))

(note: this is eq.52 of Cowan et al.)
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PART-2 / Computational aspects

A.Pompili - SDAL course - Exercise 11
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The (Gauss) error function erf is a special function (i.e. a complex function of a complex number 𝑧): 

Computational aspects of the Statistical Significance - I 

The erf	 is widely used in statistical computations where it’s known as the standard normal cumulative probability.
It’s important to clarify the link between the normal c.d.f. and the erf, since the former is often expressed in terms 
of the latter (I report the result here, see next slide for the explanation):

erf 𝑧 =
2
𝜋
X
�

¡
𝑒c¢y 𝑑𝑦 = X

c¡

¡ 1
𝜋
𝑒c¢y 𝑑𝑦

…but in many applications the function argument 𝑧 is a real number (and also the function is real).

Note that for the Gaussian G 𝑥 = f
|�Sz

𝑒c
�
y S

¥¦Z
§

y

in the case for which 𝜇 = 0 and 𝜎 = f
|

one gets �̈� 𝑥 =
1
𝜋
𝑒c © y

(which is not the standard Gaussian!)

Φ 𝑧 = X
c^

¡
𝐺 𝑥 0,1 𝑑𝑥 =

1
2𝜋

X
c^

¡
𝑒c ⁄©y |𝑑𝑥

(c.d.f. of the standard Gaussian)

erf 𝑧 = 2Φ 𝑧 2 − 1
1 + erf 𝑧

2
= Φ 𝑧 2

A.Pompili / SDAL-11



Computational aspects of the Statistical Significance - II 

https://stats.stackexchange.com/questions/187828/how-are-the-error-function-and-standard-normal-distribution-function-related

A.Pompili / SDAL-12



Computational aspects of the Statistical Significance - III 

It is possible - again - to extract the argument/variable:  

Φ 𝑍 = 1 − 𝑝d ⟹ 𝑍 = Φcf 1 − 𝑝d Φ 𝑍 2 =
1 + erf 𝑍

2 ⟹
𝑍
2
=
1
2Φ

cf 1 + erf 𝑍 ⇔ 𝑍 =
1
2
Φcf 1 + erf 𝑍

It is also useful to introduce the complementary error function erfc : erfc 𝑍 = 1 − erf 𝑍

It can be also useful the property that the error function is an odd function:  erf −𝑍 = −erf 𝑍

This definition implies:       erf 𝑍 = 1 − erfc 𝑍 and 1 + erf 𝑍 = 2 − erfc 𝑍

𝑍 =
1
2
Φcf 2 − erfc 𝑍

In the next slide I report all the mathematical expressions that work like convertion relations between Φ 𝑍 and erf 𝑍
(found on the web). We wil see later that they are useful to calculate explicitely the Statistical Significances.
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Computational aspects of the Statistical Significance - IV 

A.Pompili / SDAL-14

(the expressions pointed out with arrows are those that we use) 



PART-3 / Estimation implemented at code level

A.Pompili - SDAL course - Exercise 11
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The code is in the macro myGenExpGausStatSignif.C and can be executed in the following way

How to execute the code

# of generated events

# of bins needed to display the data generated unbinned 

the fraction of signal events is decided (hardwired) in the code; 
default is 5-per-mill so to get a statistical significance for the signal of about 5s
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What kind of generated data?

The generation model/shape can remind to someone something already seen “around” :
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What the code does?  - I 

Configuration & data generation initial part:

Gaussian model for the signal

Exponential model for the bkg

generated signal fraction = 0.5%

the strength parameter (signal yield)  𝜇 ≥ 0

no need for 
the histogram

generation
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What the code does?  - II 

After the first part of generation, the code performs a sequence of 3 fits:
1) fully free fit Sig+Bkg (signal modelled with a full free Gaussian)
2) constrained fit Sig+Bkg (signal modelled with a Gaussian with mass and width settled; signal yield 

free)
3) bkg-only fit (signal yield constrained to 0)

I overall generate 100K events with 500 signal events 
[gaussian model with: width = known “mass” resolution (0.4) and known “mass” (26); 
background is exponential and its parameters are the nuisance ones].

When estimating the local statistical significance of the signal, the signal yield will be the only free parameter of interest:
It will be free (but costrained to be positive) in Fit-2 and set to 0 in Fit-3.
Since it is the local SS to be estimated, it is indeed possible to …
- set the gaussian width to the resolution that typically one knows from simulation studies, and …
- set the mass to the nominal (generated) mass since the resonance/particle/state is assumed to be known
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What the code does?  - III 

Fit-1: S+B fully free
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What the code does?  - IV 

Fits 2 & 3 part:

Fit-2: S+B (S constrained)

Fit-3: B-only (S=0)



𝑆𝑖𝑔 𝜇 ≥ 0 + 𝐵𝑘𝑔 FIT MODEL 𝐵𝑘𝑔 − 𝑜𝑛𝑙𝑦 FIT MODEL 𝜇 = 0

What the code does?  - V 

The results from Fits 2&3 are:

Fit-2: S+B (S constrained) Fit-3: B-only
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What the code does?  - VI 

Finally the code provides, using the information of Fit-2 & Fit-3, 3 different ways to calculate the local statistical significance [“methods” 1,2 & 3]: 
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The output of the last part is below and provides the numerical example:

Local statistical significance estimation

“method”-1

“method”-2
“method”-3

Note : of course the 3 ways to estimate the stat. signif. provide the same numerical result, as it should be expected.

just a check

Advice: - the 1st way is then preferred because it’s the easiest; 

- the 3rd is to be preferred to the 2nd because it performs better numerically when significances are large (𝑍� ≫ 5σ). 
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The implementation of the 3 “methods” are illustrated in the following slides!



A.Pompili / SDAL-24

Local statistical significance estimation: “method”-1 

The first way to estimate it is simply the Cowan (et al.)’s “formula” [eq. (52) of their paper]: 𝑍� = 𝑞�
To recap about the asymptotic formula:

𝑝� = X
��,[\]

^

𝑓 𝑞� 0 𝑑𝑞� = 1 − X
c^

��,[\]

𝑓 𝑞� 0 𝑑𝑞� = 1 − 𝐹 𝑞�|0 ≅ 1 − Φ 𝑞�

𝐹 𝑞�|0 ≅ Φ 𝑞�The corresponding cumulative distribution of 𝒒𝟎 is :  

Therefore:

Under the assumption that 𝜇 ≥ 0 : 𝑞� = 2 −𝑙𝑛ℒ 𝜇 = 0, ��𝜃 − −𝑙𝑛ℒ(�̂� ≥ 0, �𝜃) ≡ 2 [𝑁𝐿𝐿0 − 𝑁𝐿𝐿1]

In the large limit sample (𝑁 → ∞) & in the Wald approximation and for Wilks’ theorem (assuming its applicability conditions hold)

the asymptotic form of the p.d.f. of the test statistic 𝑞� is: 𝑓 𝑞� 𝜇 = 0 = f
|
𝛿 𝑞� + f

|
f
|�
S f
𝒒𝟎
S 𝑒c

�
y �� = f

|
𝛿 𝑞� + f

|
𝜒f|

𝑍� = Φcf 1 − 𝑝� ≅ Φcf 1 − 1 + Φ 𝑞� = Φcf Φ 𝑞� = 𝑞�… and :

stat_signif = sqrt( 2.*(min_NLL_bkgOnly - min_NLL_total));In the code:

𝑞�,UVW
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Local statistical significance estimation: introduction to “methods”-2&3 - I

In both ways (2&3) the p-value is explicitely calculated and for this we need to use the function TMath::Prob( 𝒒𝟎,𝒐𝒃𝒔,1):   

= 1 − erf
𝑞�
2

TMath::Prob( 𝒒𝟎,1)
(with n.d.f.=1):
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Local statistical significance estimation: introduction to “methods”-2&3 - II

“Method”-2 & : “Method”-3 are two equivalent ways to …
… calculate explicitely the local statistical significance starting from:

TMath::Prob( 𝒒𝟎,1)

𝑝� = X
��,[\]

^

𝑓 𝑞� 0 𝑑𝑞� = 1 − X
c^

��,[\]

𝑓 𝑞� 0 𝑑𝑞� = 1 − 𝐹 𝑞�|0 ≅ 1 − Φ 𝑞�Since… (discussed in slide 9)

Thus: 𝑝� ≅ 1 − Φ 𝑞� = 1 −
1
2 1 + erf

𝒒𝟎
2

= 1 −
1
2 −

1
2 erf

𝒒𝟎
2 =

1
2 1 − erf

𝒒𝟎
2

≅ 2𝑝�

One of the expressions relating the Φ with the erf is: Φ 𝑥 =
1
2 1 + erf

𝑥
2

Φ 𝒒𝟎 =
1
2 1 + erf

𝒒𝟎
2

𝒙 = 𝒒𝟎

𝑍� = Φcf 1 − 𝑝� …where… 𝑝� ≅
1
2 1 − erf

𝒒𝟎
2

(as discussed in next slides)
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Local statistical significance estimation:  “method”-2 

“Method”-2 : 𝑍� = Φcf 1 − 𝑝� = 2 S erfcf 2 1 − 𝑝� − 1 = 2 S erfcf 1 − 2𝑝�

Φcf 𝑥 = 2 S erfcf 2𝑥 − 1By using…

𝑥 ≡ 1 − 𝑝�

…where…

(one of the “conversion” formulas in slide 14)

2𝑝� ≅ 1 − erf
𝒒𝟎
2

to be implemented in the code as :

stat_signif = sqrt(2.)*TMath::ErfInverse(1. - TMath::Prob( 2.*(min_NLL_bkgOnly - min_NLL_total) , 1)  )
2𝑝�

𝒒�,UVW
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Local statistical significance estimation:  “method”-3 

“Method”-3 :

By using… (one of the “conversion” formulas in slide 14)Φcf 1 − ©
|
= Φ´

cf ©
|
= 2 S erfccf 𝑥

𝑥 = 2𝑝�

𝑍� = Φcf 1 − 𝑝� = 2 S erfccf 2𝑝�

𝑍� = Φcf 1 − 𝑝� = 2 S erfccf 2𝑝� = 2 S erfcf 1 − 2𝑝� = Φcf 1 − 𝑝� = 𝑍�

…where… 2𝑝� ≅ 1 − erf
𝒒𝟎
2

Reverting the logic it can be shown that the two methods are equivalent starting from their final expression:

to be implemented in the code as :

stat_signif = sqrt(2.)*TMath::ErfcInverse(TMath::Prob(2.*(min_NLL_bkgOnly - min_NLL_total),1))                                                                                                                           

erfcf 𝑥 =
1
2
Φcf 1

2 +
𝑥
2

erfccf 𝑦 =
1
2
Φcf 1 −

𝑦
2

𝑦 = 1 − 𝑥 𝐞𝐫𝐟𝐜c𝟏 𝟏 − 𝒙 =
1
2
Φcf 1 −

1 − 𝑥
2 =

1
2
Φcf 1

2 +
𝑥
2 = 𝐞𝐫𝐟c𝟏 𝒙


