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The basis of the estimation of the local ") statistical significance of a physics signal

A.Pompili - SDAL course - Exercise 11

(*) “local” implies that the physical signal is already known and we are confirming it;
in the case of presence of a new physical signal we need to consider the Look-Elsewhere-Effect and
we would have to compute a “global” statistical significance which requires more effort (beyond the scope of this course)
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Profile Likelihood Ratio & Test statistic

W : signal strength of hypothesized signal; it can be considered properly a signal yield only when u is constrainedtobe u = 0.

To test a hypothesized value of u ... we consider the Profile Likelihood Ratio (here 6 represents a set of nuisance parameters):

a2 A 3 1 A )
] A(0) E\L(ﬂ, 0): ...Wwhere 0 are the values of 0 that maximize L for a specified u
\ H) = ====== 2 5

L({,0) |..where it and 6 are the values maximizing the Likelihood function L

_________________ » Profile Likelihood Function

. _ . L) low A = poor
Intuitively it measures the level of agreement between data and the hypothesized value of u: A(u) = —
L) high A = good
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Profile Likelihood Ratio & Test statistic
W : signal strength of hypothesized signal; it can be considered properly a signal yield only when u is constrainedtobe u = 0.

To test a hypothesized value of u ... we consider the Profile Likelihood Ratio (here 6 represents a set of nuisance parameters):

o

a2 A 3 1 A )
] A(0) E\L(ﬂ, 0): ...Wwhere 0 are the values of 0 that maximize L for a specified u
\ H) = ====== 2 5

L({,0) |..where gand 8 are the values maximizing the Likelihood function L

~ -

» Profile Likelihood Function

Intuitively it measures the level of agreement between data and the hypothesized value of u: A(u) =

L) {low A = poor
=

L(@) high 1 = good
Test statistic : = —2lnA(u) = [lnL(u, 0) —InL(d, 9)] =2 —InL (u, 0) ( InL(a, 9))] ,LANLL
NLLO NLL1 ANLL = NLLO — NLL1

where NLLO(NLL1) indicates the Neg-Log-Likelihood associated to the null-0 (alternative-1) hypotheses

This test statistic can be used for a test of u = 0 for purposes of establishing the existence of a signal process.

In the case of u = 0, NLLO(NLL1) indicates the bkg—-only(sig+bkg) hypothesis.
The sig+bkg hypothesis can be represented by either u = 0 or u # 0. We will consider both cases in the following.

Note: A(u) has the important advantage that - for a sufficiently large event sample - its distribution approaches a ...
... well defined form (according to Wilks” Theorem) [see later]. This is true also in presence of adjustable nuisance parameters.
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p-value & Statistical Significance - |

In general, by denoting with f the p.d.f. of the test statistic ¢,
the p-value of the hypothesized value of u for an observed ¢, (denoted as t,, ,5) can be expressed as:

o
From: EPJ C 71 (2011) 1554

Pu = J f(tulﬂ)dtu

tuobs value of the test statistic observed in the data

In HEP we usually convert the p-value into an equivalent significance (Z), defined such \
that a Gaussian distributed variable x found Z standard deviations above its null mean
has an upper-tail probability equal to p (the one-sided definition is used here as it gives
Z=0forp=0.5).

Once introduced the cumulative distribution ® (c.d.f.) of the Standard Gaussian one has: 3 G(x]0,1) \
Z [o'e) ’ /
d(2) = f G(x]|0,1)dx =1 —j G(x|0,1)dx =1—p, ,
— 00 Z

...thus, the following expression for Z can be derived: Z = ®71(1 — p,) 0

k

..where ®~1 is the inverse of the c.d.f and is called quantile of the Standard Gaussian. (b)
Fig. 1 (a) Nlustration of the relation between the p-value obtained
from an observed value of the test statistic 7,,. (b) The standard nor-
In HEP the Observation/discovery requires at Ieast Z = 5 namEIy p = 2_ 87 . 10_7" mal distribution ¢ (x) = (1/+/27) exp( v*/2) showing the relation be-

tween the significance Z and the p-value

Viceversa to exclude a signal hypothesis at 95% C.L., p = 0.05 corresponds to Z = 1.64.
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p-value & Statistical Significance - Il

In the case of a single parameter of interest (the strength parameter u) it is possible to find an approximate distribution for

the profile likelihood ratio.

Consider a test of u which can be either u = 0 (for discovery) or u # 0 (for upper limit) and suppose the data are distributed

according to a strength parameter u'.

A2
Wald (1943) showed that —2InA(u) = M + O(l/\/ﬁ) [known as Wald approximation]

... Where [i follows a Gaussian distribution with mean y’ & standard deviation o
[i.e. E[i]] = i, o derived from Cov. Matrix] and N represents the data sample size.

Generally, this is introduced to quantify how sensitive we are to a potential discovery,

(e Ju)

median(tﬂ @)

e.g. by a given median significance assuming some nonzero strength parameter u’.

_mt\2
In the large limit sample (N — o0) we can neglect the 0(1/\/17) term: = —2InA(u) = M

... and one can show that t,, follows a non-central x% distribution, with the non-centrality term being A =

f(tﬂ; A) = _1/2(\/E+\/K)2 + e—l/z( tﬂ_ﬂ)Z‘l

ﬁzrl

(u—pn?
o2
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p-value & Statistical Significance - 1ll

In the special case u = u’ (and thus A = 0) ... t, follows a central x+ distribution [a result shown earlier by Wilks (1938)] :

1

1/2(\/—) +e 1/2(\/_)]— 1 .2e~ /2ty — 1 . 1 e 2t = . . 1 .e_%(\/a)z
VIt 2,/ty Vom [t Va2m [t

f(tﬂlﬂ) =

\/_HZ\/_I

It can be checked [...] that the cumulative distribution of £, is: F(tﬂm) = ZCD(‘/tH) — 1 where @ is the c.d.f. of the standard Gaussian
\

\
\

The p-value of a hypothetical value of u for an observed value of ¢, is:
\

o tu,obs '
b= | faban=1- [ flelnde, =1-F(ol) = 2(1- o(/5,))
tu,obs —

... and the significance corresponding to the p-value is, by rewriting the expression Z = ®~1(1 — p,):

Z, =0 (1-p,) = (1 —2(1- cb(\/g))) =07 (1-2+20(/5,)) = 271 (20(/T,) — 1) ..where.. t, =—2InA(x)
.that can be further simplified: = @~ (20( ;) = 2-5) = @71 (20(/E;) — 20(0)) = 2 - (@71 @(/F,) — @7 @(0)) = 2( /&, - 0) = 2./,
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A new test statistic for u > 0

We often assume that the presence of a signal can only increase the mean event rate beyond what is expected from bkg alone,
namely 1 = 0. To take this into account we need to introduce a new test statistic denoted as t]

For a model where u = 0, if one finds data such that fi < 0 ({i is the effective estimator, that can be negative), then the best
level of agreement between data and any physical value of occurs for u = 0. Thus, the new test statistic is defined as follows:

C Lué .
BRI s
- - L(4,6)
t, = —2lnA(u) = - R
L(u,6 A
oI (1 3(u)) . 4<0
£(0,6(0))
Again (as done with t,;) we can quantify the level of disagreement b

between data & the hypothesized value of u with the p-value ... Py = J f( |,U)dt

t”,obs
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Test statistic for discovery of a positive signal - |

An important special case of the statistic t] is used to test u = 0 in a class of model where we assume u = 0:
rejecting the u = 0 hypothesis effectively leads to the discovery of a new signal.

For this important case the special notation Eu=0 = t, = qo is used. Using the i“; definition with u = 0 we can write:

—2lnA(0) A=0 .
£(0,6(0))

qo = tg = —2InA(0) = where, of course, 1(0) = A(u = 0) = =
L(, 0)

0 ., 4<0
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Test statistic for discovery of a positive signal - |

An important special case of the statistic f:l is used to test u = 0 in a class of model where we assume u = 0:
rejecting the u = 0 hypothesis effectively leads to the discovery of a new signal.

~

For this important case the special notation Eu=o = ty = (g is used. Using the i“,: definition with u = 0 we can write:

o

qo = to = —2InA(0) =+

—2InA(0)

)

L(0, 3(0))

where, of course, 1(0) = A(u = 0) = 5
L(j,0)

Note that the difference with the case of the test statistic £, also used to test u = 0, is that in that case one may reject the
1 = 0 hypothesis for either an upward or a downward fluctuation. This is appropriate when a (new) phenomenon could lead

to an increase or decrease in the n

umber of events found (in other word in a counting event rate).

More typically, in an invariant mass spectrum, the appearance of a resonance/peak/structure can be associated to an upward
fluctuation (if bkg has to mimic this excess found in the data distribution). In the latter case assuming u = 0 makes sense.

When using q,, however, we consider the data to show lack of agreement with the bkg-only hypothesis only if i > 0.
Namely a value of [i below 0 may indeed constitute evidence against the bkg-only model but this type of discrepancy

does not show that the data conta
However typically we assume that

in signal events, but rather would point to some systematic errors/effects.

systematic uncertainties are dealt with by the nuisance parameters.
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Test statistic for discovery of a positive signal - Il

To quantify the level of disagreement between the data and the u = 0 hypothesis of using the observed value of g, ...
.. we compute the p-value similarly to what done previously with ¢,

° TSR TTTTTTTT *p.d.f. of the statistic gy under assumption of bkg-only hypothesis (u = 0)
Qo = {\f(%m)d%
90,0b5 4 value of the test statistic observed in the data " |
Assuming the validity of the Wald approximation, written —2InA(0) = M_z fa=0 -
with 4 = 0, and in the large limit sample (N — o) one has: g, = .. where fi follows a Gaussian distrib.
0 <0 with mean u’ and standard deviation o
____e_9_U_a| ml_x_t_u_r_e ________________
. . {1 .1 1 1 _1t
For the special case of u'=0 (= u) ... the p.d.f. reduces to the following easy form:  f(q,|0) —:—5(q0) i——— . —. ¢ 270
12 \2 V2T o :
delta functionat 0 1 d.o.f. chi-square distrib.
1
2
§X1
The corresponding cumulative distribution of q¢ is (can be checked): \ v /

called “half chi-square” distribution

F(qol0) = ®(\/q0)

A.Pompili / SDAL-8



Test statistic for discovery of a positive signal - lll

Now the p-value of a hypothetical value of u for an observed value of q, is :
f(q |0)
CIO obs ."" qDobs
f F(q0l0)dgo = 1 - j F(9010)ddo = 1~ F(qol0) = 1 — B(/3o)
p-value
qo,0bs
... and the significance corresponding to this p-value is, Po\ - /
by rewriting the expression Z = ®~1(1 — p,):

9
Zo= 0 (1-p)= &7 (1-1+0(yGp)) = @7 ®(y) = @g  (note: this is eq.52 of Cowan et al )

...where q is the test statistic under assumption of bkg-only hypothesis (u = 0), namely g, = Eu=0'
with £, = £, = —2InA(u) under the assumption that u > 0.

Thus:| under the assumptionthat u = 0: gy = 2 [—lnL (,u =0, §) —(=InL(a =0, é))] = 2 [NLLO — NLL1] &%) Z; = \/qq = /2(29- 14)
in the large limit sample (N — o) & in the Wald approximation and for Wilks’ theorem (assuming its application conditions hold).

With these assumptions, the asymptotic form of the p.d.f. of the test statistic qg is: f(qolu = 0) = %5(q0)+ %)(12

Ao = NLLO = —In (Likelihood for the null hypothesis/bkg-only (1 = 0))

(*) using the simplified notation:
Ay = NLL1 = —In (Likelihood for the hypothesis/sig+bkg (1 = 0))
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PART-2 / Computational aspects

A.Pompili - SDAL course - Exercise 11
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Computational aspects of the Statistical Significance - |
The (Gauss) error function erf is a special function (i.e. a complex function of a complex number z):

2 z 2 z 1 2
erf(z) = ﬁ e dy = —ne dy
0 —Z

...but in many applications the function argument z is a real number (and also the function is real).

_1(x=iy? - 1
Note that for the Gaussian G(x) = \/%ae 2 ( a ) in the case for whichuy = 0and o = \/% onegets G(x) = \/—_e_ (x0)*
’ T

(which is not the standard Gaussian!)

The erf is widely used in statistical computations where it's known as the standard normal cumulative probability.
It's important to clarify the link between the normal c.d.f. and the erf, since the former is often expressed in terms
of the latter (I report the result here, see next slide for the explanation):

d(z) = fz G(x]0,1)dx =\/%_ng e~ X2y =) erf(z) = 20(zV2) -1 4= 1t ezrf(z) = ®(zV2)

(c.d.f. of the standard Gaussian)
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By definition, the Error Function is

Erf(x) = % /0 e Fdr,

Writing 12 = z%/2 implies t = z/4/2 (because t is not negative), whence df = dz/4/2. The
endpoints f = 0 and t = x become z = 0 and z = x4/2. To convert the resulting integral
into something that looks like a cumulative distribution function (CDF), it must be
expressed in terms of integrals that have lower limits of —00, thus:

Erf(x) = L/Xﬁe‘zz’zdz—Z L/Xﬁe"’z’zdz—L/o =72z
\/2-;; 0 \/27 —00 \/57_5 -0 .

Those integrals on the right hand size are both values of the CDF of the standard Normal
distribution,

1 Yo en
O(x) = — e dz.
) m[w

Specifically,

Erf(x) = 2(®(xy/2) — ©(0)) =2 (tb(x\/Z) - %) = 20(x4/2) - 1.

This shows how to express the Error Function in terms of the Normal CDF. Algebraic
manipulation of that easily gives the Normal CDF in terms of the Error Function:

1 + Erf(x/v2)

O(x) = >

This relationship (for real numbers, anyway) is exhibited in plots of the two functions. The
graphs are identical curves. The coordinates of the Error Function on the left are converted
to the coordinates of ® on the right by multiplying the x coordinates by \/f, adding 1 to
the y coordinates, and then dividing the y coordinates by 2, reflecting the relationship

Erf(x) + 1

O(x4/2) = >

in which the notation explicitly shows these three operations of multiplication, addition, and
division.

Erf L3
1F 1
:
3 1 1 3
N L 1 3 2
7 7 &
a1k B — 1 2 3

https://stats.stackexchange.com/questions/187828/how-are-the-error-function-and-standard-normal-distribution-function-related
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Computational aspects of the Statistical Significance - lll

It is possible - again - to extract the argument/variable:

1+ erf(Z) Z 1 1
_ 1 _ _ 11 _ _ I _ o1
(2 =1-p; = Z=0"1-py) | &(ZV2) z = 5=3¢ (1+erf(2)) & Z 5% (1 + erf(2))

It is also useful to introduce the complementary error function erfc : erfc(Z) =1 —erf(Z)
This definition implies:  erf(Z) =1 —erfc(Z) and 1+ erf(Z) =2 —erfc(Z) ---------

v

= iCI>‘1(2 — erfc(Z))
V2

It can be also useful the property that the error function is an odd function: erf(—2) = —erf(Z)

In the next slide | report all the mathematical expressions that work like convertion relations between @(Z) and eff(Z)
(found on the web). We wil see later that they are useful to calculate explicitely the Statistical Significances.
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Relating ® and erf

There’s nothing profound here, just simple but error-prone calculations that
I've done so often that I decided to save the results.

Let @, ,(x) be the CDF of a normal random variable with mean g and
standard deviation o.

P, () = \/21—"0 /_m exp (-(t;a';)z) dt

Let @(x) with no subscripts be the CDF of a standard normal random vari-
able, 2.e. p =0 and o = 1. Let ®,(z) = 1 — ®(z), the complementary CDF of
a standard normal.

The error function is defined as

2 x
erf:r::—/ex —t%) dt
and the complementary error function is defined as
_ 2 2y 4
erfe(x) = ﬁ/x exp(—t°)dt =1 — erf(x).

These relations below follow directly from the definitions.

---------------------------------------»

(the expressions pointed out with arrows are those that we use)

*()
(u(3) &
20(V2zx) — 1

V2erf 12z —1) <:|

b (1)
% (1+erf (I\/—_z:))
V2oerf 122 — 1)+ p
o (3

¢ (1 - x)

\/Eerfc_la;2x) ] <:I
24,.(V/2z)

s (3)
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PART-3 / Estimation implemented at code level

A.Pompili - SDAL course - Exercise 11
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How to execute the code

The code is in the macro myGenExpGausStatSignif.C and can be executed in the following way

[pompili@pompilic? exp-gauss]$ root -1
root [0] L myGenExpGausStatSignif ,C++
Info in <TUnixSystem::ACLiC>: creating shared library Zhome/pompili/SDAL-2022/Esercitazione-11/exp-qauss/ ., /myGenExpGausStatSignif_C,so

root [1] myGenExpGausStatSignif("100000",100

Events = 100000
sigCand =500 +--====~- - \
bkgCand =33500 # of bins needed to display the data generated unbinned

\

1

I

|

msRand = 1671477488657 |

-: # of generated events
|}

\

- » the fraction of signal events is decided (hardwired) in the code;
default is 5-per-mill so to get a statistical significance for the signal of about 56
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What kind of generated data?

The generation model/shape can remind to someone something already seen “around” :

%;2000 :_ CMS Preliminary —4— S/B Weighted Data
(51800f 1s=7TeV,L=5.1f" TR
N~ E is=8TeV,L=53f" .0
©1600 —
14001
P :
*51 200 =
u>J1 000 —
B 800 —
.-5) 600 =
O 400F
= O F
200
n ! | ) | )
0 120 140
m,, (GeV)
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void myGenExpGausStatSignif(TString argv, int bins){

Configuration & data generation initial part:

A.Pompili / SDAL-17

generation—>

1/

gROOT->SetStyle("Plain");

gStyle->SetOptStat(10);

gStyle->SetOptFit(111);

1/

int events = atoi(argv.Data()); // converte string "numero" in numero intero
TString name = argv;

1/

RooRealVar xvar('"xvar", "", 18., 34.);
xvar.setBins(bins);

/1

//-— BKG MODEL

1/

RooRealVar m@("me","me",-08.1, -2., 2.); 1

RooExponential myExp('"myExp","Exponential", xvar, m@); Exponentlal mOdeI for the bkg
1/

//-— SIGNAL MODEL

1/

RooRealVar meanG("meanG","Gaussian mean",26., 25., 27.);

RooRealVar sigmaG("sigmaG","Gaussian sigma/resolution",8.4,08.36,0.44); GaUSSian mOdeI for the Signal

RooGaussian myGauss("myGauss","Gaussian",xvar,meanG,sigmaG);

1/

//-- TOTAL MODEL

1/

cout << "Events = " << events << endl;

1/

//-——-suppose a signal rapresented by the 5-per-mill of the whole distribution:
double sigFrac = 0.005; <Cumum—

1/

int sigCand = sigFrac * events;

//int sigCandM = 8.1 * sigFrac * events;

//int sigCandM =8;

int sigCandP = 5 * sigFrac * events;

cout << "sigCand =" << sigCand << endl;

1/

int bkgCand = (1 - sigFrac) * events;

int bkgCandM = 8.1 % (1 - sigFrac) * events;

int bkgCandP = 5 * (1 - sigFrac) * events;

cout << "bkgCand =" << bkgCand << endl;

1/

// note that signal yield is positive by definition; generated value is given by sigCand:

RooRealVar yield_sig("yield_sig","yield of Gaussan signal component", sigCand, 8, sigCandP); -
RooRealVar yield_bkg("yield_bkg","yield of Exponential bkg component", bkgCand, bkgCandM, bkgCandP);
RooAddPdf total("totalPDF", "totalPDF", RooArgList(myGauss,myExp), RooArglList(yield_sig,yield_bkg));
1/

//--> Generating pseudo-data

TITTIETEEIEE T i iitr iy

1/

timeval trand;

gettimeofday(&trand,NULL);

long int msRand = trand.tv_sec * 108080 + trand.tv_usec / 1608;

cout << "\n-——— " << endl;

cout << "msRand = " << msRand;

cout << "\n-—————— " << endl;

RooRandom: : randomGenerator()->SetSeed(msRand);
1/

RooDataSet* data = total.generate(xvar,events);
//TH1D* histo_data = (TH1D#)data->createHistogram("histo_data",xvar,Binning(bins,xvar.getMin(),xvar.getMax())); ————fp nO nEEd for
1/

cout << * " << endl; the histogram




What the code does? -Ii

| overall generate 100K events with 500 signal events
[gaussian model with: width = known “mass” resolution (0.4) and known “mass” (26);
background is exponential and its parameters are the nuisance ones].

After the first part of generation, the code performs a sequence of 3 fits:
1) fully free fit Sig+Bkg (signal modelled with a full free Gaussian)

2) constrained fit Sig+Bkg (signal modelled with a Gaussian with mass and width settled; signal yield
free)

3) bkg-only fit (signal yield constrained to 0)

When estimating the local statistical significance of the signal, the signal yield will be the only free parameter of interest:
It will be free (but costrained to be positive) in Fit-2 and set to 0 in Fit-3.

Since it is the /ocal SS to be estimated, it is indeed possible to ...

- set the gaussian width to the resolution that typically one knows from simulation studies, and ...
- set the mass to the nominal (generated) mass since the resonance/particle/state is assumed to be known

A.Pompili / SDAL-18



Fit-1: S+B fully free

cout << "
cout << "FULLY FREE FIT :
ct ¢« f'eriminri\-——4—m4—4-4—44—---—m-———-»----——--—-- "
//

//--> Fitting pseudo-data with total model

!/

// Note that fit is EXTENDED without having to say it explicitely

//

RooAbsReal* nll_free = total.createNLL(*data,NumCPU(4));

//RooMinuit min_free(*nll_free); // changing a bit with previous exercises:

RooMinimizer min_free(*nll_free);
min_free.setMinimizerType("Minuit2");
min_free.migrad();
min_free.hesse();
RooFitResult* fitres_free
!/

TCanvas *myC = new TCanvas("RooCanvas","Roofit Canvas",
myC->cd();

!/

RooPlot* xframe_free = xvar.frame("");
xframe_free->SetTitle("");

data->plotOn(xframe_free);
total.plotOn(xframe_free,LineColor(kRed));

min_free.save();

1160, 750);

total.plotOn(xframe_free,Components(RooArgSet(myGauss)),LineColor(kGreen),LineStyle(kDashed));
total.plotOn(xframe_free,Components(RooArgSet(myExp)),LineColor(kBlue),LineStyle(kDashed));

//data->plotOn(xframe_free);
total.paramOn(xframe_free, Layout(0.6,8.9,0.9));
xframe_free->getAttText()->SetTextSize(0.083);
xframe_free->Draw();

//

myC->SaveAs("myFull_Free_Fit.png");
myC->Update();

myC->Clear();

//

What the code does? -lI

<< endl;

<< endl;
<< endl;

using Minuit2 now.

m0 =-0.099144 + 0.00074
meanG = 25.91 +0.12
sigmaG = 0.440 + 0.055
yield_bkg = 99479 + 331
yield_sig = 520 + 103

T ||I ||| I|| T ’II ||| I|’ T ‘[I I’l III [T

L
—
L
-
L
—
—
-
-
—
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Fits 2 & 3 part:

cout << "

cout << "FULL FIT with CONSTRAINED mass & width to their (knwon/generated) values, to apply Wilks Theorem " << endl;

cout << "

I

//-——— when calculating statistical significance applying Wilks theorem decomment next 4 lines:

1/

meanG.setVal(26.); // otherwise it sets to constant with the best value from previous fit.
meanG.setConstant(kKTRUE);

cout << "Setting the mass to the nominal/generated mass " << meanG.getValV() << endl;

sigmaG.setVal(®.4); // otherwise it sets to constant with the best value from previous fit.

sigmaG.setConstant(kTRUE);

cout << "Setting the Gaussian width to the mass resolution " << sigmaG.getValV() << endl;
/!

RooAbsReal* nll = total.createNLL(*data,NumCPU(4));

//RooMinuit min(#*nll); // changing a bit with previous exercises: using Minuit2
RooMinimizer min(*nll);

min.setMinimizerType("Minuit2");

min.migrad();

min.hesse();

RooFitResult* fitres = min.save();

//fitres->Print("v");

Double_t min_NLL_total = fitres->minN11();

cout << "-log(L) at minimum : value for total (sig+bkg) model :" << min_NLL_total << endl;
1/

myC->cd();

RooPlot* xframe = xvar.frame("");

xframe->SetTitle("");

data->plotOn(xframe);

total.plotOn(xframe,LineColor(kRed));
total.plotOn(xframe,Components(RooArgSet(myGauss)),LineColor(kGreen),LineStyle(kDashed));
total.plotOn(xframe,Components(RooArgSet(myExp)),LineColor(kBlue),LineStyle(kDashed));
//data->plotOn(xframe);

total.paramOn(xframe, Layout(98.6,8.9,08.9));

xframe->getAttText()->SetTextSize(0.03);

xframe->Draw();

1/

myC->SaveAs("myFull_1Ndof_Fit.png");

myC->Update();

myC->Clear();

1/

Fit-2: S+B (S constrained)

Fit-3: B-only (S=0)

cout << " " << endl;
cout << "FIT with BACKGROUND-ONLY model " << endl;

cout << " " << endl;
1

cout << "yield_sig from previous constrained fit = " << yield_sig.getValV() << endl;

yield_sig.setVal(©.08);

yield_sig.setConstant(kTRUE); //it sets the gaussian area to 8!
cout << "Setting the Gaussian area to " << yield_sig.getValV() << endl;
1/

cout << "gaussian sigma from previous fit (check that it should be ©.4) :" << sigmaG.getVal() <<endl;
1

RooAbsReal* nll_bkg_only = total.createNLL(*data,NumCPU(4));
RooMinimizer min_bkg_only(*nll_bkg_only);
min_bkg_only.setMinimizerType("Minuit2");
min_bkg_only.migrad();

min_bkg_only.hesse();

RooFitResult* fitres_bkg_only = min_bkg_only.save();

1

Double_t min_NLL_bkgOnly = fitres_bkg_only->minN11();

cout << "-log(L) at minimum : value for bkg-only model (alternative i.e setting ZER®-AREA) : " << min_NLL_bkgOnly << endl;
1/

myC->cd();

1

RooPlot* xframe_only_alt = xvar.frame("");
xframe_only_alt->SetTitle("");

data->plotOn(xframe_only_alt);
total.plotOn(xframe_only_alt,LineColor(kBlue));
total.paramOn(xframe_only_alt, Layout(8.6,0.9,08.9));
xframe_only_alt->getAttText()->SetTextSize(0.02);
xframe_only_alt->Draw();

1/

myC->SaveAs("myBkgOnly_Fit.png");

myC->Update();

myC->Clear();

1/

myC->cd();

1

A.Pompili / SDAL-20



What the code does? -V

The results from Fits 2&3 are:

%000 moO = -0.099131 + 0.00074 © % m0 = -0.098606 + 0.00073
o A yield_bkg = 99514 + 329 S"’-2000 i yield_bkg_only = 99999 + 316
51 800 — yield_sig = 484 +97 1800 ;— %{H
$1600 , S1e00— ! *{‘;@
u.|1400: Slg(,u = 0) ~+ Bkg FIT MODEL o - ';ﬁ Bkg — Only FIT MODEL (/,l = 0)
— 1400 — .
- - &t
1200 - iy,
— 1200 — ﬁéﬁ@.#
00— il 1000/ i,
800 Y 800— P,
= ~ *q.é;
600 : 600 TPt
= - e
400— : 400 e
200/ v 200
Coeovoo b o b e P b b b :|||||[||||||||||||1||||||||||||
q 8 20 22 24 26 28 30 32 34 q 8 20 22 24 26 28 30 32 34
Fit-2: S+B (S constrained) Fit-3: B-only
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Finally the code provides, using the information of Fit-2 & Fit-3, 3 different ways to calculate the local statistical significance [“methods” 1,2 & 3]:

//

cout << "

cout << "-log(L) at minimum :

cout << "-log(L) at minimum :

cout << "

//

cout << "lambda_8 :

cout <<

cout << "lambda_1 :

cout <<

cout << "g® = 2%x(lambda_® - lambda_1)

cout << "

//

cout << "

//

cout <<

//

cout << "

//

cout <<

//

cout <<

//

cout <<

//

cout <<

//

Double_t stat_signif_2 = sqrt(2.)*TMath::ErfInverse(l.-(TMath::Prob((2.*(min_NLL_bkgOnly - min_NLL_total)),1)));

cout << "STAT. SIGNIF. 2nd method = " << stat_signif_2 << " = Z@ = sqrt(2)*TMath::ErfInverse(l.-TMath::Prob(2*(min_NLL_bkgOnly - min_NLL_total),1))
b(2.*(min_NLL_bkgOnly - min_NLL_total),1))) << endl;

//

cout << "

//

cout << " STAT. SIGNIF. Method-3 (STA-SIGNIF-3)

Double_t stat_signif_3 = sqrt(2.)*TMath::ErfcInverse(TMath::Prob(2.*(min_NLL_bkgOnly - min_NLL_total),1));

cout << "STAT. SIGNIF. 3rd method = " << stat_signif_3 << " = ZB8 = sqrt(2)*TMath::ErfcInverse(TMath::Prob(2*(min_NLL_bkgOnly_alt - min_NLL_total),1))
2.%(min_NLL_bkgOnly - min_NLL_total),1)) << endl;

//

cout << "

//

THTTITEIEEEI i tititititrl

//

if (myC)

{

MINIMUM NLL for each FIT
MASS and WIDTH FIXED (i.e. 1 D.O.F.) :" << min_NLL_total << endl;

MASS and WIDTH FIXED and ZERO-AREA SET (i.e. BKG-ONLY) : " << min_NLL_bkgOnly << endl;
" << endl;

" << endl;

" << min_NLL_bkgOnly << endl;
" << endl;
" << min_NLL_total << endl;
" << endl;
" << 2.%(min_NLL_bkgOnly — min_NLL_total) << endl;
" << endl;

STAT. SIGNIF. Method-1 (STA-SIGNIF-1)

" << endl;

"STAT. SIGNIF. 1st method = Z® = sqrt(g®) i.e. eq.(52) by Cowan et al. (EPJC,2011): " << sqrt(2.*(min_NLL_bkgOnly - min_NLL_total)) << endl;

" << endl;

"2%(pB-value) = TMath::Prob((2.*(min_NLL_bkgOnly — min_NLL_total)),1) = " << TMath::Prob((2.*(min_NLL_bkgOnly - min_NLL_total)),1) << endl;
"1 - erf (sqrt(q8/2))
"p-value = 1/2%[1 - erf (sqrt(g®/2))] = " << 8.5%(1. — TMath::Erf(sqrt(2.*(min_NLL_bkgOnly - min_NLL_total)/2.))) << endl;

STAT. SIGNIF. Method-2 (STA-SIGNIF-2)

" << endl;

" << endl;

" << endl;

" << endl;

myC->Close();
delete myC;
}

//

|~

" << 1. - TMath::Erf(sqrt(2.%(min_NLL_bkgOnly - min_NLL_total)/2.)) << " = TMath::Prob((2.*(min_NLL_bkgOnly — min_NLL_total)),1)" << endl;

" << sqrt(2.)*TMath::ErfInverse(1.-(TMath::Pro

: " << sqrt(2.)*TMath::ErfcInverse(TMath::Prob(
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Local statistical significance estimation

The output of the last part is below and provides the numerical example:

====== RECAP ======

lambda_0 ¢ -783800

lambda_1 : -783813

Delta lambda = lambda_0 - lambda_1 : 12,9651

q0 = 2*(lambda_0 - lambda_1) : 25,9301 y )
70 = sartiq0d) i.e. eq.(52) by Cowan et al, : 5,0921f <" method”-1
1 - erf (sqrt{q0/2)) : 3,54005e-07 just a check

THaths :Probiq0,1) : 3,54005e-07 “ ”
20 = sqrt(2, )*THaths sErfInverse(L,-THaths :Prob{2*(min_NLL_bkgOnly_alt - min_NLL_total),1)) : 5,0921f «——— method”-2

Z0 = sqrt(2,)*THath: :Erfclnverse(THaths Prob(2*(min_NLL_bkgOnly_alt - min_NLL_total),1)) : 5,09216 €= v« athod”-3

Note : of course the 3 ways to estimate the stat. signif. provide the same numerical result, as it should be expected.

Advice: - the 1st way is then preferred because it’s the easiest;

- the 3 is to be preferred to the 2"d because it performs better numerically when significances are large (Z, > 50).

The implementation of the 3 “methods” are illustrated in the following slides!
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Local statistical significance estimation: “method”-1

The first way to estimate it is simply the Cowan (et al.)’s “formula” [eq. (52) of their paper]: | Z;, = \/qqo

To recap about the asymptotic formula:

Under the assumptionthatu = 0: go= 2 [—lnL (,u = 0, 5) o (—lnﬁ(ﬁ = 0, @))] = 2 [NLLO — NLL1]
In the large limit sample (N — o0) & in the Wald approximation and for Wilks’ theorem (assuming its applicability conditions hold)

1
the asymptotic form of the p.d.f. of the test statistic qq is: f(qolu = 0) = %5(6]0) +% \/%_n - \/% ce” 290 = %6(q0)+ %)(12

The corresponding cumulative distribution of qg is: F(qq]|0) = ®(\/qo)

Therefore: o qo,0bs
iy = j F(qol0)dqo = 1— j F(qol0)dqo = 1 — F(go]0) = 1 — B(ya5)

do,0bs

mand: Zy=0" (1—-po) =07 (1-1+ () = o7 &(yo) = Vo

_________________________________________________
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Local statistical significance estimation: introduction to “methods”-2&3 - |

In both ways (2&3) the p-value is explicitely calculated and for this we need to use the function TMath: : Prob ( qgops,1):

Double_t TMath:: E -:(Double_t chi2,Int_t ndf)
{
// Computation of the probability for a certain Chi-squared (chi2)
// and number of degrees of freedom (ndf).
//
// Calculations are based on the incomplete gamma function P(a,x),
// where a=ndf/2 and x=chi2/2.
//
// P(a,x) represents the probability that the observed Chi-squared
// for a correct model should be less than the value chi2.
//
// The returned probability corresponds to 1-P(a,x),
// which denotes the probability that an observed Chi-squared exceeds
// the value chi2 by chance, even for a correct model.
//
//==— NVE 14-nov-1998 UU-SAP Utrecht

if (ndf <= @) return @; // Set CL to zero in case ndf<=0

if (chi2 <= 0) {
if (chi2 < @) return 0;

else return 1;
}
[if (ndf==1) { \: q0
Double_t v = 1.-Erf(Sqrt(chi2)/sqrt(2.));
| return v rriartiaa/ar =1—erf| [+ TMath: :Prob(qp,1)
1 ]

2
O E e R ' (with n.d.f.=1):

// Gaussian approximation for large ndf
Double_t q = Sqrt(2xchi2)-Sqrt(Double_t(2xndf-1));
if (ndf > 30 && q > 5) {

Double_t v = 0.5%(1-Erf(q/Sqrt(2.)));

return v;

}

// Evaluate the incomplete gamma function
return (1-Gamma(®.5%ndf,@.5%chi2));
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Local statistical significance estimation: introduction to “methods”-2&3 - Il

0o do,0bs
Since... pg = J f(qel0)dgy =1 — j f(qol0)dgy =1 —F(qy|0) =1 —®(/q0) (discussed in slide 9)
do,0bs —o
_ _ , , 1 x\] *¥=+Vdo 1 Vo
One of the expressions relating the ® with the erf is: ®(x) = > [1 + erf <ﬁ) > O(\/qq) = > 1+ erf f

~ _ 41 V@[ _, 1 1 qQo\ 1] qo
Thus: Po=1—Dd(/qy) =1 2[1+erf(\/§>]—1 > 2erf( 2>—2:1 erf >

: iTMath: :Prob(qg,1)

“Method”-2 & : “Method”-3 are two equivalent ways to ... 1 do
.. calculate explicitely the local statistical significance starting from: Z, = ®~1(1 —p,) ..where... Do = > [1 - erf( 7)]

(as discussed in next slides)
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Local statistical significance estimation: “method”-2

By using... | ®71(x) = V2 - erf"1(2x — 1) | (one of the “conversion” formulas in slide 14)

x= (1—po)

qo
“Method”-2:  Z; = @71 (1 —po) =V2- erf ™" (2(1 —pp) — 1) = V2~ erf™" (1 - 2p,) ..where... 2o = [1 B erf( 7)‘

to be implemented in the code as :

----------------------------------------------------------------------------------

stat_signif = sqrt(2.)*TMath: :ErfInverse(l. - TMath Prob(2*(m:|.n NLL bkgOnly - min NLL tota1)= 1) )
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Local statistical significance estimation: “method”-3

By using... | @1 (1 - f) =@ 1 G) = /2 -erfc™1(x) | (one of the “conversion” formulas in slide 14)

x = (2po)

”MethOd”‘?) : Z() — q)—l(l — pO) — \/z . erfC—l (Zpo) ...Where... 2p0 = [1 - erf( %)]

to be implemented in the code as :

stat_signif = sqrt (2.) *TMath: :ErfcInverse (TMath: :Prob (2.* (min NLL bkgOnly - min NLL total),l))

Reverting the logic it can be shown that the two methods are equivalent starting from their final expression:

[
>

erf 1(x) =

Zy=®d (1 —py) =V2 - erfc™! (2py) T V2. erf™! (1 —2py) = 711 —py) = Z,
x
+§)
1 x

cp—1<
1—x

o1 (1_%) y=_1—x> erfc™1(1 —x) =\/1—§CI>‘1 (1 - )= \/1§CD‘1 (E-I_E) = erf~1(x)
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