
Introduction to RooFit

1. Introduction and overview

2. Creation and basic use of models

3. Addition and Convolution

4. Common Fitting Problems

W. Verkerke (NIKHEF)

4. Common Fitting Problems

5. Multidimensional and Conditional models

6. Fit validation and toy MC studies

7. Constructing joint model

8. Working with the Likelihood, including systematic errors

9. Interval & Limits

Introduction
& Overview1 & Overview1

Introduction -- Focus: coding a probability density function

• Focus on one practical aspect of many data analysis in
HEP: How do you formulate your p.d.f. in ROOT
– For ‘simple’ problems (gauss, polynomial) this is easy

1

– But if you want to do unbinned ML fits, use non-trivial functions,
or work with multidimensional functions you quickly find that you
need some tools to help you

Introduction – Why RooFit was developed

• BaBar experiment at SLAC: Extract sin(2β) from time
dependent CP violation of B decay: e+e- à Y(4s) à BB
– Reconstruct both Bs, measure decay time difference

– Physics of interest is in decay time dependent oscillation

()[]
()[]);|BkgResol();(BkgDecay);BkgSel()1(

);|SigResol())2sin(,;(SigDecay);SigSel(sigsigsigsig

rdttqtpmf

rdttqtpmf
rr

rr

⊗⋅−

+⊗⋅⋅ β

2

• Many issues arise
– Standard ROOT function framework clearly insufficient to handle such

complicated functions à must develop new framework

– Normalization of p.d.f. not always trivial to calculate à may need numeric
integration techniques

– Unbinned fit, >2 dimensions, many events à computation performance
important à must try optimize code for acceptable performance

– Simultaneous fit to control samples to account for detector performance

()[]);|BkgResol();(BkgDecay);BkgSel()1(bkgbkgbkgsig rdttqtpmf
rr

⊗⋅−

Mathematic – Probability density functions

• Probability Density Functions describe probabilities, thus
– All values most be >0

– The total probability must be 1 for each p, i.e.

– Can have any number of dimensions 1),(
max

min

≡∫
x

x

xdpxg

v

v

vvv

Wouter Verkerke, NIKHEF

• Note distinction in role between parameters (p) and
observables (x)
– Observables are measured quantities

– Parameters are degrees of freedom in your model

∫ ≡1)(dxxF ∫ ≡1),(dxdyyxF

Math – Functions vs probability density functions

• Why use probability density functions rather than ‘plain’
functions to describe your data?
– Easier to interpret your models.

If Blue and Green pdf are each
guaranteed to be normalized to 1,
then fractions of Blue,Green can
be cleanly interpreted as #events

– Many statistical techniques only
function properly with PDFs
(e.g maximum likelihood)

Wouter Verkerke, NIKHEF

(e.g maximum likelihood)

– Can sample ‘toy Monte Carlo’ events
from p.d.f because value is always
guaranteed to be >=0

• So why is not everybody always using them
– The normalization can be hard to calculate

(e.g. it can be different for each set of parameter values p)

– In >1 dimension (numeric) integration can be particularly hard

– RooFit aims to simplify these tasks

Introduction – Relation to ROOT

ToyMC data Data/Model

Data Modeling

Model

Extension to ROOT – (Almost) no overlap with existing functionality

3

C++ command line
interface & macros

Data management &
histogramming

Graphics interface

I/O support

MINUIT

ToyMC data
Generation

Data/Model
Fitting

Model
Visualization

Project timeline

• 1999 : Project started
– First application: ‘sin2b’ measurement of BaBar

(model with 5 observables, 37 floating parameters, simultaneous fit to
multiple CP and control channels)

• 2000 : Complete overhaul of design based on
experience with sin2b fit

– Very useful exercise: new design is still current design

• 2003 : Public release of RooFit with ROOT

• 2007 : Integration of RooFit in ROOT CVS source

4

• 2007 : Integration of RooFit in ROOT CVS source

• 2008 : Upgrade in functionality as part of RooStats project
– Improved analytical and

numeric integration handling,
improved toy MC generation,
addition of workspace

• 2009 : Now ~100K lines of code
– (For comparison RooStats

proper is ~5000 lines of code)

last modification before date

lin
e
s

o
f
co

d
e

RooFit core design philosophy

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

RooFit classMathematical concept

x
)(xf

5

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

)(xf
x
r

dxxf
x

x
∫
max

min

)(

RooFit core design philosophy

• Represent relations between variables and functions
as client/server links between objects

f(x,y,z)

RooAbsReal f

Math

6

RooRealVar x RooRealVar y RooRealVar z

RooRealVar x(“x”,”x”,5) ;
RooRealVar y(“y”,”y”,5) ;
RooRealVar z(“z”,”z”,5) ;
RooBogusFunction f(“f”,”f”,x,y,z) ;

RooFit
diagram

RooFit
code

Basic use22

The simplest possible example

• We make a Gaussian p.d.f. with three variables:
mass, mean and sigma

RooRealVar x(“x”,”Observable”,-10,10) ;

RooRealVar mean(“mean”,”B0 mass”,0.00027,”GeV”);

RooRealVar sigma(“sigma”,”B0 mass width”,5.2794,”GeV”) ;

Objects
representing
a ‘real’ value.

Initial range

Name of object Title of object

RooRealVar sigma(“sigma”,”B0 mass width”,5.2794,”GeV”) ;

RooGaussian model(“model”,”signal pdf”,mass,mean,sigma)PDF object

Initial value Optional unit

References to variables

Basics – Creating and plotting a Gaussian p.d.f

// Create an empty plot frame
RooPlot* xframe = w::x.frame() ;

// Plot model on frame
model.plotOn(xframe) ;

// Draw frame on canvas
xframe->Draw() ;

Setup gaussian PDF and plot

13

Plot range taken from limits of x

Axis label from gauss title

Unit
normalizationA RooPlot is an empty frame

capable of holding anything
plotted versus it variable

Basics – Generating toy MC events

// Generate an unbinned toy MC set
RooDataSet* data = w::gauss.generate(w::x,10000) ;

// Generate an binned toy MC set
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;

// Plot PDF
RooPlot* xframe = w::x.frame() ;

Generate 10000 events from Gaussian p.d.f and show distribution

14

RooPlot* xframe = w::x.frame() ;
data->plotOn(xframe) ;
xframe->Draw() ;

Can generate both binned and
unbinned datasets

Basics – Importing data

• Unbinned data can also be imported from ROOT TTrees

– Imports TTree branch named “x”.

– Can be of type Double_t, Float_t, Int_t or UInt_t.
All data is converted to Double_t internally

– Specify a RooArgSet of multiple observables to import

// Import unbinned data
RooDataSet data(“data”,”data”,w::x,Import(*myTree)) ;

15

– Specify a RooArgSet of multiple observables to import
multiple observables

• Binned data can be imported from ROOT THx histograms

– Imports values, binning definition and SumW2 errors (if defined)

– Specify a RooArgList of observables when importing a TH2/3.

// Import unbinned data
RooDataHist data(“data”,”data”,w::x,Import(*myTH1)) ;

Basics – ML fit of p.d.f to unbinned data

// ML fit of gauss to data
w::gauss.fitTo(*data) ;
(MINUIT printout omitted)

// Parameters if gauss now

PDF
automatically
normalized
to dataset

16

// Parameters if gauss now
// reflect fitted values
w::mean.Print()
RooRealVar::mean = 0.0172335 +/- 0.0299542
w::sigma.Print()
RooRealVar::sigma = 2.98094 +/- 0.0217306

// Plot fitted PDF and toy data overlaid
RooPlot* xframe = w::x.frame() ;
data->plotOn(xframe) ;
w::gauss.plotOn(xframe) ;

to dataset

Basics – ML fit of p.d.f to unbinned data

• Can also choose to save full detail of fit

RooFitResult* r = w::gauss.fitTo(*data,Save()) ;

r->Print() ;
RooFitResult: minimized FCN value: 25055.6,

estimated distance to minimum: 7.27598e-08
coviarance matrix quality:
Full, accurate covariance matrix

Floating Parameter FinalValue +/- Error

17

Floating Parameter FinalValue +/- Error
-------------------- --------------------------

mean 1.7233e-02 +/- 3.00e-02
sigma 2.9809e+00 +/- 2.17e-02

r->correlationMatrix().Print() ;

2x2 matrix is as follows

| 0 | 1 |

0 | 1 0.0005869
1 | 0.0005869 1

Organizing your analysis project – Factory and workspace

• When moving beyond simple Gaussian example, some
need to organize analysis project.
– RooFit provides 2 standard tools to help

• Workspace
– A generic container class for all RooFit objects of your project

– Fill with import() from top-level pdf. Automatically imports all
components and variables

RooWorkspace w(“w”) ;
w.import(model) ;
w.Print() ;

variables

(mean,sigma,x)

p.d.f.s

RooGaussian::f[x=x mean=mean sigma=sigma] = 0.249352

Organizing your analysis project – Factory and workspace

• Advantages of organizing code with the workspace
– Allows to create and use models in separate places

– Allows to share models easily between ROOT sessions and users:
Workspace objects are persistable in ROOT files(*)

• Access contents either through accessor methods

RooPlot* frame = w.var(“x”)->frame() ;

• Or through CINT namespace (interactive ROOT only)

– Must first call w.exportToCint() or create workspace with kTRUE
as 2nd argument

w.pdf(“g”)->plotOn(frame) ;

RooPlot* frame = w::x.frame() ;
w::g.plotOn(frame) ;

(*) Full support for a B physics pdfs by end of year

Factory and Workspace

• One C++ object per math symbol provides
ultimate level of control over each objects functionality,
but results in lengthy user code for even simple macros

• Solution: add factory that auto-generates objects from
a math-like language

8

Gaussian::f(x[-10,10],mean[5],sigma[3])

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar mean(“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”,3) ;
RooGaussian f(“f”,”f”,x,mean,sigma) ;

Factory and Workspace

• This is not the same as reinventing Mathematica!
– String constructs an expression in terms of C++ objects, rather

than being the expression

• Factory accessible through factory() method of
workspace
– Create example Gaussian pdf through factory

RooWorkspace w(“w”) ;

9

RooWorkspace w(“w”) ;
w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ;

w.Print(“t”) ;
variables

(mean,sigma,x)

p.d.f.s

RooGaussian::f[x=x mean=mean sigma=sigma] = 0.249352

Factory language

• The factory language has a 1-to-1 mapping to the
constructor syntax of RooFit classes
– With a few handy shortcuts for variables

• Creating variables

x[-10,10] // Create variable with given range, init val is midpoint
x[5,-10,10] // Create variable with initial value and range

11

• Creating pdfs (and functions)

– Can always omit leading ‘Roo’

– Curly brackets translate to set or list argument
(depending on context)

x[5] // Create initially constant variable

Gaussian::g(x,mean,sigma) àààà RooGaussian(“g”,”g”,x,mean,sigma)
Polynomial::p(x,{a0,a1}) àààà RooPolynomial(“p”,”p”,x”,RooArgList(a0,a1));

Factory language

• Composite expression are created by nesting statements
– No limit to recursive nesting

Gaussian::g(x[-10,10],mean[-10,10],sigma[3])
àààà x[-10,10]

mean[-10,10]
sigma[3]
Gaussian::g(x,mean,sigma)

12

• You can also use numeric constants whenever an
unnamed constant is needed

• Names of nested function objects are optional
• SUM syntax explained later

Gaussian::g(x[-10,10],0,3)

SUM::model(0.5*Gaussian(x[-10,10],0,3),Uniform(x)) ;

Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

Physics inspired
ARGUS,Crystal Ball,
Breit-Wigner, Voigtian,
B/D-Decay,….

Non-parametric
Histogram, KEYS

20

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…
Chebychev polynomial

Histogram, KEYS

Easy to extend the library: each p.d.f. is a separate C++ class

Model building – (Re)using standard components

• List of most frequently used pdfs and their factory spec

Gaussian Gaussian::g(x,mean,sigma)

Breit-Wigner BreitWigner::bw(x,mean,gamma)

Landau Landau::l(x,mean,sigma)

Exponential Exponental::e(x,alpha)

21

Polynomial Polynomial::p(x,{a0,a1,a2})

Chebychev Chebychev::p(x,{a0,a1,a2})

Kernel Estimation KeysPdf::k(x,dataSet)

Poisson Poisson::p(x,mu)

Voigtian Voigtian::v(x,mean,gamma,sigma)
(=BW⊗G)

Model building – Making your own

• Interpreted expressions

• Customized class, compiled and linked on the fly

w.factory(“EXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;

22

• Custom class written by you
– Offer option of providing analytical integrals, custom handling of

toy MC generation (details in RooFit Manual)

• Compiled classes are faster in use, but require O(1-2)
seconds startup overhead
– Best choice depends on use context

w.factory(“CEXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;

Model building – Adjusting parameterization

• RooFit pdf classes do not require their parameter
arguments to be variables, one can plug in functions as
well

• Simplest tool perform reparameterization is interpreted
formula expression

w.factory(“expr::w(‘(1-D)/2’,D[0,1])”) ;

– Note lower case: expr builds function, EXPR builds pdf

• Example: Reparameterize pdf that expects mistag rate
in terms of dilution

w.factory(“BMixDecay::bmix(t,mixState,tagFlav,
tau,expr(‘(1-D)/2’,D[0,1]),dw,....”) ;

Composite
models3 models3

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – (Re)using standard components

• Most realistic models are constructed as the sum of one or more
p.d.f.s (e.g. signal and background)

• Facilitated through operator p.d.f RooAddPdf

23

RooArgusBG

RooAddPdf
+

RooGaussian

Adding p.d.f.s – Mathematical side

• From math point of view adding p.d.f is simple
– Two components F, G

– Generically for N components P0-PN

)()1()()(xGfxfFxS −+=

)(1)(...)()()(111100 xPcxPcxPcxPcxS ninn 







−++++= ∑

−=
−−

24

• For N p.d.f.s, there are N-1 fraction coefficients that
should sum to less 1
– The remainder is by construction 1 minus the sum of all other

coefficients

1,0 ni






∑
−=

Adding p.d.f.s – Factory syntax

• Additions created through a SUM expression

– Note that last PDF does not have an associated fraction

SUM::name(frac1*PDF1,frac2*PDF2,...,PDFN)

25

• Complete example

w.factory(“Gaussian::gauss1(x[0,10],mean1[2],sigma[1]”) ;
w.factory(“Gaussian::gauss2(x,mean2[3],sigma)”) ;
w.factory(“ArgusBG::argus(x,k[-1],9.0)”) ;

w.factory(“SUM::sum(g1frac[0.5]*gauss1, g2frac[0.1]*gauss2, argus)”)

Extended ML fits

• In an extended ML fit, an extra term is added to the
likelihood

Poisson(Nobs,Nexp)

• This is most useful in combination with a composite pdf

NNxBfxSfxF =−+⋅= exp;)()1()()(

27

shape normalization

BS
BS

B

BS

S NNNxB
NN

N
xS

NN
N

xF +=
+

+⋅
+

= exp;)()()(

BS NNNf ,, ⇒

SUM::name(Nsig*S,Nbkg*B)

Write like this,
extended term automatically included in –log(L)

Component plotting - Introduction

• Plotting, toy event generation
and fitting works identically
for composite p.d.f.s
– Several optimizations applied

behind the scenes that are
specific to composite models
(e.g. delegate event generation
to components)

• Extra plotting functionality

26

• Extra plotting functionality
specific to composite pdfs
– Component plotting

// Plot only argus components
w::sum.plotOn(frame,Components(“argus”),LineStyle(kDashed)) ;

// Wildcards allowed
w::sum.plotOn(frame,Components(“gauss*”),LineStyle(kDashed)) ;

Operations on specific to composite pdfs

• Tree printing mode of workspace reveals component
structure – w.Print(“t”)

RooAddPdf::sum[g1frac * g1 + g2frac * g2 + [%] * argus] = 0.0687785
RooGaussian::g1[x=x mean=mean1 sigma=sigma] = 0.135335
RooGaussian::g2[x=x mean=mean2 sigma=sigma] = 0.011109
RooArgusBG::argus[m=x m0=k c=9 p=0.5] = 0

28

– Can also make input files for GraphViz visualization
(w::sum.graphVizTree(“myfile.dot”))

– Graph output on ROOT Canvas in near future
(pending ROOT integration
of GraphViz package)

Convolution

• Model representing a convolution of a theory model and a
resolution model often useful

⊗⊗⊗⊗ =

∫
+∞

∞−

′′−=⊗ xdxxgxfxgxf)()()()(

29

• But numeric calculation of convolution integral can be
challenging. No one-size-fits-all solution, but 3 options
available
– Analytical convolution (BW⊗Gauss, various B physics decays)

– Brute-force numeric calculation (slow)

– FFT numeric convolution (fast, but some side effects)

⊗⊗⊗⊗ =

Framework for analytical calculations of convolutions

• Convoluted PDFs that can be written if the following
form can be used in a very modular way in RooFit

()∑ ⊗=
k

kk dtRdtfcdtP ,...)(,...)((...),...)(

‘basis function’
coefficient

Wouter Verkerke, NIKHEF

‘basis function’
coefficient

resolution function

)cos(),21(

,1
/||

11

/||
00

tmefwc

efwc
t

t

⋅∆=−±=

=∆±=
−

−

τ

τ
Example: B0 decay with mixing

Analytical convolution

• Physics model and resolution model are implemented
separately in RooFit

()∑ ⊗= kk dtRdtfcdtP ,...)(,...)((...),...)(

RooResolutionModel

Implements
Also a PDF by itself

,...)(,...)(dtRdtfi ⊗

Wouter Verkerke, NIKHEF

()∑ ⊗=
k

kk dtRdtfcdtP ,...)(,...)((...),...)(

RooAbsAnaConvPdf (physics model)

User can choose combination of physics model
and resolution model at run time
(Provided resolution model implements all fk declared by physics model)

Implements ck
Declares list of fk needed

Analytical convolution (for B physics decays)

• For most B meson decay time distribution (including
effects of CPV and mixing) it is possible to calculate
convolution analytically

• Example

w.factory(“GaussModel::gm(t[-10,10],0,1”)
w.factory(“BMixDecay::bmix(t,mixState[mixed=-1,unmixed=1],

tagFlav[B0=1,B0bar=-1],tau[1.54],

• Other resolution models of interest

tagFlav[B0=1,B0bar=-1],tau[1.54],
dm[0.472],w[0.2],dw[0],gm) ;

w.factory(“TruthModel::tm(t[-10,10])”) ; // Delta function
w.factory(“AddModel::am({gm1,gm2},f)”) ; // Sum of any N models

Examples

w.factory(“TruthModel::gm(t[-10,10]) ;
w.factory(“Decay::bmix(t,tau[1.54],gm) ;

w.factory(“GaussModel::gm(t[-10,10],0,1”)w.factory(“GaussModel::gm(t[-10,10],0,1”)
w.factory(“Decay::bmix(t,tau[1.54],gm) ;

w.factory(“AddModel::gm12(
{gm,GaussModel::gm2(t,0,5)},0.5)”) ;

w.factory(“Decay::bmix(t,tau[1.54],gm12);

Numeric Convolution

• Example

w.factory(“Landau::L(x[-10,30],5,1)”) :
w.factory(“Gaussian::G(x,0,2)”) ;

w::x.setBins(“cache”,10000) ; // FFT sampling density
w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution

w.factory(“NCONV::LGb(x,L,G)”) ; // Numeric convolution

30

• FFT usually best
– Fast: unbinned ML fit to 10K

events take ~5 seconds

– NB: Requires installation of FFTW
package (free, but not default)

– Beware of cyclical effects
(some tools available to mitigate)

Exercises* Exercises*

Exercise 0

• The features used in this tutorial require ROOT version 5.24 /
RooFit version 3.00 or higher.

• Setup your environment to use ROOT 5.24
– Put ‘5.24-00b’ in your ~/.bbrroot file

– Start bbrroot and confirm you get ROOT 5.24

• Check your RooFit version
– On the ROOT command prompt type ‘using namespace RooFit’. This will

trigger the loading of the RooFit libraries.

– You should now see that RooFit 3.00a is loaded.

• Location of input files • Location of input files
– Directory: ~verkerke/input

• RooFit documentation
– Home page: http://root.cern.ch/drupal/content/roofit

– Quick start guide (v3.00) 20 pages

– Users Guide (v2.91) 140 pages

– Class documentation: root à documentation à reference guide à 5.24

– Tutorial macros (>80)

Exercise 1

• Take input file ex1.C, look at it and run it.

• Step 1 – Using the factory
– Modify the code so that it uses the factory to create the pdf.

– Remove the code that creates the pdf directly and import() call.

– Run again to verify that you get the same result

• Step 2 – Adding background
– Rename the Gaussian pdf from “model” to “signal”.

– Add an ArgusBG model named bkg to the workspace with m0=5.291 – Add an ArgusBG model named bkg to the workspace with m0=5.291
(fixed) and a slope of -40 with a range of [-100,0]

• look in $ROOTSYS/include for the constructor syntax and map that the corresponding
factory call

– Create a sum of the signal and background with a signal fraction that
is 20% (with range 0,1)

– Rerun the macro

– Add a plotOn() call that draws the background component of model
using a Components() argument and give it a dashed linestyle (add
LineStyle(kDashed)).

– Call Print() on the workspace to see the contents. Also call Print(“t”) to
see the same contents shown as a tree structure

Exercise 1

• Step 3 – Making an extended ML fit
– Rewrite the SUM() string so that it construct a pdf suitable for
extended ML fitting: Multiply the signal pdf by Nsig (200 events, range
0,10000) and the background pdf by Nbkg (800 events, range
0,10000)

• Step 4 – Simple use of ranges
– Define a ‘signal range’ in observable mes:

w.var(“mes”)->setRange(“signal”,5.27,5.29) ;

– Create an integral object that represents the fraction of background
events in the signal range

w.factory(“int::sigRangeFrac(bkg,mes|signal,mes)”) ;

the first mes indicate which observable to integrate over, the second
mes indicates which observables to normalize over. (Without a range
specification this would result in 1 by construction)

– Retrieve the value of the fraction by calling
w.function(“sigRangeFrac”)->getVal() ;

Exercise 1

– Now construct a formula named NsigRange that expresses the
number of signal events in the signal range: use product operator
prod::NsigRange(Nbkg,sigRangeFrac)

– Evaluate the NsigRange function in the workspace to count the
number of signal events in the range [5.27,5.29]

• Step 5 – Linear error propagation (ROOT 5.25 only)
– Now we calculate the error on NsigRange. To that end we first

need to save a RooFitResult object from the fitTo() operation:
Save the RooFitResult* pointer returned by fitTo() in an object Save the RooFitResult* pointer returned by fitTo() in an object
named fr, and add a Save() argument to fitTo() to instruct to
make sure an fit resulted will be returned.

– Calculate the error on the number of signal events by calling
w.function(“NsigRange”)->getPropagatedError(*fr) ;

Exercise 2

• Take input file ex2.C look at it and run it
– The input macro constructs a B Decay distribution with mixing without

resolution effect (convolution with delta function). It then generates
some data and plots the decay distribution of mixed and unmixed
events separately, as well as the mixing asymmetry.

• Step 1 – Adding a resolution
– Using the factory, construct a Gaussian resolution model (class

RooGaussModel) with mean 0 (fixed) and width 2 (floating, range 0.1-
10) and change decay pdf to use that resolution model. Rerun the
macro and observe the effect on the decay distributions and the
asymmetry plot.asymmetry plot.

– Now construct a composite resolution model consisting of two
Gaussians: 80% (fixed) of a narrow Gaussian (mean 0, width 1
(floating)) and the remainder a wide Gaussian (mean 0, width 5
(floating)). Rerun the macro and observe the effect on the decay
distributions and the asymmetry plot.

• Step 2 – Visualize the correlation matrix
– Look at the correlation matrix of the fit. To make a visual presentation

of the correlation matrix, save the RooFitResult object from the fitTo()
command (don’t forget to add Save() as well) add the following code

gStyle->SetPalette(1) ;
fr->correlationHist()->Draw(“colz”) ;

Exercise 2

– What are the largest correlations?
• If correlations are very strong (>>0.9) the model may become unstable and it may

be worthwhile to fix one of the parameters in the fit.

This works best if the correlation is between two nuisance parameters (i.e. non-
physics parameters such as the mistag rate)

If a correlation is between a parameter of interest (=physics, e.g. tau, ∆m) and a
nuisance parameter (=others, e.g. mistag rate) fixing a nuisance parameter will
strongly underestimate the uncertainty on physics parameter and you’ll need
another strategy to control the error on the nuisance parameter.

• Step 3 – Visualize the uncertainty on the asymmetry• Step 3 – Visualize the uncertainty on the asymmetry
– You can also visualize the uncertainty on the asymmetry curve

through linear propagation of the covariance matrix of the fit
parameters. To do so duplicate the plotOn() call for the
asymmetry curve in the macro and add the following argument to
the first call

VisualizeError(*fr),FillColor(kOrange)) ;

