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Introduction -- Focus: coding a probability density function

• Focus on one practical aspect of many data analysis in 
HEP: How do you formulate your p.d.f. in ROOT
– For ‘simple’ problems (gauss, polynomial) this is easy
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– But if you want to do unbinned ML fits, use non-trivial functions, 
or work with multidimensional functions you quickly find that you 
need some tools to help you



Introduction – Why RooFit was developed

• BaBar experiment at SLAC: Extract sin(2β) from time 
dependent CP violation of B decay: e+e- à Y(4s) à BB
– Reconstruct both Bs, measure decay time difference

– Physics of interest is in decay time dependent oscillation
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• Many issues arise
– Standard ROOT function framework clearly insufficient to handle such 

complicated functions à must develop new framework

– Normalization of p.d.f. not always trivial to calculate à may need numeric 
integration techniques

– Unbinned fit, >2 dimensions, many events à computation performance 
important à must try optimize code for acceptable performance

– Simultaneous fit to control samples to account for detector performance
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Mathematic – Probability density functions

• Probability Density Functions describe probabilities, thus
– All values most be >0 

– The total probability must be 1 for each p, i.e.

– Can have any number of dimensions 1),(
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Wouter Verkerke, NIKHEF 

• Note distinction in role between parameters (p) and 
observables (x)
– Observables are measured quantities

– Parameters are degrees of freedom in your model
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Math – Functions vs probability density functions

• Why use probability density functions rather than ‘plain’ 
functions to describe your data?
– Easier to interpret your models. 

If Blue and Green pdf are each 
guaranteed to be normalized to 1, 
then fractions of Blue,Green can 
be cleanly interpreted as #events

– Many statistical techniques only
function properly with PDFs
(e.g maximum likelihood)

Wouter Verkerke, NIKHEF 

(e.g maximum likelihood)

– Can sample ‘toy Monte Carlo’ events
from p.d.f because value is always 
guaranteed to be >=0

• So why is not everybody always using them
– The normalization can be hard to calculate

(e.g. it can be different for each set of parameter values p)

– In >1 dimension (numeric) integration can be particularly hard

– RooFit aims to simplify these tasks



Introduction – Relation to ROOT

ToyMC data Data/Model

Data Modeling

Model 

Extension to ROOT – (Almost) no overlap with existing functionality
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C++ command line 
interface & macros

Data management &
histogramming

Graphics interface

I/O support

MINUIT

ToyMC data
Generation

Data/Model
Fitting

Model 
Visualization



Project timeline

• 1999 : Project started
– First application: ‘sin2b’ measurement of BaBar 

(model with 5 observables, 37 floating parameters, simultaneous fit to 
multiple CP and control channels)

• 2000 : Complete overhaul of design based on 
experience with sin2b fit

– Very useful exercise: new design is still current design

• 2003 : Public release of RooFit with ROOT

• 2007 : Integration of RooFit in ROOT CVS source
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• 2007 : Integration of RooFit in ROOT CVS source

• 2008 : Upgrade in functionality as part of RooStats project
– Improved analytical and 

numeric integration handling, 
improved toy MC generation, 
addition of workspace

• 2009 : Now ~100K lines of code 
– (For comparison RooStats

proper is ~5000 lines of code)

last modification before date 
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RooFit core design philosophy

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

RooFit classMathematical concept

x
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PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral
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RooFit core design philosophy

• Represent relations between variables and functions
as client/server links between objects

f(x,y,z)

RooAbsReal f

Math
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RooRealVar x RooRealVar y RooRealVar z

RooRealVar x(“x”,”x”,5) ;
RooRealVar y(“y”,”y”,5) ;
RooRealVar z(“z”,”z”,5) ;
RooBogusFunction f(“f”,”f”,x,y,z) ;

RooFit
diagram

RooFit
code



Basic use22



The simplest possible example

• We make a Gaussian p.d.f. with three variables: 
mass, mean and sigma

RooRealVar x(“x”,”Observable”,-10,10) ;

RooRealVar mean(“mean”,”B0 mass”,0.00027,”GeV”);

RooRealVar sigma(“sigma”,”B0 mass width”,5.2794,”GeV”) ; 

Objects 
representing
a ‘real’ value.

Initial range

Name of object Title of object

RooRealVar sigma(“sigma”,”B0 mass width”,5.2794,”GeV”) ; 

RooGaussian model(“model”,”signal pdf”,mass,mean,sigma)PDF object

Initial value Optional unit

References to variables



Basics – Creating and plotting a Gaussian p.d.f 

// Create an empty plot frame
RooPlot* xframe = w::x.frame() ;

// Plot model on frame
model.plotOn(xframe) ;

// Draw frame on canvas
xframe->Draw() ;

Setup gaussian PDF and plot
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Plot range taken from limits of x

Axis label from gauss title

Unit 
normalizationA RooPlot is an empty frame

capable of holding anything
plotted versus it variable



Basics – Generating toy MC events

// Generate an unbinned toy MC set
RooDataSet* data = w::gauss.generate(w::x,10000) ;  

// Generate an binned toy MC set
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;  

// Plot PDF
RooPlot* xframe = w::x.frame() ;

Generate 10000 events from Gaussian p.d.f and show distribution
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RooPlot* xframe = w::x.frame() ;
data->plotOn(xframe) ;
xframe->Draw() ;

Can generate both binned and
unbinned datasets



Basics – Importing data

• Unbinned data can also be imported from ROOT TTrees

– Imports TTree branch named “x”. 

– Can be of type Double_t, Float_t, Int_t or UInt_t. 
All data is converted to Double_t internally

– Specify a RooArgSet of multiple observables to import

// Import unbinned data
RooDataSet data(“data”,”data”,w::x,Import(*myTree)) ;

15

– Specify a RooArgSet of multiple observables to import
multiple observables

• Binned data can be imported from ROOT THx histograms

– Imports values, binning definition and SumW2 errors (if defined)

– Specify a RooArgList of observables when importing a TH2/3.

// Import unbinned data
RooDataHist data(“data”,”data”,w::x,Import(*myTH1)) ;



Basics – ML fit of p.d.f to unbinned data

// ML fit of gauss to data
w::gauss.fitTo(*data) ;
(MINUIT printout omitted)

// Parameters if gauss now

PDF
automatically
normalized
to dataset
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// Parameters if gauss now
// reflect fitted values
w::mean.Print()
RooRealVar::mean = 0.0172335 +/- 0.0299542 
w::sigma.Print()
RooRealVar::sigma = 2.98094  +/- 0.0217306

// Plot fitted PDF and toy data overlaid
RooPlot* xframe = w::x.frame() ;
data->plotOn(xframe) ;
w::gauss.plotOn(xframe) ;

to dataset



Basics – ML fit of p.d.f to unbinned data

• Can also choose to save full detail of fit

RooFitResult* r = w::gauss.fitTo(*data,Save()) ;

r->Print() ;
RooFitResult: minimized FCN value: 25055.6, 

estimated distance to minimum: 7.27598e-08
coviarance matrix quality: 
Full, accurate covariance matrix

Floating Parameter    FinalValue +/- Error   
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Floating Parameter    FinalValue +/- Error   
-------------------- --------------------------

mean    1.7233e-02 +/- 3.00e-02
sigma    2.9809e+00 +/- 2.17e-02

r->correlationMatrix().Print() ;

2x2 matrix is as follows

|      0    |      1    |
-------------------------------

0 |          1   0.0005869 
1 |  0.0005869           1 



Organizing your analysis project – Factory and workspace

• When moving beyond simple Gaussian example, some 
need to organize analysis project.
– RooFit provides 2 standard tools to help 

• Workspace
– A generic container class for all RooFit objects of your project

– Fill with import() from top-level pdf. Automatically imports all 
components and variables

RooWorkspace w(“w”) ;  
w.import(model) ;
w.Print() ;

variables
---------
(mean,sigma,x)

p.d.f.s
-------
RooGaussian::f[ x=x mean=mean sigma=sigma ] = 0.249352



Organizing your analysis project – Factory and workspace

• Advantages of organizing code with the workspace
– Allows to create and use models in separate places

– Allows to share models easily between ROOT sessions and users:
Workspace objects are persistable in ROOT files(*)

• Access contents either through accessor methods

RooPlot* frame = w.var(“x”)->frame() ;

• Or through CINT namespace (interactive ROOT only)

– Must first call w.exportToCint() or create workspace with kTRUE
as 2nd argument 

w.pdf(“g”)->plotOn(frame) ;

RooPlot* frame = w::x.frame() ;
w::g.plotOn(frame) ;

(*) Full support for a B physics pdfs by end of year



Factory and Workspace

• One C++ object per math symbol provides 
ultimate level of control over each objects functionality, 
but results in lengthy user code for even simple macros

• Solution: add factory that auto-generates objects from 
a math-like language
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Gaussian::f(x[-10,10],mean[5],sigma[3])

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar mean(“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”,3)  ;
RooGaussian f(“f”,”f”,x,mean,sigma) ;



Factory and Workspace

• This is not the same as reinventing Mathematica!
– String constructs an expression in terms of C++ objects, rather 

than being the expression

• Factory accessible through factory() method of 
workspace
– Create example Gaussian pdf through factory

RooWorkspace w(“w”) ;
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RooWorkspace w(“w”) ;
w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ;

w.Print(“t”) ;
variables
---------
(mean,sigma,x)

p.d.f.s
-------
RooGaussian::f[ x=x mean=mean sigma=sigma ] = 0.249352



Factory language

• The factory language has a 1-to-1 mapping to the 
constructor syntax of RooFit classes
– With a few handy shortcuts for variables

• Creating variables

x[-10,10]   // Create variable with given range, init val is midpoint
x[5,-10,10] // Create variable with initial value and range
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• Creating pdfs (and functions)

– Can always omit leading ‘Roo’

– Curly brackets translate to set or list argument 
(depending on context)

x[5] // Create initially constant variable 

Gaussian::g(x,mean,sigma) àààà RooGaussian(“g”,”g”,x,mean,sigma)
Polynomial::p(x,{a0,a1}) àààà RooPolynomial(“p”,”p”,x”,RooArgList(a0,a1));



Factory language

• Composite expression are created by nesting statements
– No limit to recursive nesting

Gaussian::g(x[-10,10],mean[-10,10],sigma[3]) 
àààà x[-10,10] 

mean[-10,10]
sigma[3]
Gaussian::g(x,mean,sigma)
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• You can also use numeric constants whenever an 
unnamed constant is needed

• Names of nested function objects are optional
• SUM syntax explained later

Gaussian::g(x[-10,10],0,3)  

SUM::model(0.5*Gaussian(x[-10,10],0,3),Uniform(x)) ;  



Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

Physics inspired
ARGUS,Crystal Ball, 
Breit-Wigner, Voigtian,
B/D-Decay,….

Non-parametric
Histogram, KEYS
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RooGaussian

Basic
Gaussian, Exponential, Polynomial,…
Chebychev polynomial

Histogram, KEYS

Easy to extend the library: each p.d.f. is a separate C++ class



Model building – (Re)using standard components

• List of most frequently used pdfs and their factory spec

Gaussian Gaussian::g(x,mean,sigma)

Breit-Wigner BreitWigner::bw(x,mean,gamma)

Landau Landau::l(x,mean,sigma)

Exponential Exponental::e(x,alpha)
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Polynomial Polynomial::p(x,{a0,a1,a2})

Chebychev Chebychev::p(x,{a0,a1,a2})

Kernel Estimation        KeysPdf::k(x,dataSet)

Poisson Poisson::p(x,mu)

Voigtian Voigtian::v(x,mean,gamma,sigma)
(=BW⊗G)



Model building – Making your own

• Interpreted expressions

• Customized class, compiled and linked on the fly

w.factory(“EXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;
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• Custom class written by you
– Offer option of providing analytical integrals, custom handling of 

toy MC generation (details in RooFit Manual)

• Compiled classes are faster in use, but require O(1-2) 
seconds startup overhead
– Best choice depends on use context

w.factory(“CEXPR::mypdf(‘sqrt(a*x)+b’,x,a,b)”) ;



Model building – Adjusting parameterization

• RooFit pdf classes do not require their parameter 
arguments to be variables, one can plug in functions as 
well

• Simplest tool perform reparameterization is interpreted 
formula expression

w.factory(“expr::w(‘(1-D)/2’,D[0,1])”) ;

– Note lower case: expr builds function, EXPR builds pdf

• Example: Reparameterize pdf that expects mistag rate 
in terms of dilution

w.factory(“BMixDecay::bmix(t,mixState,tagFlav,
tau,expr(‘(1-D)/2’,D[0,1]),dw,....”) ;



Composite 
models3 models3



RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – (Re)using standard components

• Most realistic models are constructed as the sum of one or more 
p.d.f.s (e.g. signal and background)

• Facilitated through operator p.d.f RooAddPdf
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RooArgusBG

RooAddPdf
+

RooGaussian



Adding p.d.f.s – Mathematical side

• From math point of view adding p.d.f is simple
– Two components F, G

– Generically for N components P0-PN

)()1()()( xGfxfFxS −+=

)(1)(...)()()( 111100 xPcxPcxPcxPcxS ninn 







−++++= ∑

−=
−−

24

• For N p.d.f.s, there are N-1 fraction coefficients that 
should sum to less 1
– The remainder is by construction 1 minus the sum of all other 

coefficients

1,0 ni






∑
−=



Adding p.d.f.s – Factory syntax

• Additions created through a SUM expression

– Note that last PDF does not have an associated fraction

SUM::name(frac1*PDF1,frac2*PDF2,...,PDFN)  
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• Complete example

w.factory(“Gaussian::gauss1(x[0,10],mean1[2],sigma[1]”) ;
w.factory(“Gaussian::gauss2(x,mean2[3],sigma)”) ;
w.factory(“ArgusBG::argus(x,k[-1],9.0)”) ;

w.factory(“SUM::sum(g1frac[0.5]*gauss1, g2frac[0.1]*gauss2, argus)”)



Extended ML fits

• In an extended ML fit, an extra term is added to the 
likelihood

Poisson(Nobs,Nexp)

• This is most useful in combination with a composite pdf

NNxBfxSfxF =−+⋅= exp;)()1()()(
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shape normalization

BS
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BS NNNf ,, ⇒

SUM::name(Nsig*S,Nbkg*B)  

Write like this, 
extended term automatically included in –log(L)



Component plotting - Introduction

• Plotting, toy event generation 
and fitting works identically 
for composite p.d.f.s
– Several optimizations applied 

behind the scenes that are 
specific to composite models 
(e.g. delegate event generation 
to components)

• Extra plotting functionality 
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• Extra plotting functionality 
specific to composite pdfs
– Component plotting

// Plot only argus components
w::sum.plotOn(frame,Components(“argus”),LineStyle(kDashed)) ;

// Wildcards allowed
w::sum.plotOn(frame,Components(“gauss*”),LineStyle(kDashed)) ;



Operations on specific to composite pdfs

• Tree printing mode of workspace reveals component 
structure – w.Print(“t”)

RooAddPdf::sum[ g1frac * g1 + g2frac * g2 + [%] * argus ] = 0.0687785  
RooGaussian::g1[ x=x mean=mean1 sigma=sigma ] = 0.135335
RooGaussian::g2[ x=x mean=mean2 sigma=sigma ] = 0.011109
RooArgusBG::argus[ m=x m0=k c=9 p=0.5 ] = 0
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– Can also make input files for GraphViz visualization
(w::sum.graphVizTree(“myfile.dot”))

– Graph output on ROOT Canvas in near future
(pending ROOT integration
of GraphViz package)



Convolution

• Model representing a convolution of a theory model and a 
resolution model often useful
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• But numeric calculation of convolution integral can be
challenging. No one-size-fits-all solution, but 3 options 
available
– Analytical convolution (BW⊗Gauss, various B physics decays)

– Brute-force numeric calculation (slow)

– FFT numeric convolution (fast, but some side effects)

⊗⊗⊗⊗ =



Framework for analytical calculations of convolutions

• Convoluted PDFs that can be written if the following 
form can be used in a very modular way in RooFit

( )∑ ⊗=
k

kk dtRdtfcdtP ,...)(,...)((...),...)(

‘basis function’
coefficient

Wouter Verkerke, NIKHEF 

‘basis function’
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resolution function
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Example: B0 decay with mixing



Analytical convolution

• Physics model and resolution model are implemented 
separately in RooFit

( )∑ ⊗= kk dtRdtfcdtP ,...)(,...)((...),...)(

RooResolutionModel

Implements 
Also a PDF by itself

,...)(,...)( dtRdtfi ⊗

Wouter Verkerke, NIKHEF 

( )∑ ⊗=
k

kk dtRdtfcdtP ,...)(,...)((...),...)(

RooAbsAnaConvPdf (physics model)

User can choose combination of physics model 
and resolution model at run time
(Provided resolution model implements all fk declared by physics model)

Implements ck
Declares list of fk needed



Analytical convolution (for B physics decays)

• For most B meson decay time distribution (including 
effects of CPV and mixing) it is possible to calculate 
convolution analytically

• Example

w.factory(“GaussModel::gm(t[-10,10],0,1”)
w.factory(“BMixDecay::bmix(t,mixState[mixed=-1,unmixed=1],

tagFlav[B0=1,B0bar=-1],tau[1.54],

• Other resolution models of interest

tagFlav[B0=1,B0bar=-1],tau[1.54],
dm[0.472],w[0.2],dw[0],gm) ;

w.factory(“TruthModel::tm(t[-10,10])”) ; // Delta function
w.factory(“AddModel::am({gm1,gm2},f)”) ; // Sum of any N models



Examples

w.factory(“TruthModel::gm(t[-10,10]) ;
w.factory(“Decay::bmix(t,tau[1.54],gm) ;

w.factory(“GaussModel::gm(t[-10,10],0,1”)w.factory(“GaussModel::gm(t[-10,10],0,1”)
w.factory(“Decay::bmix(t,tau[1.54],gm) ;

w.factory(“AddModel::gm12(
{gm,GaussModel::gm2(t,0,5)},0.5)”) ;

w.factory(“Decay::bmix(t,tau[1.54],gm12);



Numeric Convolution

• Example

w.factory(“Landau::L(x[-10,30],5,1)”) :
w.factory(“Gaussian::G(x,0,2)”) ;

w::x.setBins(“cache”,10000) ; // FFT sampling density
w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution

w.factory(“NCONV::LGb(x,L,G)”) ; // Numeric convolution
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• FFT usually best
– Fast: unbinned ML fit to 10K 

events take ~5 seconds

– NB: Requires installation of FFTW
package (free, but not default)

– Beware of cyclical effects
(some tools available to mitigate)



Exercises* Exercises*



Exercise 0

• The features used in this tutorial require ROOT version 5.24 / 
RooFit version 3.00 or higher.

• Setup your environment to use ROOT 5.24
– Put ‘5.24-00b’ in your ~/.bbrroot file

– Start bbrroot and confirm you get ROOT 5.24

• Check your RooFit version
– On the ROOT command prompt type ‘using namespace RooFit’. This will 

trigger the loading of the RooFit libraries.

– You should now see that RooFit 3.00a is loaded.

• Location of input files • Location of input files 
– Directory: ~verkerke/input

• RooFit documentation
– Home page: http://root.cern.ch/drupal/content/roofit

– Quick start guide (v3.00) 20 pages

– Users Guide (v2.91) 140 pages

– Class documentation: root à documentation à reference guide à 5.24

– Tutorial macros (>80)



Exercise 1

• Take input file ex1.C, look at it and run it.

• Step 1 – Using the factory
– Modify the code so that it uses the factory to create the pdf. 

– Remove the code that creates the pdf directly and import() call.

– Run again to verify that you get the same result

• Step 2 – Adding background
– Rename the Gaussian pdf from “model” to “signal”.

– Add an ArgusBG model named bkg to the workspace with  m0=5.291 – Add an ArgusBG model named bkg to the workspace with  m0=5.291 
(fixed) and a slope of -40 with a range of [-100,0]

• look in $ROOTSYS/include for the constructor syntax and map that the corresponding 
factory call

– Create a sum of the signal and background with a signal fraction that 
is 20% (with range 0,1)

– Rerun the macro

– Add a plotOn() call that draws the background component of model 
using a Components() argument  and give it a dashed linestyle (add 
LineStyle(kDashed)).

– Call Print() on the workspace to see the contents. Also call Print(“t”) to 
see the same contents shown as a tree structure



Exercise 1

• Step 3 – Making an extended ML fit
– Rewrite the SUM() string so that it construct a pdf suitable for 
extended ML fitting: Multiply the signal pdf by Nsig (200 events, range 
0,10000) and the background pdf by Nbkg (800 events, range 
0,10000)

• Step 4 – Simple use of ranges
– Define a ‘signal range’ in observable mes: 

w.var(“mes”)->setRange(“signal”,5.27,5.29) ;

– Create an integral object that represents the fraction of background 
events in the signal range

w.factory(“int::sigRangeFrac(bkg,mes|signal,mes)”) ;

the first mes indicate which observable to integrate over, the second 
mes indicates which observables to normalize over. (Without a range 
specification this would result in 1 by construction)

– Retrieve the value of the fraction by calling 
w.function(“sigRangeFrac”)->getVal() ;



Exercise 1

– Now construct a formula named NsigRange that expresses the 
number of signal events in the signal range: use product operator 
prod::NsigRange(Nbkg,sigRangeFrac)

– Evaluate the NsigRange function in the workspace to count the 
number of signal events in the range [5.27,5.29]

• Step 5 – Linear error propagation (ROOT 5.25 only)
– Now we calculate the error on NsigRange. To that end we first 

need to save a RooFitResult object from the fitTo() operation: 
Save the RooFitResult* pointer returned by fitTo() in an object Save the RooFitResult* pointer returned by fitTo() in an object 
named fr, and add a Save() argument to fitTo() to instruct to 
make sure an fit resulted will be returned.

– Calculate the error on the number of signal events by calling
w.function(“NsigRange”)->getPropagatedError(*fr) ;



Exercise 2

• Take input file ex2.C look at it and run it
– The input macro constructs a B Decay distribution with mixing without 

resolution effect (convolution with delta function). It then generates 
some data and plots the decay distribution of mixed and unmixed 
events separately, as well as the mixing asymmetry.

• Step 1 – Adding a resolution
– Using the factory, construct a Gaussian resolution model (class 

RooGaussModel) with mean 0 (fixed) and width 2 (floating, range 0.1-
10) and change decay pdf to use that resolution model. Rerun the 
macro and observe the effect on the decay distributions and the 
asymmetry plot.asymmetry plot.

– Now construct a composite resolution model consisting of two 
Gaussians: 80% (fixed) of a narrow Gaussian (mean 0, width 1 
(floating)) and the remainder a wide Gaussian (mean 0, width 5 
(floating)). Rerun the macro and observe the effect on the decay 
distributions and the asymmetry plot.

• Step 2 – Visualize the correlation matrix
– Look at the correlation matrix of the fit. To make a visual presentation 

of the correlation matrix, save the RooFitResult object from the fitTo() 
command (don’t forget to add Save()  as well) add the following code

gStyle->SetPalette(1) ;
fr->correlationHist()->Draw(“colz”) ;



Exercise 2

– What are the largest correlations? 
• If correlations are very strong (>>0.9) the model may become unstable and it may 

be worthwhile to fix one of the parameters in the fit. 

This works best if the correlation is between two nuisance parameters (i.e. non-
physics parameters  such as the mistag rate) 

If a correlation is between a parameter of interest (=physics, e.g. tau, ∆m) and a 
nuisance parameter (=others, e.g. mistag rate) fixing a nuisance parameter will 
strongly underestimate the uncertainty on physics parameter and you’ll need 
another strategy to control the error on the nuisance parameter.

• Step 3 – Visualize the uncertainty on the asymmetry• Step 3 – Visualize the uncertainty on the asymmetry
– You can also visualize the uncertainty on the asymmetry curve 

through linear propagation of the covariance matrix of the fit 
parameters. To do so duplicate the plotOn() call for the 
asymmetry curve in the macro and add the following argument to 
the first call

VisualizeError(*fr),FillColor(kOrange)) ;


