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SIGNIFICANCE of an observed physical SIGNAL
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A simple type of goodness-of-fit to claim a discovery - example - I
A simple type of goodness-of-fit is often carried out to judge …
whether a discrepancy between data and expectation is enough significant to merit a claim for a new discovery:

Let us assume we are in a situation in which we may/might see evidence for a special type of signal event; 
- suppose the # of the signal candidates are 𝑛" can be treated as a Poisson variable with mean 𝜈" ;
- in addition to the signal candidates suppose to find also a certain # of background events 𝑛$ that can be also treated as Poisson variable;
- the total # of candidates found 𝑛 = 𝑛" + 𝑛$ is therefore a Poissonian variable with mean 𝜈 = 𝜈" + 𝜈$

(remember the “reproductive” property of Poisson distribution ?). Thus, the probability to observe 𝑛 events is:

𝑃 𝑛 ≥ 𝑛)$" = *
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𝑓 𝑛; 𝜈", 𝜈$ =
𝜈" + 𝜈$ +

𝑛! 𝑒8 </=<.

Suppose we carried out the experiment and found 𝑛)$" candidates. 
In order to quantify our degree of confidence in the discovery of a new effect/signal (namely 𝜈" ≠ 0) … 
… we can compute how likely it is to find 𝑛)$" candidates or more (namely 𝑛 > 𝑛)$") from background fluctuation alone!
In other words, we have to calculate the p-value :

NOTE: this is NOT the probability of the (null) hypothesis 𝜈" = 0! 
It’s rather the probability - under the assumption 𝜈" = 0 - of obtaining as many candidates/events as observed or more !

Dispite this subtlety in its interpretation the p-value is a useful number to consider when deciding if a new effect/signal is found.
Numerical example: 

if we expect 𝜈$ = 0.5 and we observe 𝑛)$" = 5 the p-value is    = 1 − 𝑒8 7.I *
+,7

J
0.5 +

𝑛!
= 1.7 L 108J = 0.017%
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A simple type of goodness-of-fit to claim a discovery - example - II

Further NOTE:

If you consider the 𝑛)$" ± 𝑛)$" as an estimate for 𝜈 = 𝜈" + 𝜈$, or better, after subtracting the background 𝜈$ = 0.5 , 

you consider 4.5 ± 2.2 as an estimate for 𝜈" , this would be misleading since it’s only about 2 standard deviations from 0, 

thus giving the wrong impression that 𝜈" is not very incompatible with zero (“wrong” because of the p-value)!  

This is a problem of misinterpretation.

Indeed here we are interested in the probability that a Poisson variable of mean 𝜈$ will fluctuate upwardto 𝑛)$" or higher, and 

not in the probability that a variable with mean 𝑛)$" will fluctuate downward to 𝜈$ or  lower.

standard deviation of a Poisson variable/observable

Moreover, 𝜈$ has been wrongly assumed without error. It is instead important to quantify the systematic uncertainty in the 

background when evaluating the significance of a new effect/signal. 

To illustrate this, consider that just with 𝜈$ = 0.8 , the p-value	would be ≅ 0.14%, namely higher by about an order of magnitude. 
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Wilks’ Theorem - I

When a large # of measurements is available the Wilks’ theorem allows to find … 
an approximate asymptotic expression for a test statistic based on a likelihood ratio
(namely of the kind inspired by the Nyman-Pearson Lemma).  

𝜆 �⃗� =
𝐿 �⃗�|𝐻9
𝐿 �⃗�|𝐻7

Let us assume that the two hypotheses 𝐻7 and 𝐻9 can be defined in terms of a set of parameters
that appear in the definition of of the likelihood function; now…

�⃗� = 𝜃9, … , 𝜃\

- the condition that 𝐻9 is trues can be expressed as …

- the condition that 𝐻7 is trues can be expressed as …

Let us assume that                   or, in other words, that the hypotheses are nested.

�⃗� ∈ Θ9
�⃗� ∈ Θ7

Θ7 ⊆ Θ9

Given a data sample of independent measurements 𝒙𝟏,… , 𝒙𝑵 the theorem ensures that, 
assuming some regularity conditions of the likelihood function, the following quantity …               …
has a distribution that can be approximated, for 𝑵 → ∞ and if 𝑯𝟎 is true, with a 𝝌𝟐 distribution
having a n.d.o.f. = difference between the dimentionalities of the sets Θ9 and Θ7 .

−2𝑙𝑛

�⃗� ∈ Θ9

�⃗� ∈ Θ7
j
k,9

l

𝐿 (�⃗�k; �⃗�)

j
k,9

l

𝐿 (�⃗�k; �⃗�)

sup

sup

Note: the sup expresses the maximization of the product of the likelihoods for the N
independent measurements (for a set of variables) when a certain hypothesis is true

To understand better the theorem we can consider the example in the next slide.

Following an opposite convention 
(with 𝐻7 at the numerator) w.r.t. the
ratio in Neyman-Pearson Lemma)
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters �⃗� = 𝜃9, … , 𝜃\ are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻7 hypothesis : 𝜇 = 𝜇7 (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, �⃗�

�⃗�
j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

sup

sup  

𝐻9 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters �⃗� = 𝜃9, … , 𝜃\ are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻7 hypothesis : 𝜇 = 𝜇7 (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, �⃗�

�⃗�
j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

sup

sup  

𝐻9 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)

Likelihood function evaluated when the parameters 
assume the values ( 𝜇 = �̂� , �⃗� = s⃗𝜃 ) 
that maximize it! j

k,9

l

𝐿 (�⃗�k; �̂�,
t⃗𝜃)
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters �⃗� = 𝜃9, … , 𝜃\ are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻7 hypothesis : 𝜇 = 𝜇7 (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, �⃗�

�⃗�
j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

sup

sup  

𝐻9 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)

Likelihood function evaluated when the parameters 
assume the values ( 𝜇 = �̂� , �⃗� = s⃗𝜃 ) 
that maximize it! j

k,9

l

𝐿 (�⃗�k; �̂�,
t⃗𝜃)

Likelihood function evaluated when 𝜇 = 𝜇7 and the 
nuisance parameters are fit and assume the values 

�⃗� =
ss⃗𝜃 that maximize it for a fixed 𝜇 = 𝜇7!

j
k,9

l

𝐿 (�⃗�k; 𝜇7,
tt⃗𝜃 (𝜇7))
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters �⃗� = 𝜃9, … , 𝜃\ are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻7 hypothesis : 𝜇 = 𝜇7 (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, �⃗�

�⃗�
j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

j
k,9

l

𝐿 (�⃗�k; 𝜇, �⃗�)

sup

sup  

𝐻9 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)

Likelihood function evaluated when the parameters 
assume the values ( 𝜇 = �̂� , �⃗� = s⃗𝜃 ) 
that maximize it! j

k,9

l

𝐿 (�⃗�k; �̂�,
t⃗𝜃)

Likelihood function evaluated when 𝜇 = 𝜇7 and the 
nuisance parameters are fit and assume the values 

�⃗� =
ss⃗𝜃 that maximize it for a fixed 𝜇 = 𝜇7!

j
k,9

l

𝐿 (�⃗�k; 𝜇7,
tt⃗𝜃 (𝜇7))

The test statistic (for a generic value 𝝁) 𝑡 𝜇 = −2𝑙𝑛𝜆(𝜇) = −2𝑙𝑛
𝐿 (�⃗�; 𝜇,

tt⃗𝜃 (𝜇))

𝐿 (�⃗�; �̂�, t⃗𝜃)
… is called Profile Likelihood (ratio) … that has 

important application in Upper Limits calculations. 

Note: it’s not effectively a ratio since the denominator is a real number



Wilks’ Theorem & Profile Likelihood (ratio)

To recap:  the Profile Likelihood is introduced in order to satisfy the conditions required by Wilk’s theorem
according to which, if 𝝁 corresponds to the true value, then 𝒕 𝝁 follows a 𝝌𝟐 distribution with 1 d.o.f.

A minimum of 𝒕 𝝁 = −2lnλ 𝜇 at 𝜇 = �̂� indicates the possible presence of a signal having a signal strength equal to �̂� .

Therefore, this test statistics  is suitable for searches of a new signal (as will be clear later). 

Indeed, a scan of  𝒕 𝝁 as function of 𝜇 reveals a minimum at the value 𝜇 = �̂� and the minimum value of  𝒕 𝝁 , namely 

𝒕 y𝝁 is 0 by contruction. As discussed elsewhere, an uncertainty interval of 𝒕 𝝁 can be determined from 

the excursion of 𝒕 𝝁 around the minimum y𝝁 .

Usually, the addition of nuisance parameters broadens the shape of the profile likelihood as a function of the POI 𝝁, 
comparing with the case where nuisance parameters are not added. Consequently, the uncertainty on 𝝁 increases 
when nuisance parameters (typically modelling the sources of systematic) are included in the test statistic 
(i.e. in the likelihood). This will be clearer later.

As will be discussed later extensively, the test statistic 𝒕𝝁 ≡ 𝒕 𝝁 can be used to compute p-values corresponding to the
various hypotheses on 𝝁 in order to determine a statistical significance or an upper limit (different variations can deal 
various analysis cases). We will argue that those p-values can be computed in general by generating sufficiently large 
Monte Carlo pseudo-experiments but in many cases asymptotic approximations allow a much faster evaluation.
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Previously the likelihood function was considered for a set of 
independent measurements 𝒙𝟏,… , 𝒙𝑵 with parameters (𝜇, �⃗�) :

Wilks’ theorem : an example application - I

Again, let us assume that 𝜇 is the only parameter-of-interest (a signal strength) whereas �⃗� = 𝜃9, … , 𝜃\ are the nuisance parameters.

𝐿 𝒙𝟏,… , 𝒙𝑵; 𝜇, �⃗� =j
k,9

l

𝑓(�⃗�k; 𝜇, �⃗�)

The two hypotheses 𝐻7 and 𝐻9 are represented as two possible sets of values Θ9 and Θ7 of the parameters (𝜇, �⃗�).
Typically, 𝐻9 represents the presence of both signal and background (i.e. 𝜈 = 𝜇𝑠 + 𝑏 ) while…

… 𝐻7 represents the presence of only background events in our data samples (i.e. 𝜈 = 𝑏 , namely 𝜇 = 0 ).
This means that hypothesis 𝐻7 is nested in 𝐻9 since 𝜈 = 𝑏 is 𝜈 = 𝜇𝑠 + 𝑏 with 𝜇 = 0 !

In general, the # of events 𝑵 can also be used as information
and we need to consider the extended likelihood function:
(Note that in the poissonian term the expected # of events 𝜈
may also depend on the parameters).

𝐿 𝒙𝟏,… , 𝒙𝑵; 𝜇, �⃗� =
𝑒8< },~ 𝜈 𝜇, �⃗�

l

𝑁! Lj
k,9

l

𝑓(�⃗�k; 𝜇, �⃗�)

Note that the multiplicative parameter 𝜇 , called signal strength, is typical of many data analyses performed at the LHC; 
it was introduced assuming that the expected signal yield from theory is 𝑠 and all possible values of the expected signal 
are obtained by varying 𝜇 (after assuming that 𝜇 = 1 corresponds to the theory prediction).
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Wilks’ theorem : an example application - II

Note that in general 𝑠 and 𝑏 depend also on the unknown parameters, namely s = s �⃗� and 𝑏 = 𝑏 �⃗� .
An example to understand this: in a search for the Higgs boson the theoretical cross section may depend on the Higgs boson’s mass. 

The PDF 𝑓(�⃗�; 𝜇, �⃗�) - for a generic index 𝑖 so we can drop the index - can be expressed as the superposition of two components:

- one PDF for the signal :                𝑓𝒔 (�⃗�; 𝜇, �⃗�) [it typically represents a resonance peak]

- one PDF for the background : 𝑓𝒃 (�⃗�; 𝜇, �⃗�)

… to be weighted by the expected signal and background fractions :      𝑓 �⃗�; 𝜇, �⃗� = }"
}"=$ 𝑓𝒔 �⃗�; 𝜇, �⃗� + $

}"=$ 𝑓𝒃 �⃗�; 𝜇, �⃗�

=
𝑒8 }"(~)=$(~) 𝜇𝑠(�⃗�) + 𝑏(�⃗�)

l

𝑁! Lj
k,9

l
1

𝜇𝑠(�⃗�) + 𝑏(�⃗�)
𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�) + 𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

In this case the extended likelihood can be written as:

𝐿"=$ 𝒙𝟏, … , 𝒙𝑵; 𝜇, �⃗�

=
𝑒8 }"(~)=$(~)

𝑁!
Lj
k,9

l

𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�) + 𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

Under the background-only (null) hypothesis (𝐻7) : 𝜇 = 0 𝐿$ 𝒙𝟏,… , 𝒙𝑵; �⃗� =
𝑒8$(~)

𝑁! Lj
k,9

l

𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)
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Wilks’ theorem : an example application - III

At this point we can write down the likelihood ratio                                    for the specific considered case: 

… and thus the negative logarithm of the likelihood ratio is (applying as usual the logarithm’s 
properties):

=
𝑒8 }"(~)=$(~)

𝑁! L ∏k,9
l 𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�) + 𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

𝑒8$(~)
𝑁! L ∏k,9

l 𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

𝜆 �⃗� =
𝐿 �⃗�|𝐻9
𝐿 �⃗�|𝐻7

− ln 𝜆 𝒙𝟏,… , 𝒙𝑵; 𝜇, �⃗� = − ln 𝑒8 }"(~) − lnj
k,9

l
𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�)
𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

+ 1 = +𝜇𝑠 �⃗� −*
k,9

l

ln
𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�)
𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

+ 1

=
𝑒8 }"(~)=$(~)

𝑒8$(~)
Lj
k,9

l
𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�) + 𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)
= 𝑒8 }"(~) Lj

k,9

l
𝜇𝑠(�⃗�)𝑓"(�⃗�k; 𝜇, �⃗�)
𝑏(�⃗�)𝑓$(�⃗�k; 𝜇, �⃗�)

+ 1

This equation can be used to determine Upper Limits  in searches for new signals (L.Lista’s book pagg. 222-223 -CLs method)!
Despite the fact that this neg-log-likelihood ratio is written with 𝐻7 at the denominator and 𝐻9 at the numerator, that is the inverse 
convention w.r.t. that used for the Wilks’ theorem (but identical to the ratio defined in the framework of the Nyman-Pearson Lemma)
… Wilk’s theorem can apply also in this case with the only change of an extra “-” sign in the definition of the test statistic
(a “-” in front of the logarithm of a ratio just makes the inversion of the ratio).

𝜆 𝒙𝟏,… , 𝒙𝑵; 𝜇, �⃗� =
𝐿"=$ 𝒙𝟏, … , 𝒙𝑵; 𝜇, �⃗�
𝐿$ 𝒙𝟏, … , 𝒙𝑵; �⃗�
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Wilks’ theorem : (simple counting experiment example) - IV

In the case of a simple counting experiment … the likelihood function only accounts for the Poissonian probability term which only 

depends on the # of observed events 𝑁 and the dependence on the parameters only appears in the expected signal and background yields:

… which is a simplified version of the previous expressions with the terms 𝑓" and 𝑓$ dropped.

The same considerations about the application of Wilks’ theorem hold.

− ln 𝜆 𝑁; 𝜇, �⃗� = − ln 𝑒8 }"(~) − ln
𝜇𝑠(�⃗�)
𝑏(�⃗�)

+ 1
l

= +𝜇𝑠 �⃗� − 𝑁 ln
𝜇𝑠(�⃗�)
𝑏(�⃗�)

+ 1

=
𝑒8 }"(~)=$(~)

𝑒8$(~)
Lj
k,9

l
𝜇𝑠(�⃗�) + 𝑏(�⃗�)

𝑏(�⃗�)
= 𝑒8 }"(~) Lj

k,9

l
𝜇𝑠(�⃗�)
𝑏(�⃗�)

+ 1 = 𝑒8 }"(~) L
𝜇𝑠(�⃗�)
𝑏(�⃗�)

+ 1
l

𝜆 𝑁; 𝜇, �⃗� =
𝐿"=$ 𝑁; 𝜇, �⃗�
𝐿$ 𝑁; �⃗�
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The goal of many experiments is to search for new physical phenomena.
If an experiment provides a convincing measurement of a new signal the result should be published and claimed as discovery,
otherwise, it can be nonetheless interesting to quote an upper limit to the yield of the possible new signal. 

Given an observed data sample, claiming the discovery of a new signal requires determining that the sample is sufficiently
inconsistent with the hypothesis that only background is present in the data (null hypothesis 𝐻7). 
A test statistic can be used to measure this inconsistency of the observation in the hypothesis of the presence of background only.

To claim a discovery one needs to quote a p-value or alternatively a statistical significance given as an equivalent number of 
standard deviations !

Introduction to the search for New Signals - I

Probability that 
the considered test statistic t assumes 
a value greater or equal to the observed one
in the case of pure background fluctuation

𝒑 − 𝐯𝐚𝐥𝐮𝐞
[ large values of the test statistic

correspond to a more signal-like sample ]

In the case of an event counting experiment (in which the number of observed events is adopted as test statistic,
the p-value can be determined as the probability to count a number of events equal to or greater than the observed one
assuming the presence of no signal and the expected background level (see example next slide). 

A.A. 2023-2024 / A.Pompili / SDA



From L.Lista’s book (pagg. 206-7):

Introduction to the search for New Signals - II
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Instead of quoting a p-value, it’s often preferred to report the equivalent number of standard deviations that 
correspond to an area equal to the p-value under the right-most tail of a normal distribution.
Thus one quotes a Zs significance corresponding to a given p-value using the following transformation:

Introduction to the search for New Signals - III

𝑝 = �
�

0 𝑒8��/�𝑑𝑥
2𝜋

= 1 − Φ 𝑍 = Φ −𝑍 =
1
2 1 − 𝑒𝑟𝑓

𝑍
2

This table provides the correspondence between Zs & p-value :

Evidence

Observation

(>3s)

(>5s)

Typical convention
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In a counting experiment the # of observed events is the only considered information.
The selected event sample contains - in general - a mixture of n events due to both signal and background process;
the expected total number of events is s + b where s and b are the expected # of signal and background events respectively.

Assuming the expected background is known (from theory or from a control data sample with negligible uncertainty) the
main unknown parameter of the problem is s and the likelihood function is: 

Significance for Poissonian counting experiment

𝐿 𝑛; 𝑠, 𝑏 =
(𝑠 + 𝑏)+

𝑛! 𝑒8 "=$

The # of observed events n must be compared with the expected number of background events b in the null hypothesis (s = 0)

If b is sufficiently large, the distribution can be approximated with a Gaussian with average b and standard deviation = b ).
An excess in data, quantified as s = n − b should be compared with the expected standard deviation b and the statistical 
significance can be approximately evauated with a well-popular expression: 

Z =
𝑠
b

In case the expected background is affected by a non-negligible uncertainty the previous expression must be modified: Z =
𝑠

b + 𝜎$�
Cowan suggests a better approximation valid even in the case b ≪ 1 :

𝑍 = 2 𝑠 + 𝑏 ln 1 +
𝑠
𝑏 − 𝑠

"≪$
Z =

𝑠
b
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As already pointed out, a test statisic suitable for searches for a new signal is the likelihood ratio:

Significance with Likelihood ratio - I

𝜆 �⃗� =
𝐿 �⃗�|𝐻9
𝐿 �⃗�|𝐻7

For instance, as discussed before, a likelihood ratio of the form 𝜆 𝒙𝟏,… , 𝒙𝑵; 𝜇, �⃗� =
𝐿"=$ 𝒙𝟏, … , 𝒙𝑵; 𝜇, �⃗�
𝐿$ 𝒙𝟏, … , 𝒙𝑵; �⃗�

Of course, a minimum of the test statistic −𝟐𝐥𝐧 𝝀 𝝁 …
[I write here compactly 𝜆 �⃗�9, … , �⃗�l; 𝜇 ≡ 𝜆 𝜇 ,  having dropped the dependence on nuisance parameters (*)] 
… at 𝝁 = y𝝁 indicates the possible presence of a signal having a signal strength equal to y𝝁 .

Important note: The advantage of the (negative-log) likelihood ratio as test statistic is that 𝐻7 , assumed in the denominator, 
can be taken as a special case of the 𝐻9 , assumed in the nominator, with 𝝁 = 𝟎.
This represents a case of nested hypothesis and, assuming the likelihood function is sufficiently regular to satisfy 
the Wilks’ theorem requisites, the theorem holds!
Again, note that the convention is the opposite of the Wilks theorem (numerator and denominator hypotheses are 
exchanged and an extra “-” sign is involved. Thus, the test statistic must correctly expressed as +𝟐𝐥𝐧 𝝀 𝝁 .

According to Wilks’ theorem, the distribution of 𝟐𝐥𝐧 𝝀 y𝝁 can be approximated by a 𝝌𝟐 distribution with 1 degree of freedom.
In particular, an approximate estimate of the significance level Z is given by :

(*) this significance is called “ local ” in the sense that it corresponds to a fixed set of values for the nuisance parameter(s) �⃗� !

𝐙 ≅ 2 ln 𝝀 y𝝁
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In case one or more parameters are estimated from data … the local significance at fixed values of the measured parameters 
can be affected by the look-elsewhere-effect as we will discuss in the annex slides.  

Significance with Likelihood ratio - II

An accurate estimate of the statistical significance corresponding to the test statistic−2 ln 𝝀 can be achieved 
by generating a large number of Monte Carlo pseudo-experiments assuming the presence of no signal (𝝁 = 𝟎),
which gives a good approximation of the expected distribution of −2 ln 𝝀 which is not known when the Wilks’ theorem
does not apply/hold.

In order to determine large significance values (≥ 5𝜎) with sufficient precision, very large samples of these “ MC toys ”  
are needed, as we will discuss later. 

A convenient statistics that accounts for nuisance parameters (all the parameters are treated as nuisance with the
exception of 𝝁 treated as the only parameter-of-interest) is the Profile Likelihood (ratio), introduced earlier.
A scan of the test statistic 𝒕𝝁(𝝁) = −𝟐 𝒍𝒏𝝀 (𝝁) as a function of 𝝁 reveals a minimum at the value 𝝁 = y𝝁. 
The minimum value 𝒕𝝁(y𝝁) = 𝟎 by construction! An uncertainty interval for 𝝁 can be obtained with the method 
discussed in an earlier lesson (connection between MINOS and Profile Likelihhod); the interval extremes happen at 𝒕𝝁 = 𝟏. 
To be clear, let me stress here that the Profile Likelihood is introduced in order to satisfy the conditions required by the 
Wilks’ theorem, according to which if 𝝁 corresponds to the true value then 𝒕𝝁 follows a 𝝌𝟐 distribution with 1 d.o.f.!
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Profile likelihood as test statistic for Observation

In order to enforce the condition 𝝁 ≥ 𝟎 , since the signal yield cannot have negative values, 
the test statistic 𝒕𝝁(𝝁) = −𝟐 𝒍𝒏𝝀(𝝁) can be modified as follows:

In practise, the estimate of 𝜇 is replaced with zero if the best fit value y𝝁 is negative, which may occur in case of a 
downward fluctuation in data. 

In order to assess the presence of a new signal, the hypothesis of positive signal strength 𝝁 is tested against the 
hypothesis 𝝁 = 𝟎. This is done with the test statistic 𝒕𝝁(𝝁) = −𝟐 𝒍𝒏𝝀(𝝁) evaluated for 𝝁 = 𝟎 .
However, the test statistic 𝒕𝟎 = −𝟐 𝒍𝒏𝝀 𝟎 may reject the hypothesis of null signal (𝝁 = 𝟎) in case of a downward 
fluctuation in data. Therefore, a modification of 𝒕𝟎 has been proposed that is only sensitive to an excess in data 
that produces a positive value of y𝝁 :

The p-value corresponding to the test statistic 𝒒𝟎 can be also evaluated with MC pseudo-experiments, see annex slides.
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For completeness have a reading to the annex slides 
(my talk at the conference Charm 2020 given in may 2021)
and the related Proceedings. 
Links are on the web page of this course.
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