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Supersymmetric Yang-Mills Quantum Mechanics (SYMQM) is obtained from

dimensional reduction of a supersymmetric Yang-Mills theory from d+1 to 0+1
dimensions.

Much interest into SYMQM stems from the BFSS conjecture

[T. Banks, W. Fischler, S. Shenker, L. Susskind, 1997]:

The N → ∞ limit of U(N) d = 9 SYMQM

is equivalent to M-theory (in flat space-time).

Susskind proposed a further conjecture [L. Susskind, 1997]:

U(N) d = 9 SYMQM at finite N is equivalent

to a well-defined sector of M-theory.



In the A0 = 0 gauge, we obtain for SYMQM the Hamiltonian

H = tr
{
PiPi − 1

2g
2[Xi, Xj ][Xi, Xj ] + gΘT Γi[Θ, Xi]

}
,

where, in matrix notation,

Pi = pi
aTa, Xi = xi

aTa, Θα = θα
aTa,

i = 1, . . . , d, Γi are the d+1-dimensional Dirac α matrices, and θα
a are

d+1-dimensional Majorana (Hermitian) spinors. All dynamical variables obey canonical

(anti)commutation rules

[xi
a, p

j
b] = iδijδab, {θα

a , θ
β
b } = δαβδab.



The rotational symmetry of the original theory becomes an internal O(d) symmetry.

The gauge symmetry becomes a “rigid” symmetry of SYMQM; the condition of

gauge invariance becomes a constraint limiting the physical space of SYMQM to the

gauge-invariant subspace (i.e., the subspace of gauge singlets).

SYMQM is supersymmetric (in the gauge-invariant sector) for d = 1, 2, 3, 5 and 9.

Maldacena introduced a d = 9 model with additional terms in the Hamiltonian,

breaking the O(9) symmetry down to O(3)×O(6), to describe in the N → ∞ limit

M-theory in the background of a supersymmetric plain wave

[D. Berenstein, J.M. Maldacena, H. Nastase, 2002].



The potential

− 1
2g

2 tr
{
[Xi, Xj ][Xi, Xj ]

}
is

quartic, non-negative, and grows

like r4 for large r, excluding

“valleys” with [Xi, Xj ] = 0,

where the potential behaves like

r2x2
⊥. The model obtained

eliminating fermionic variables

has a discrete spectrum, since

the valleys get narrower with

increasing r, originating a

zero-point energy – and

therefore an effective potential –

growing linearly with r. In the supersymmetric model the zero-point energy vanishes,

the is no confining potential, and the model has a continuum spectrum (in addition to

discrete levels).



From the viewpoint of M-theory, one of the most relevant questions about SYMQM

is the existence of zero-energy threshold bound states, which can be identified with the

supergraviton.

Several arguments point to the existence of threshold bound states only for d = 9
[M.B. Halpern, C. Schwartz, 1998; S. Sethi, M. Stern, 1998].

We are interested not only in existence: if SYMQM is relevant for M-theory, and if

M-theory is relevant for nature, the spectrum, detailed shape of the states, etc... are

very important.



We developed a numerical approach to the study of SYMQM: rewrite the bosonic

variables xi
b and pi

b in terms of creation and annihilation operators

xi
b =

1√
2
(ai

b + ai†
b ), pi

b =
1
i
√

2
(ai

b − ai†
b ); [ai

b, a
k†
c ] = δik

bc

and truncate the Hilbert space to a maximum number of bosonic quanta:

nB ≡ ai†
b a

i
b ≤ nB max;

compute the matrix elements of H (and any other operator) in the occupation number

basis and diagonalize H numerically.

We expect for the energy levels of the truncated Hilbert space En(nB max)

En(nB max) ∼ En(∞) + c exp(−bnB max) (discrete spectrum),

En(nB max) ∼ 1
nB max

ρ

(
nν

nB max

)
(continuum spectrum).

The truncation preserves gauge symmetry and rotational symmetry, but not

supersymmetry, which is recovered in the nB max → ∞ limit.



In the case of an SU(2) gauge group, we write

H = HK +HP +HF ,

HK = 1
2p

i
ap

i
a,

HP = 1
4g

2εabcεadex
i
bx

j
cx

i
dx

j
e,

HF = 1
2 igεabcθ

T
a Γkθbx

k
c ;

the generators of gauge transformations are

Ga = εabc

(
xk

bp
k
c − 1

2 iθ
T
b θc

)
,

SUSY generators are

Qα = Γkθap
k
a + igεabcΣjkθax

j
bx

k
c ,

where Σjk = − 1
4 i[Γ

j ,Γk], and SUSY algebra is

{Qα, Qβ} = 2δαβH + 2gΓk
αβx

k
aGa.



In order to compute the matrix elements efficiently, it is crucial to avoid completely

gauge-variant states and to preserve rotational symmetry at all steps of the

computation.

We illustrate the computation for the case SU(2) in d = 1: this model is free

(HP = 0), but still nontrivial due to the gauge-invariance constraint.

Replacing the two-component Majorana fermion θa with a one-component Dirac

fermion ψa, we can write

H = 1
2papa + igεabcψ

†
axbψc, Q = ψapa;



We introduce creation and annihilation operators a, a† for x and p; the fermionic

annihilation operator is simply f = ψ, since {fb, f
†
c } = δbc.

The fermion number nF = f†b fb is conserved; thanks to the particle-hole symmetry

nF → 3 − nF , it is sufficient to study the sectors nF = 0, 1.

The boson number is nB = a†bab ≡ B − 3.

We introduce bilinear gauge-invariant creation and annihilation operators

A = abab, A† = a†ba
†
b, F = abfb, F † = a†bf

†
b , (f†b f

†
b = 0);

they satisfy the (anti)commutation rules

[A,A†] = 4B + 6, [A,B] = 2A, {F, F †} = 2B.

The trilinear gauge-invariant creation operators

εabca
†
af

†
b f

†
c , εabcf

†
af

†
b f

†
c , (εabca

†
aa

†
b = 0)

are only needed to generate the states of the nF = 2, 3 sectors (note that
(
F †)2 = 0).



We can generate an orthonormal basis of the space of gauge-invariant states with

nF = 0, 1 applying A† and F † to the vacuum: denoting the states by |nF , nB〉,

|2n+m,m〉 ≡ 1√
c2n+m,m

(
A†)n(

F †)m|0, 0〉.

The coefficient can be computed recursively: defining

〈0|AnA† ≡ ln〈0|An−1,

clearly c2n,0 = ln c2n−2,0; exploiting the above commutators and 〈0, 0|B = 0, we

obtain l1 = 6 and

ln〈0|An−1 = 〈0|An−1AA† = 〈0|An−1(A†A+ 4B + 6)

= 〈0|[(ln−1 + 6)An−1 + 4([An−1, B] +BAn−1)]

= (ln−1 + 6 + 8(n− 1))〈0|An−1;

finally, ln = 2n+ 4n2.



In the nF = 0 sector, we can write

H = − 1
4 (A+ A† − 2B + 3)

and obtain immediately the matrix elements of H:

〈2n, 0|H|2n−2, 0〉 = 〈2n−2, 0|H|2n, 0〉 = − 1
4

√
2n+ 4n2,

〈2n, 0|H|2n, 0〉 = n+ 3
4 .

The computation of the matrix elements of N in the nF = 1 sector and of the

matrix elements of Q between the sectors nF = 0 and nF = 1 is very similar.

Since N has a tridiagonal structure, it can be diagonalized using the O(N2)
algorithm implemented in the lapack library, obtaining all eigenvalues for

nB max = 105 in a few minutes on a PC.



The regularized Witten index is defined as

IW (t) =
∑

i

(−1)nF (i)e−tE(i)

In the case of discrete spectrum, SUSY implies that states with positive energy cancel

out in pairs; therefore

IW (t) =
∑

i:E(i)=0

(−1)nF (i),

independently of t; IW (t) 	= 0 signals unbroken SUSY.

Due to the particle-hole symmetry, IW (t) vanishes identically for SU(2) SYMQM in

d = 1. In this model, Q does not connect the sectors nF = 1 and nF = 2 (due to the

parity of nB + nF ), therefore SUSY properties can be studied separately for the

subspaces nF ≤ 1 and nF ≥ 2; we will consider the reduced Witten index I0,1
W (t),

where the sum is restricted to the sectors nF = 0 and nF = 1.



In the present case, I0,1
W (t) can be computed analytically. We transform to polar

coordinates and introduce a gauge-invariant infrared regulator R:

r =
√
xaxa; r ≤ R.

H is free; its eigenfunctions are the spherical harmonics: Ψp,l(r) = jl(pr) and

E = 1
2p

2. Gauge invariance implies J = 0, therefore l = 0 for nF = 0 and l = 1 for

nF = 1. The allowed values of p are z
(l)
i /R, where z

(l)
i is the ith positive zero of the

spherical harmonic jl. Therefore,

I0,1
W (R, t) =

∑
i

{
exp

[
− t

2R2

(
z
(0)
i

)2
]
− exp

[
− t

2R2

(
z
(1)
i

)2
]}

.

Using the asymptotic form of z
(l)
i for large i,

z
(0)
i = πi, z

(1)
i = βi − 1

βi
+O

(
1
i3

)
, βi = π(i− 1

2 ),

and replacing the sum with an integral, we obtain

lim
R→∞

I0,1
W (R, t) = 1

2 .



I0,1
W (t) can also be computed numerically from the spectrum of H; I show plots for

nB max ranging from 125 to 128000; the agreement with the exact value is excellent.

At finite nB max, I
0,1
W (t) → 0 as t→ 0; this is verified numerically, but can only be seen

in the range t < 0.02.
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Let us now study SU(2) SYMQM in d = 3; nF is still conserved; here nF ≤ 6 and,

thanks to the particle-hole symmetry, it is sufficient to study the sectors nF = 0, . . . , 3.

The spectrum is discrete in the sectors nF = 0, 1; its is a superposition of

continuum and discrete states for nF = 2, 3.

The computation is similar to the d = 1 case; however, it is impossible to obtain

closed formulae for the matrix elements; we use instead recursive relations between

reduced matrix elements.

It is crucial to exploit fully the O(3) symmetry; at every step of the computation,

only operators with well-defined j,m are considered and, using the Wigner-Eckhart

theorem and 6j symbols, ms are eliminated from the computation.

A complete basis of gauge-invariant operators needs ca. 75 multiplets;

(anti)commutators are computed automatically and stored in a table.



We build states with ever increasing nF , nB applying creator operators X(ν, p)† in all

possible ways and performing Gram-Schmidt orthonormalization:

|j, m, nF , nB ; i〉 =
�

ν,p,j1,j2,j,m1,m2

Rj,nF ,nB
i;ν,p,j1,j2,j Cj1 j2 j

m1m2m X(ν, p)†j1,m1
|j2, m2, nF−ν, nB−2−p+ν; i〉,

A typical recursion relation for reduced matrix elements is

〈j′, n′
F , n′

B ; i′‖Oj′′‖j, nF , nB ; i〉 = ∓
�

ν,p,j1,j2,j;j3,i3

(−1)j+j′′+j1+j3
�

2j + 1

�
j j′′ j′

j3 j1 j2

�

× Rj,nF ,nB
i;ν,p,j1,j2,j 〈j′, n′

F , n′
B ; i′‖X(ν, p)†j1‖j3, n′

F−ν, n′
B−2−p+ν; i3〉

× 〈j3, n′
F−ν, n′

B−2−p+ν; i3‖Oj′′‖j2, nF−ν, nB−2−p+ν; j〉

+
�

ν,p,j1,j2,j;j3

(−1)j′+j′′+j1+j2
�

(2j + 1)(2j3 + 1)

�
j j′′ j′

j3 j2 j1

�
Rj,nF ,nB

i;ν,p,j1,j2,j

× 〈j′, n′
F , n′

B ; i′‖K(O,j′′;ν,p,j1)
j3

‖j2, nF−ν, nB−2−p+ν; j〉,

where we used completeness and the knowledge of the (anti)commutator

{Oj1,m1 , X(ν, p)†j2,m2
}± =

�
j3,m3

Cj1 j2 j3
m1m2m3 K

(O,j1;ν,p,j2)
j3,m3

.



We implemented the recursive computation of reduced matrix elements in a C++

program; once computed, they are kept in RAM, since they will be needed again many

times as the computation proceeds.

Running on a 2 GHz AMD Opteron processor, using a total of about 75 hours and

8 Gbytes of RAM, we reached

nF = 0: nB max ≤ 61 (109 538 multiplets, 3 570 952 states)

nF = 1: nB max ≤ 40 ( 94 688 multiplets, 2 125 200 states)

nF = 2: nB max ≤ 32 ( 87 957 multiplets, 1 617 261 states)

nF = 3: nB max ≤ 30 ( 87 706 multiplets, 1 541 424 states)



I show IW (t) separately for even and odd nB max ≤ 30, together with a quadratic

extrapolation in 1/nB max on the 6 largest values; the convergence to IW (t) = 1
4 is

very clear
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Supersymmetric charges Q†
α, Qα have

nF = ±1, j = 1
2 and m = ± 1

2 ; a

supermultiplet is composed by 4 O(3)
multiplets (3 for the scalar

supermultiplet). In order to classify

discrete states, we can search for these

patterns among our levels.

We can also look at the “supersymmetry

fraction”

j + 12 ,  n
F
 + 1

j − 12 ,  n
F
 + 1

j,  n
F

j,  n
F
 + 2

q  =  j + 1q  
=  j 

+ 1

q  
=  j

q  =  j

q(j′, nF +1, i′|j, nF , i) ≡ 1
4Ej,nF ,i

∣∣〈j′;nF +1; i′‖Q†‖j;nF ; i〉∣∣2 ,
which satisfies the sum rule

∑
j′,i′

[q(j′, nF +1, i′|j, nF , i) + q(j, nF , i|j′, nF +1, i′)] = 2j + 1.

For discrete states, it is saturated by one (or very few) states |j′;nF +1; i′〉 with energy

Ej′,nF +1,i′ ∼= Ej,nF ,i.



A simple spectrum, all states belonging to the j = 0, nF = 0 supermultiplet:
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States belonging to either j = 0, nF = 0 or j = 1
2 , nF = 1
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A complicated spectrum: continuum plus 4 supermultiplets, degeneracy due to

particle-hole symmetry
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Density plots of q(j′, nF +1, i′|j, nF , i)/(2 max(j, j′) + 1).
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103×energies

nF (j) (nF , j) (nF +1, j− 1
2 ) (nF +1, j+ 1

2 ) (nF +2, j)

0(0+) 4117 — 4117 4117

0(0+)′ 6386 — 6386.3 6388

0(0+)′′ 7973 — 7974 7988

0(0+)9202 9202 — 9204 9254

0(0+)10086 10086 — 10091 10190

0(0+)10937 10937 — 10957 11206

0(0+)12049 12049 — 12128 12720

0(0−) 8787 — 8787 8787

0(0−)′ 12055 — 12055 12057

0(0−)′′ 14020 — 14020 14031

0(0−)15590 15590 — 15590 15624

2(0) 5184 — 5184 5184

2(0)′ 7363 — 7366 7363

2(0)′′ 9875 — 9876 9875

1(1/2) 6386 6386 6386 6388, 6389

1(1/2)′ 8167 8174 8170 8203, 8221

1(1/2)′′ 9281 9298 9288 9337, 9355

1(1/2)10040 10040 10085 10077 10251, 10358

1(1/2)11226 11226 11395 11349 11728, 11834



nF (j) (nF , j) (nF +1, j− 1
2 ) (nF +1, j+ 1

2 ) (nF +2, j)

2(1) 6015 6015 6015 6015

2(1)′ 7822 7822 7839 7822

2(1)′′ 9350 9344 9396 9350

2(1)9934 9934 9932 9956 9934

1(3/2) 4692 4692 4692 4691.9, 4692

1(3/2)′ 5780 5780 5780 5780, 5781

1(3/2)′′ 6950 6951 6952 6955, 6960

1(3/2)7695 7695 7696 7899 7709, 7720

1(3/2)8583 8583 8587 8596 8623, 8635

1(3/2)8964 8964 8967 8973 8989, 8997

0(2+) 6014 6015 6015 6015

0(2+)′ 7821 7821 7821 7832

0(2+)′′ 9332 9334 9334 9406

0(2+)9928 9928 9928 9929 9949

0(2−) 11331 11331 11331 11332

0(2−)′ 13998 13998 13998 14010

0(2−)′′ 15399 15399 15399 15407

2(2) 6710 6710 6711 6710

2(2)′ 8398 8402 8410 8398

2(2)′′ 9255 9259 9276 9255



The techniques and codes we developed are adequate to study SU(2) SYMQM in

d = 3 in great detail. We have a good knowledge of the discrete spectrum, and we are

ready to investigate the continuum (e.g., defining scattering).

The study of SU(N) SYMQM with N ≥ 3 requires additional theoretical work,

which is under way [J. Trzetrzelewski, J. Wosiek]. Computing analytically the N → ∞
limit is not out of question.

The most interesting case d = 9 requires an algorithm to compute 3j and 6j
coefficients for O(9): this problem is solved in principle, but in practice we need them

for very large representations. . . we are looking into this [V. Chilla, M. C.].

We think that it is worthwhile to devote a considerable effort to the study of

SU(N) SYMQM in d = 9.


