Numerical studies of supersymmetric Yang-Mills quantum mechanics

> Jacek Wosiek Massimo Campostrini

[J. W., M. C., 2002, 2004]

Supersymmetric Yang-Mills Quantum Mechanics (SYMQM) is obtained from dimensional reduction of a supersymmetric Yang-Mills theory from d+1 to 0+1 dimensions.

Much interest into SYMQM stems from the BFSS conjecture [T. Banks, W. Fischler, S. Shenker, L. Susskind, 1997]:

The $N \to \infty$ limit of U(N) d = 9 SYMQM is equivalent to M-theory (in flat space-time).

Susskind proposed a further conjecture [L. Susskind, 1997]:

U(N) d = 9 SYMQM at finite N is equivalent to a well-defined sector of M-theory. In the $A_0 = 0$ gauge, we obtain for SYMQM the Hamiltonian

$$H = \operatorname{tr} \left\{ P_i P_i - \frac{1}{2} g^2 [X_i, X_j] [X_i, X_j] + g \Theta^T \Gamma_i [\Theta, X_i] \right\},\$$

where, in matrix notation,

$$P_i = p_a^i T_a, \quad X_i = x_a^i T_a, \quad \Theta^\alpha = \theta_a^\alpha T_a,$$

 $i = 1, \ldots, d$, Γ_i are the d+1-dimensional Dirac α matrices, and θ_a^{α} are d+1-dimensional Majorana (Hermitian) spinors. All dynamical variables obey canonical (anti)commutation rules

$$[x_a^i, p_b^j] = i\delta^{ij}\delta_{ab}, \quad \{\theta_a^\alpha, \theta_b^\beta\} = \delta^{\alpha\beta}\delta_{ab}.$$

The rotational symmetry of the original theory becomes an internal O(d) symmetry.

The gauge symmetry becomes a "rigid" symmetry of SYMQM; the condition of gauge invariance becomes a constraint limiting the physical space of SYMQM to the gauge-invariant subspace (i.e., the subspace of gauge singlets).

SYMQM is supersymmetric (in the gauge-invariant sector) for d = 1, 2, 3, 5 and 9.

Maldacena introduced a d = 9 model with additional terms in the Hamiltonian, breaking the O(9) symmetry down to O(3)×O(6), to describe in the $N \rightarrow \infty$ limit M-theory in the background of a supersymmetric plain wave [D. Berenstein, J.M. Maldacena, H. Nastase, 2002].

The potential $-\frac{1}{2}g^2 \operatorname{tr}\{[X_i, X_j][X_i, X_j]\}$ is quartic, non-negative, and grows like r^4 for large r, excluding "valleys" with $[X_i, X_j] = 0$, where the potential behaves like $r^2 x_\perp^2$. The model obtained eliminating fermionic variables has a discrete spectrum, since the valleys get narrower with increasing r, originating a zero-point energy – and therefore an effective potential -

growing linearly with r. In the supersymmetric model the zero-point energy vanishes, the is no confining potential, and the model has a continuum spectrum (in addition to discrete levels).

From the viewpoint of M-theory, one of the most relevant questions about SYMQM is the existence of zero-energy threshold bound states, which can be identified with the supergraviton.

Several arguments point to the existence of threshold bound states only for d = 9 [M.B. Halpern, C. Schwartz, 1998; S. Sethi, M. Stern, 1998].

We are interested not only in existence: if SYMQM is relevant for M-theory, and if M-theory is relevant for nature, the spectrum, detailed shape of the states, etc... are very important.

We developed a numerical approach to the study of SYMQM: rewrite the bosonic variables x_b^i and p_b^i in terms of creation and annihilation operators

$$x_b^i = \frac{1}{\sqrt{2}}(a_b^i + a_b^{i\dagger}), \quad p_b^i = \frac{1}{i\sqrt{2}}(a_b^i - a_b^{i\dagger}); \quad [a_b^i, a_c^{k\dagger}] = \delta_{bc}^{ik}$$

and truncate the Hilbert space to a maximum number of bosonic quanta:

$$n_B \equiv a_b^{i\dagger} a_b^i \le n_{B\max};$$

compute the matrix elements of H (and any other operator) in the occupation number basis and diagonalize H numerically.

We expect for the energy levels of the truncated Hilbert space $E_n(n_{B \max})$

$$E_n(n_{B\max}) \sim E_n(\infty) + c \exp(-bn_{B\max})$$
 (discrete spectrum),
 $E_n(n_{B\max}) \sim \frac{1}{n_{B\max}} \rho\left(\frac{n^{\nu}}{n_{B\max}}\right)$ (continuum spectrum).

The truncation preserves gauge symmetry and rotational symmetry, but not supersymmetry, which is recovered in the $n_{B \max} \rightarrow \infty$ limit.

In the case of an SU(2) gauge group, we write

$$H = H_K + H_P + H_F,$$

$$H_K = \frac{1}{2} p_a^i p_a^i,$$

$$H_P = \frac{1}{4} g^2 \epsilon_{abc} \epsilon_{ade} x_b^i x_c^j x_d^i x_e^j,$$

$$H_F = \frac{1}{2} i g \epsilon_{abc} \theta_a^T \Gamma^k \theta_b x_c^k;$$

the generators of gauge transformations are

$$G_a = \epsilon_{abc} \left(x_b^k p_c^k - \frac{1}{2} i \theta_b^T \theta_c \right),$$

SUSY generators are

$$Q_{\alpha} = \Gamma^k \theta_a p_a^k + ig\epsilon_{abc} \Sigma^{jk} \theta_a x_b^j x_c^k,$$

where $\Sigma^{jk} = -\frac{1}{4}i[\Gamma^j,\Gamma^k]$, and SUSY algebra is

$$\{Q_{\alpha}, Q_{\beta}\} = 2\delta_{\alpha\beta}H + 2g\Gamma^{k}_{\alpha\beta}x^{k}_{a}G_{a}$$

In order to compute the matrix elements efficiently, it is crucial to avoid completely gauge-variant states and to preserve rotational symmetry at all steps of the computation.

We illustrate the computation for the case SU(2) in d = 1: this model is free $(H_P = 0)$, but still nontrivial due to the gauge-invariance constraint.

Replacing the two-component Majorana fermion θ_a with a one-component Dirac fermion ψ_a , we can write

$$H = \frac{1}{2}p_a p_a + ig\epsilon_{abc}\psi_a^{\dagger} x_b\psi_c, \qquad Q = \psi_a p_a;$$

We introduce creation and annihilation operators a, a^{\dagger} for x and p; the fermionic annihilation operator is simply $f = \psi$, since $\{f_b, f_c^{\dagger}\} = \delta_{bc}$.

The fermion number $n_F = f_b^{\dagger} f_b$ is conserved; thanks to the particle-hole symmetry $n_F \rightarrow 3 - n_F$, it is sufficient to study the sectors $n_F = 0$, 1.

The boson number is $n_B = a_b^{\dagger} a_b \equiv B - 3$.

We introduce bilinear gauge-invariant creation and annihilation operators

$$A = a_b a_b, \quad A^{\dagger} = a_b^{\dagger} a_b^{\dagger}, \qquad F = a_b f_b, \quad F^{\dagger} = a_b^{\dagger} f_b^{\dagger}, \qquad (f_b^{\dagger} f_b^{\dagger} = 0);$$

they satisfy the (anti)commutation rules

$$[A, A^{\dagger}] = 4B + 6, \qquad [A, B] = 2A, \qquad \{F, F^{\dagger}\} = 2B.$$

The trilinear gauge-invariant creation operators

$$\epsilon_{abc}a_a^{\dagger}f_b^{\dagger}f_c^{\dagger}, \quad \epsilon_{abc}f_a^{\dagger}f_b^{\dagger}f_c^{\dagger}, \qquad (\epsilon_{abc}a_a^{\dagger}a_b^{\dagger}=0)$$

are only needed to generate the states of the $n_F = 2$, 3 sectors (note that $(F^{\dagger})^2 = 0$).

We can generate an orthonormal basis of the space of gauge-invariant states with $n_F = 0$, 1 applying A^{\dagger} and F^{\dagger} to the vacuum: denoting the states by $|n_F, n_B\rangle$,

$$|2n+m,m\rangle \equiv \frac{1}{\sqrt{c_{2n+m,m}}} (A^{\dagger})^n (F^{\dagger})^m |0,0\rangle.$$

The coefficient can be computed recursively: defining

$$\langle 0|A^n A^{\dagger} \equiv l_n \langle 0|A^{n-1},$$

clearly $c_{2n,0} = l_n c_{2n-2,0}$; exploiting the above commutators and $\langle 0, 0 | B = 0$, we obtain $l_1 = 6$ and

$$l_n \langle 0 | A^{n-1} = \langle 0 | A^{n-1} A A^{\dagger} = \langle 0 | A^{n-1} (A^{\dagger} A + 4B + 6) \\ = \langle 0 | [(l_{n-1} + 6) A^{n-1} + 4([A^{n-1}, B] + BA^{n-1})] \\ = (l_{n-1} + 6 + 8(n-1)) \langle 0 | A^{n-1};$$

finally, $l_n = 2n + 4n^2$.

In the $n_F = 0$ sector, we can write

$$H = -\frac{1}{4}(A + A^{\dagger} - 2B + 3)$$

and obtain immediately the matrix elements of H:

$$\begin{split} \langle 2n, 0 | H | 2n - 2, 0 \rangle \, &= \, \langle 2n - 2, 0 | H | 2n, 0 \rangle = -\frac{1}{4}\sqrt{2n + 4n^2}, \\ \langle 2n, 0 | H | 2n, 0 \rangle \, &= \, n + \frac{3}{4}. \end{split}$$

The computation of the matrix elements of N in the $n_F = 1$ sector and of the matrix elements of Q between the sectors $n_F = 0$ and $n_F = 1$ is very similar.

Since N has a tridiagonal structure, it can be diagonalized using the $O(N^2)$ algorithm implemented in the lapack library, obtaining all eigenvalues for $n_{B \max} = 10^5$ in a few minutes on a PC.

The regularized Witten index is defined as

$$I_W(t) = \sum_{i} (-1)^{n_F(i)} e^{-tE(i)}$$

In the case of discrete spectrum, SUSY implies that states with positive energy cancel out in pairs; therefore

$$I_W(t) = \sum_{i:E(i)=0} (-1)^{n_F(i)},$$

independently of t; $I_W(t) \neq 0$ signals unbroken SUSY.

Due to the particle-hole symmetry, $I_W(t)$ vanishes identically for SU(2) SYMQM in d = 1. In this model, Q does not connect the sectors $n_F = 1$ and $n_F = 2$ (due to the parity of $n_B + n_F$), therefore SUSY properties can be studied separately for the subspaces $n_F \leq 1$ and $n_F \geq 2$; we will consider the reduced Witten index $I_W^{0,1}(t)$, where the sum is restricted to the sectors $n_F = 0$ and $n_F = 1$.

In the present case, $I_W^{0,1}(t)$ can be computed analytically. We transform to polar coordinates and introduce a gauge-invariant infrared regulator R:

$$r = \sqrt{x_a x_a}; \qquad r \le R.$$

H is free; its eigenfunctions are the spherical harmonics: $\Psi_{p,l}(r) = j_l(pr)$ and $E = \frac{1}{2}p^2$. Gauge invariance implies J = 0, therefore l = 0 for $n_F = 0$ and l = 1 for $n_F = 1$. The allowed values of p are $z_i^{(l)}/R$, where $z_i^{(l)}$ is the *i*th positive zero of the spherical harmonic j_l . Therefore,

$$I_W^{0,1}(R,t) = \sum_i \left\{ \exp\left[-\frac{t}{2R^2} (z_i^{(0)})^2\right] - \exp\left[-\frac{t}{2R^2} (z_i^{(1)})^2\right] \right\}.$$

Using the asymptotic form of $z_i^{(l)}$ for large i,

$$z_i^{(0)} = \pi i, \qquad z_i^{(1)} = \beta_i - \frac{1}{\beta_i} + O\left(\frac{1}{i^3}\right), \qquad \beta_i = \pi (i - \frac{1}{2}),$$

and replacing the sum with an integral, we obtain

$$\lim_{R \to \infty} I_W^{0,1}(R,t) = \frac{1}{2}.$$

 $I_W^{0,1}(t)$ can also be computed numerically from the spectrum of H; I show plots for $n_{B\max}$ ranging from 125 to 128000; the agreement with the exact value is excellent. At finite $n_{B\max}$, $I_W^{0,1}(t) \to 0$ as $t \to 0$; this is verified numerically, but can only be seen in the range t < 0.02.

t

Let us now study SU(2) SYMQM in d = 3; n_F is still conserved; here $n_F \leq 6$ and, thanks to the particle-hole symmetry, it is sufficient to study the sectors $n_F = 0, \ldots, 3$.

The spectrum is discrete in the sectors $n_F = 0$, 1; its is a superposition of continuum and discrete states for $n_F = 2$, 3.

The computation is similar to the d = 1 case; however, it is impossible to obtain closed formulae for the matrix elements; we use instead recursive relations between reduced matrix elements.

It is crucial to exploit fully the O(3) symmetry; at every step of the computation, only operators with well-defined j, m are considered and, using the Wigner-Eckhart theorem and 6j symbols, ms are eliminated from the computation.

A complete basis of gauge-invariant operators needs ca. 75 multiplets; (anti)commutators are computed automatically and stored in a table.

We build states with ever increasing n_F , n_B applying creator operators $X(\nu, p)^{\dagger}$ in all possible ways and performing Gram-Schmidt orthonormalization:

$$|j, m, n_F, n_B; i\rangle = \sum_{\nu, p, j_1, j_2, j, m_1, m_2} R_{i;\nu, p, j_1, j_2, j}^{j, n_F, n_B} C_{m_1 m_2 m}^{j_1 j_2 j} X(\nu, p)_{j_1, m_1}^{\dagger} |j_2, m_2, n_F - \nu, n_B - 2 - p + \nu; i\rangle,$$

A typical recursion relation for reduced matrix elements is

$$\langle j', n'_{F}, n'_{B}; i' \| \mathcal{O}_{j''} \| j, n_{F}, n_{B}; i \rangle = \mp \sum_{\nu, p, j_{1}, j_{2}, j; j_{3}, i_{3}} (-1)^{j+j''+j_{1}+j_{3}} \sqrt{2j+1} \left\{ \begin{array}{l} j & j'' & j' \\ j_{3} & j_{1} & j_{2} \end{array} \right\} \\ \times & R_{i;\nu, p, j_{1}, j_{2}, j}^{j, n_{F}, n_{B}}; i' \| X(\nu, p)_{j_{1}}^{\dagger} \| j_{3}, n'_{F} - \nu, n'_{B} - 2 - p + \nu; i_{3} \rangle \\ \times & \langle j_{3}, n'_{F} - \nu, n'_{B} - 2 - p + \nu; i_{3} \| \mathcal{O}_{j''} \| j_{2}, n_{F} - \nu, n_{B} - 2 - p + \nu; j \rangle \\ + & \sum_{\nu, p, j_{1}, j_{2}, j; j_{3}} (-1)^{j'+j''+j_{1}+j_{2}} \sqrt{(2j+1)(2j_{3}+1)} \left\{ \begin{array}{l} j & j'' & j' \\ j_{3} & j_{2} & j_{1} \end{array} \right\} R_{i;\nu, p, j_{1}, j_{2}, j}^{j, n_{F}, n_{B}} \\ \times & \langle j', n'_{F}, n'_{B}; i' \| K_{j_{3}}^{(\mathcal{O}, j'';\nu, p, j_{1})} \| j_{2}, n_{F} - \nu, n_{B} - 2 - p + \nu; j \rangle, \end{array}$$

where we used completeness and the knowledge of the (anti)commutator

$$\{\mathcal{O}_{j_1,m_1}, X(\nu,p)_{j_2,m_2}^{\dagger}\}_{\pm} = \sum_{j_3,m_3} C_{m_1m_2m_3}^{j_1j_2j_3} K_{j_3,m_3}^{(\mathcal{O},j_1;\nu,p,j_2)}$$

We implemented the recursive computation of reduced matrix elements in a C++ program; once computed, they are kept in RAM, since they will be needed again many times as the computation proceeds.

Running on a 2 GHz AMD Opteron processor, using a total of about 75 hours and 8 Gbytes of RAM, we reached

 $n_F = 0: n_{B \max} \le 61 \ (109538 \text{ multiplets}, 3570952 \text{ states})$ $n_F = 1: n_{B \max} \le 40 \ (94688 \text{ multiplets}, 2125200 \text{ states})$ $n_F = 2: n_{B \max} \le 32 \ (87957 \text{ multiplets}, 1617261 \text{ states})$ $n_F = 3: n_{B \max} \le 30 \ (87706 \text{ multiplets}, 1541424 \text{ states})$ I show $I_W(t)$ separately for even and odd $n_{B\max} \leq 30$, together with a quadratic extrapolation in $1/n_{B\max}$ on the 6 largest values; the convergence to $I_W(t) = \frac{1}{4}$ is very clear

Supersymmetric charges Q_{α}^{\dagger} , Q_{α} have $n_F = \pm 1$, $j = \frac{1}{2}$ and $m = \pm \frac{1}{2}$; a supermultiplet is composed by 4 O(3) multiplets (3 for the scalar supermultiplet). In order to classify discrete states, we can search for these patterns among our levels. We can also look at the "supersymmetry fraction"

$$q(j', n_F+1, i'|j, n_F, i) \equiv \frac{1}{4E_{j, n_F, i}} \left| \langle j'; n_F+1; i' \| Q^{\dagger} \| j; n_F; i \rangle \right|^2,$$

which satisfies the sum rule

$$\sum_{j',i'} [q(j', n_F + 1, i'|j, n_F, i) + q(j, n_F, i|j', n_F + 1, i')] = 2j + 1.$$

For discrete states, it is saturated by one (or very few) states $|j'; n_F+1; i'\rangle$ with energy $E_{j',n_F+1,i'} \cong E_{j,n_F,i}$.

A simple spectrum, all states belonging to the $j = 0, n_F = 0$ supermultiplet:

 $n_F = 0, j = 0$

States belonging to either $j = 0, n_F = 0$ or $j = \frac{1}{2}, n_F = 1$

 $n_F = 1, j = 1/2$

A complicated spectrum: continuum plus 4 supermultiplets, degeneracy due to particle-hole symmetry

$$n_{\rm F} = 3, j = 3/2$$

Density plots of $q(j', n_F+1, i'|j, n_F, i)/(2 \max(j, j') + 1)$.

 $q(\frac{1}{2}, 1|0, 0)$

$$q(2,2|1,\frac{3}{2})$$

$10^3 \times \text{energies}$						
$n_F(j)$	(n_F,j)	$(n_F + 1, j - \frac{1}{2})$	$(n_F + 1, j + \frac{1}{2})$	$(n_F + 2, j)$		
$0(0^+)$	4117		4117	4117		
$0(0^{+})'$	6386		6386.3	6388		
$0(0^{+})''$	7973		7974	7988		
$0(0^+)_{9202}$	9202		9204	9254		
$0(0^+)_{10086}$	10086		10091	10190		
$0(0^+)_{10937}$	10937		10957	11206		
$0(0^+)_{12049}$	12049		12128	12720		
$0(0^{-})$	8787		8787	8787		
$0(0^{-})'$	12055		12055	12057		
$0(0^{-})''$	14020		14020	14031		
$0(0^{-})_{15590}$	15590		15590	15624		
2(0)	5184		5184	5184		
2(0)'	7363		7366	7363		
$2(0)^{\prime\prime}$	9875		9876	9875		
1(1/2)	6386	6386	6386	6388, 6389		
1(1/2)'	8167	8174	8170	8203, 8221		
1(1/2)''	9281	9298	9288	9337, 9355		
$1(1/2)_{10040}$	10040	10085	10077	10251, 10358		
$1(1/2)_{11226}$	11226	11395	11349	11728, 11834		

$n_F(j)$	(n_F,j)	$(n_F\!+\!1,j\!-\!\tfrac{1}{2})$	$(n_F + 1, j + \frac{1}{2})$	$(n_F + 2, j)$
2(1)	6015	6015	6015	6015
2(1)'	7822	7822	7839	7822
2(1)''	9350	9344	9396	9350
$2(1)_{9934}$	9934	9932	9956	9934
1(3/2)	4692	4692	4692	$4691.9,\ 4692$
1(3/2)'	5780	5780	5780	5780, 5781
1(3/2)''	6950	6951	6952	6955, 6960
$1(3/2)_{7695}$	7695	7696	7899	7709, 7720
$1(3/2)_{8583}$	8583	8587	8596	8623, 8635
$1(3/2)_{8964}$	8964	8967	8973	$8989,\ 8997$
$0(2^+)$	6014	6015	6015	6015
$0(2^{+})'$	7821	7821	7821	7832
$0(2^{+})''$	9332	9334	9334	9406
$0(2^+)_{9928}$	9928	9928	9929	9949
$0(2^{-})$	11331	11331	11331	11332
$0(2^{-})'$	13998	13998	13998	14010
$0(2^{-})''$	15399	15399	15399	15407
2(2)	6710	6710	6711	6710
2(2)'	8398	8402	8410	8398
2(2)''	9255	9259	9276	9255

The techniques and codes we developed are adequate to study SU(2) SYMQM in d = 3 in great detail. We have a good knowledge of the discrete spectrum, and we are ready to investigate the continuum (e.g., defining scattering).

The study of SU(N) SYMQM with $N \ge 3$ requires additional theoretical work, which is under way [J. Trzetrzelewski, J. Wosiek]. Computing analytically the $N \to \infty$ limit is not out of question.

The most interesting case d = 9 requires an algorithm to compute 3j and 6j coefficients for O(9): this problem is solved in principle, but in practice we need them for very large representations... we are looking into this [V. Chilla, M. C.].

We think that it is worthwhile to devote a considerable effort to the study of SU(N) SYMQM in d = 9.