Numerical studies of supersymmetric Yang-Mills quantum mechanics

Jacek Wosiek
Massimo Campostrini
[J. W., M. C., 2002, 2004]

Supersymmetric Yang-Mills Quantum Mechanics (SYMQM) is obtained from dimensional reduction of a supersymmetric Yang-Mills theory from $d+1$ to $0+1$ dimensions.

Much interest into SYMQM stems from the BFSS conjecture [T. Banks, W. Fischler, S. Shenker, L. Susskind, 1997]:

The $N \rightarrow \infty$ limit of $\mathrm{U}(N) d=9$ SYMQM is equivalent to M -theory (in flat space-time).

Susskind proposed a further conjecture [L. Susskind, 1997]:
$\mathrm{U}(N) d=9$ SYMQM at finite N is equivalent
to a well-defined sector of M-theory.

In the $A_{0}=0$ gauge, we obtain for SYMQM the Hamiltonian

$$
H=\operatorname{tr}\left\{P_{i} P_{i}-\frac{1}{2} g^{2}\left[X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]+g \Theta^{T} \Gamma_{i}\left[\Theta, X_{i}\right]\right\}
$$

where, in matrix notation,

$$
P_{i}=p_{a}^{i} T_{a}, \quad X_{i}=x_{a}^{i} T_{a}, \quad \Theta^{\alpha}=\theta_{a}^{\alpha} T_{a}
$$

$i=1, \ldots, d, \Gamma_{i}$ are the $d+1$-dimensional Dirac α matrices, and θ_{a}^{α} are $d+1$-dimensional Majorana (Hermitian) spinors. All dynamical variables obey canonical (anti)commutation rules

$$
\left[x_{a}^{i}, p_{b}^{j}\right]=i \delta^{i j} \delta_{a b}, \quad\left\{\theta_{a}^{\alpha}, \theta_{b}^{\beta}\right\}=\delta^{\alpha \beta} \delta_{a b} .
$$

The rotational symmetry of the original theory becomes an internal $\mathrm{O}(d)$ symmetry.
The gauge symmetry becomes a "rigid" symmetry of SYMQM; the condition of gauge invariance becomes a constraint limiting the physical space of SYMQM to the gauge-invariant subspace (i.e., the subspace of gauge singlets).

SYMQM is supersymmetric (in the gauge-invariant sector) for $d=1,2,3,5$ and 9 .
Maldacena introduced a $d=9$ model with additional terms in the Hamiltonian, breaking the $\mathrm{O}(9)$ symmetry down to $\mathrm{O}(3) \times \mathrm{O}(6)$, to describe in the $N \rightarrow \infty$ limit M-theory in the background of a supersymmetric plain wave
[D. Berenstein, J.M. Maldacena, H. Nastase, 2002].

The potential
$-\frac{1}{2} g^{2} \operatorname{tr}\left\{\left[X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]\right\}$ is quartic, non-negative, and grows like r^{4} for large r, excluding "valleys" with $\left[X_{i}, X_{j}\right]=0$, where the potential behaves like $r^{2} x_{\perp}^{2}$. The model obtained eliminating fermionic variables has a discrete spectrum, since the valleys get narrower with increasing r, originating a zero-point energy - and
 therefore an effective potential growing linearly with r. In the supersymmetric model the zero-point energy vanishes, the is no confining potential, and the model has a continuum spectrum (in addition to discrete levels).

From the viewpoint of M-theory, one of the most relevant questions about SYMQM is the existence of zero-energy threshold bound states, which can be identified with the supergraviton.

Several arguments point to the existence of threshold bound states only for $d=9$ [M.B. Halpern, C. Schwartz, 1998; S. Sethi, M. Stern, 1998].

We are interested not only in existence: if SYMQM is relevant for M-theory, and if M-theory is relevant for nature, the spectrum, detailed shape of the states, etc... are very important.

We developed a numerical approach to the study of SYMQM: rewrite the bosonic variables x_{b}^{i} and p_{b}^{i} in terms of creation and annihilation operators

$$
x_{b}^{i}=\frac{1}{\sqrt{2}}\left(a_{b}^{i}+a_{b}^{i \dagger}\right), \quad p_{b}^{i}=\frac{1}{i \sqrt{2}}\left(a_{b}^{i}-a_{b}^{i \dagger}\right) ; \quad\left[a_{b}^{i}, a_{c}^{k \dagger}\right]=\delta_{b c}^{i k}
$$

and truncate the Hilbert space to a maximum number of bosonic quanta:

$$
n_{B} \equiv a_{b}^{i \dagger} a_{b}^{i} \leq n_{B \max }
$$

compute the matrix elements of H (and any other operator) in the occupation number basis and diagonalize H numerically.

We expect for the energy levels of the truncated Hilbert space $E_{n}\left(n_{B \max }\right)$

$$
\begin{array}{ll}
E_{n}\left(n_{B \max }\right) \sim E_{n}(\infty)+c \exp \left(-b n_{B \max }\right) & (\text { discrete spectrum }) \\
E_{n}\left(n_{B \max }\right) \sim \frac{1}{n_{B \max }} \rho\left(\frac{n^{\nu}}{n_{B \max }}\right) \quad & (\text { continuum spectrum }) .
\end{array}
$$

The truncation preserves gauge symmetry and rotational symmetry, but not supersymmetry, which is recovered in the $n_{B \max } \rightarrow \infty$ limit.

In the case of an $\mathrm{SU}(2)$ gauge group, we write

$$
\begin{aligned}
H & =H_{K}+H_{P}+H_{F}, \\
H_{K} & =\frac{1}{2} p_{a}^{i} p_{a}^{i}, \\
H_{P} & =\frac{1}{4} g^{2} \epsilon_{a b c} \epsilon_{a d e} x_{b}^{i} x_{c}^{j} x_{d}^{i} x_{e}^{j}, \\
H_{F} & =\frac{1}{2} i g \epsilon_{a b c} \theta_{a}^{T} \Gamma^{k} \theta_{b} x_{c}^{k} ;
\end{aligned}
$$

the generators of gauge transformations are

$$
G_{a}=\epsilon_{a b c}\left(x_{b}^{k} p_{c}^{k}-\frac{1}{2} i \theta_{b}^{T} \theta_{c}\right),
$$

SUSY generators are

$$
Q_{\alpha}=\Gamma^{k} \theta_{a} p_{a}^{k}+i g \epsilon_{a b c} \Sigma^{j k} \theta_{a} x_{b}^{j} x_{c}^{k},
$$

where $\Sigma^{j k}=-\frac{1}{4} i\left[\Gamma^{j}, \Gamma^{k}\right]$, and SUSY algebra is

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=2 \delta_{\alpha \beta} H+2 g \Gamma_{\alpha \beta}^{k} x_{a}^{k} G_{a} .
$$

In order to compute the matrix elements efficiently, it is crucial to avoid completely gauge-variant states and to preserve rotational symmetry at all steps of the computation.

We illustrate the computation for the case $\operatorname{SU}(2)$ in $d=1$: this model is free ($H_{P}=0$), but still nontrivial due to the gauge-invariance constraint.

Replacing the two-component Majorana fermion θ_{a} with a one-component Dirac fermion ψ_{a}, we can write

$$
H=\frac{1}{2} p_{a} p_{a}+i g \epsilon_{a b c} \psi_{a}^{\dagger} x_{b} \psi_{c}, \quad Q=\psi_{a} p_{a}
$$

We introduce creation and annihilation operators a, a^{\dagger} for x and p; the fermionic annihilation operator is simply $f=\psi$, since $\left\{f_{b}, f_{c}^{\dagger}\right\}=\delta_{b c}$.

The fermion number $n_{F}=f_{b}^{\dagger} f_{b}$ is conserved; thanks to the particle-hole symmetry $n_{F} \rightarrow 3-n_{F}$, it is sufficient to study the sectors $n_{F}=0,1$.

The boson number is $n_{B}=a_{b}^{\dagger} a_{b} \equiv B-3$.
We introduce bilinear gauge-invariant creation and annihilation operators

$$
A=a_{b} a_{b}, \quad A^{\dagger}=a_{b}^{\dagger} a_{b}^{\dagger}, \quad F=a_{b} f_{b}, \quad F^{\dagger}=a_{b}^{\dagger} f_{b}^{\dagger}, \quad\left(f_{b}^{\dagger} f_{b}^{\dagger}=0\right) ;
$$

they satisfy the (anti)commutation rules

$$
\left[A, A^{\dagger}\right]=4 B+6, \quad[A, B]=2 A, \quad\left\{F, F^{\dagger}\right\}=2 B
$$

The trilinear gauge-invariant creation operators

$$
\epsilon_{a b c} a_{a}^{\dagger} f_{b}^{\dagger} f_{c}^{\dagger}, \quad \epsilon_{a b c} f_{a}^{\dagger} f_{b}^{\dagger} f_{c}^{\dagger}, \quad\left(\epsilon_{a b c} a_{a}^{\dagger} a_{b}^{\dagger}=0\right)
$$

are only needed to generate the states of the $n_{F}=2,3$ sectors (note that $\left(F^{\dagger}\right)^{2}=0$).

We can generate an orthonormal basis of the space of gauge-invariant states with $n_{F}=0,1$ applying A^{\dagger} and F^{\dagger} to the vacuum: denoting the states by $\left|n_{F}, n_{B}\right\rangle$,

$$
|2 n+m, m\rangle \equiv \frac{1}{\sqrt{c_{2 n+m, m}}}\left(A^{\dagger}\right)^{n}\left(F^{\dagger}\right)^{m}|0,0\rangle
$$

The coefficient can be computed recursively: defining

$$
\langle 0| A^{n} A^{\dagger} \equiv l_{n}\langle 0| A^{n-1}
$$

clearly $c_{2 n, 0}=l_{n} c_{2 n-2,0}$; exploiting the above commutators and $\langle 0,0| B=0$, we obtain $l_{1}=6$ and

$$
\begin{aligned}
l_{n}\langle 0| A^{n-1} & =\langle 0| A^{n-1} A A^{\dagger}=\langle 0| A^{n-1}\left(A^{\dagger} A+4 B+6\right) \\
& =\langle 0|\left[\left(l_{n-1}+6\right) A^{n-1}+4\left(\left[A^{n-1}, B\right]+B A^{n-1}\right)\right] \\
& =\left(l_{n-1}+6+8(n-1)\right)\langle 0| A^{n-1}
\end{aligned}
$$

finally, $l_{n}=2 n+4 n^{2}$.

In the $n_{F}=0$ sector, we can write

$$
H=-\frac{1}{4}\left(A+A^{\dagger}-2 B+3\right)
$$

and obtain immediately the matrix elements of H :

$$
\begin{aligned}
\langle 2 n, 0| H|2 n-2,0\rangle & =\langle 2 n-2,0| H|2 n, 0\rangle=-\frac{1}{4} \sqrt{2 n+4 n^{2}} \\
\langle 2 n, 0| H|2 n, 0\rangle & =n+\frac{3}{4}
\end{aligned}
$$

The computation of the matrix elements of N in the $n_{F}=1$ sector and of the matrix elements of Q between the sectors $n_{F}=0$ and $n_{F}=1$ is very similar.

Since N has a tridiagonal structure, it can be diagonalized using the $O\left(N^{2}\right)$ algorithm implemented in the lapack library, obtaining all eigenvalues for $n_{B \max }=10^{5}$ in a few minutes on a PC.

The regularized Witten index is defined as

$$
I_{W}(t)=\sum_{i}(-1)^{n_{F}(i)} e^{-t E(i)}
$$

In the case of discrete spectrum, SUSY implies that states with positive energy cancel out in pairs; therefore

$$
I_{W}(t)=\sum_{i: E(i)=0}(-1)^{n_{F}(i)}
$$

independently of $t ; I_{W}(t) \neq 0$ signals unbroken SUSY.
Due to the particle-hole symmetry, $I_{W}(t)$ vanishes identically for $\mathrm{SU}(2)$ SYMQM in $d=1$. In this model, Q does not connect the sectors $n_{F}=1$ and $n_{F}=2$ (due to the parity of $n_{B}+n_{F}$), therefore SUSY properties can be studied separately for the subspaces $n_{F} \leq 1$ and $n_{F} \geq 2$; we will consider the reduced Witten index $I_{W}^{0,1}(t)$, where the sum is restricted to the sectors $n_{F}=0$ and $n_{F}=1$.

In the present case, $I_{W}^{0,1}(t)$ can be computed analytically. We transform to polar coordinates and introduce a gauge-invariant infrared regulator R :

$$
r=\sqrt{x_{a} x_{a}} ; \quad r \leq R
$$

H is free; its eigenfunctions are the spherical harmonics: $\Psi_{p, l}(r)=j_{l}(p r)$ and $E=\frac{1}{2} p^{2}$. Gauge invariance implies $J=0$, therefore $l=0$ for $n_{F}=0$ and $l=1$ for $n_{F}=1$. The allowed values of p are $z_{i}^{(l)} / R$, where $z_{i}^{(l)}$ is the i th positive zero of the spherical harmonic j_{l}. Therefore,

$$
I_{W}^{0,1}(R, t)=\sum_{i}\left\{\exp \left[-\frac{t}{2 R^{2}}\left(z_{i}^{(0)}\right)^{2}\right]-\exp \left[-\frac{t}{2 R^{2}}\left(z_{i}^{(1)}\right)^{2}\right]\right\}
$$

Using the asymptotic form of $z_{i}^{(l)}$ for large i,

$$
z_{i}^{(0)}=\pi i, \quad z_{i}^{(1)}=\beta_{i}-\frac{1}{\beta_{i}}+O\left(\frac{1}{i^{3}}\right), \quad \beta_{i}=\pi\left(i-\frac{1}{2}\right)
$$

and replacing the sum with an integral, we obtain

$$
\lim _{R \rightarrow \infty} I_{W}^{0,1}(R, t)=\frac{1}{2}
$$

$I_{W}^{0,1}(t)$ can also be computed numerically from the spectrum of H; I show plots for $n_{B \max }$ ranging from 125 to 128000 ; the agreement with the exact value is excellent. At finite $n_{B \text { max }}, I_{W}^{0,1}(t) \rightarrow 0$ as $t \rightarrow 0$; this is verified numerically, but can only be seen in the range $t<0.02$.

Let us now study $\mathrm{SU}(2) \mathrm{SYMQM}$ in $d=3 ; n_{F}$ is still conserved; here $n_{F} \leq 6$ and, thanks to the particle-hole symmetry, it is sufficient to study the sectors $n_{F}=0, \ldots, 3$.

The spectrum is discrete in the sectors $n_{F}=0,1$; its is a superposition of continuum and discrete states for $n_{F}=2,3$.

The computation is similar to the $d=1$ case; however, it is impossible to obtain closed formulae for the matrix elements; we use instead recursive relations between reduced matrix elements.

It is crucial to exploit fully the $\mathrm{O}(3)$ symmetry; at every step of the computation, only operators with well-defined j, m are considered and, using the Wigner-Eckhart theorem and $6 j$ symbols, $m s$ are eliminated from the computation.

A complete basis of gauge-invariant operators needs ca. 75 multiplets; (anti)commutators are computed automatically and stored in a table.

We build states with ever increasing n_{F}, n_{B} applying creator operators $X(\nu, p)^{\dagger}$ in all possible ways and performing Gram-Schmidt orthonormalization:

$$
\left|j, m, n_{F}, n_{B} ; i\right\rangle=\sum_{\nu, p, j_{1}, j_{2}, j, m_{1}, m_{2}} R_{i, \nu, p, j_{1}, j_{2}, j}^{j, n_{F}, n_{B}} C_{m_{1} m_{2} m}^{j_{1} j_{2} j} X(\nu, p)_{j_{1}, m_{1}}^{\dagger}\left|j_{2}, m_{2}, n_{F}-\nu, n_{B}-2-p+\nu ; i\right\rangle,
$$

A typical recursion relation for reduced matrix elements is

$$
\begin{aligned}
& \left\langle j^{\prime}, n_{F}^{\prime}, n_{B}^{\prime} ; i^{\prime}\left\|\mathcal{O}_{j^{\prime \prime}}\right\| j, n_{F}, n_{B} ; i\right\rangle=\mp \sum_{\nu, p, j_{1}, j_{2}, j ; j_{3}, i_{3}}(-1)^{j+j^{\prime \prime}+j_{1}+j_{3}} \sqrt{2 j+1}\left\{\begin{array}{ccc}
j & j^{\prime \prime} & j^{\prime} \\
j_{3} & j_{1} & j_{2}
\end{array}\right\} \\
& \quad \times \quad R_{i ; \nu, p, j_{1}, j_{2}, j}^{j, n_{F}, n_{B}}\left\langle j^{\prime}, n_{F}^{\prime}, n_{B}^{\prime} ; i^{\prime}\left\|X(\nu, p)_{j_{1}}^{\dagger}\right\| j_{3}, n_{F}^{\prime}-\nu, n_{B}^{\prime}-2-p+\nu ; i_{3}\right\rangle \\
& \quad \times \quad\left\langle j_{3}, n_{F}^{\prime}-\nu, n_{B}^{\prime}-2-p+\nu ; i_{3}\left\|\mathcal{O}_{j^{\prime \prime}}\right\| j_{2}, n_{F}-\nu, n_{B}-2-p+\nu ; j\right\rangle \\
& +\sum_{\nu, p, j_{1}, j_{2}, j ; j_{3}}(-1)^{j^{\prime}+j^{\prime \prime}+j_{1}+j_{2}} \sqrt{(2 j+1)\left(2 j_{3}+1\right)}\left\{\begin{array}{ccc}
j & j^{\prime \prime} & j^{\prime} \\
j_{3} & j_{2} & j_{1}
\end{array}\right\} R_{i ; \nu, p, j_{1}, j_{2}, j}^{j, n_{F}, n_{B}} \\
& \quad \times \quad\left\langle j^{\prime}, n_{F}^{\prime}, n_{B}^{\prime} ; i^{\prime}\left\|K_{j_{3}}^{\left(\mathcal{O}, j^{\prime \prime} ; \nu, p, j_{1}\right)}\right\| j_{2}, n_{F}-\nu, n_{B}-2-p+\nu ; j\right\rangle
\end{aligned}
$$

where we used completeness and the knowledge of the (anti)commutator

$$
\left\{\mathcal{O}_{j_{1}, m_{1}}, X(\nu, p)_{j_{2}, m_{2}}^{\dagger}\right\}_{ \pm}=\sum_{j_{3}, m_{3}} C_{m_{1} m_{2} m_{3}}^{j_{1} j_{2} j_{3}} K_{j_{3}, m_{3}}^{\left(\mathcal{O}, j_{1} ; \nu, p, j_{2}\right)}
$$

We implemented the recursive computation of reduced matrix elements in a $\mathrm{C}++$ program; once computed, they are kept in RAM, since they will be needed again many times as the computation proceeds.

Running on a 2 GHz AMD Opteron processor, using a total of about 75 hours and 8 Gbytes of RAM, we reached

$$
\begin{aligned}
& n_{F}=0: n_{B \max } \leq 61(109538 \text { multiplets, } 3570952 \text { states }) \\
& n_{F}=1: n_{B \max } \leq 40(94688 \text { multiplets, } 2125200 \text { states }) \\
& n_{F}=2: n_{B \max } \leq 32(87957 \text { multiplets, } 1617261 \text { states }) \\
& n_{F}=3: n_{B \max } \leq 30(87706 \text { multiplets, } 1541424 \text { states })
\end{aligned}
$$

I show $I_{W}(t)$ separately for even and odd $n_{B \max } \leq 30$, together with a quadratic extrapolation in $1 / n_{B \max }$ on the 6 largest values; the convergence to $I_{W}(t)=\frac{1}{4}$ is very clear

Supersymmetric charges Q_{α}^{\dagger}, Q_{α} have

$$
q\left(j^{\prime}, n_{F}+1, i^{\prime} \mid j, n_{F}, i\right) \equiv \frac{1}{4 E_{j, n_{F}, i}}\left|\left\langle j^{\prime} ; n_{F}+1 ; i^{\prime}\left\|Q^{\dagger}\right\| j ; n_{F} ; i\right\rangle\right|^{2},
$$

which satisfies the sum rule

$$
\sum_{j^{\prime}, i^{\prime}}\left[q\left(j^{\prime}, n_{F}+1, i^{\prime} \mid j, n_{F}, i\right)+q\left(j, n_{F}, i \mid j^{\prime}, n_{F}+1, i^{\prime}\right)\right]=2 j+1 .
$$

For discrete states, it is saturated by one (or very few) states $\left|j^{\prime} ; n_{F}+1 ; i^{\prime}\right\rangle$ with energy $E_{j^{\prime}, n_{F}+1, i^{\prime}} \cong E_{j, n_{F}, i}$.

A simple spectrum, all states belonging to the $j=0, n_{F}=0$ supermultiplet:

States belonging to either $j=0, n_{F}=0$ or $j=\frac{1}{2}, n_{F}=1$

A complicated spectrum: continuum plus 4 supermultiplets, degeneracy due to particle-hole symmetry

$$
n_{F}=3, j=3 / 2
$$

Density plots of $q\left(j^{\prime}, n_{F}+1, i^{\prime} \mid j, n_{F}, i\right) /\left(2 \max \left(j, j^{\prime}\right)+1\right)$.
$q\left(\frac{1}{2}, 1 \mid 0,0\right)$

$$
q\left(2,2 \mid 1, \frac{3}{2}\right)
$$

$10^{3} \times$ energies				
$n_{F}(j)$	$\left(n_{F}, j\right)$	$\left(n_{F}+1, j-\frac{1}{2}\right)$	$\left(n_{F}+1, j+\frac{1}{2}\right)$	$\left(n_{F}+2, j\right)$
$0\left(0^{+}\right)$	4117	-	4117	4117
$0\left(0^{+}\right)^{\prime}$	6386	-	6386.3	6388
$0\left(0^{+}\right)^{\prime \prime}$	7973	-	7974	7988
$0\left(0^{+}\right)_{9202}$	9202	-	9204	9254
$0\left(0^{+}\right)_{10086}$	10086	-	10091	10190
$0\left(0^{+}\right)_{10937}$	10937	-	10957	11206
$0\left(0^{+}\right)_{12049}$	12049	-	12128	12720
$0\left(0^{-}\right)^{\prime}$	8787	-	8787	8787
$0\left(0^{-}\right)^{\prime}$	12055	-	12055	12057
$0\left(0^{-}\right)^{\prime \prime}$	14020	-	14020	14031
$0\left(0^{-}\right)_{15590}$	15590	-	15590	15624
$2(0)$	5184	-	5184	5184
$2(0)^{\prime}$	7363	-	7366	7363
$2(0)^{\prime \prime}$	9875	-	9876	9875
$1(1 / 2)$	6386	6386	6386	6388,6389
$1(1 / 2)^{\prime}$	8167	8174	8170	8203,8221
$1(1 / 2)^{\prime \prime}$	9281	9298	9288	9337,9355
$1(1 / 2)_{10040}$	10040	10085	10077	10251,10358
$1(1 / 2)_{11226}$	11226	11395	11349	11728,11834

$n_{F}(j)$	$\left(n_{F}, j\right)$	$\left(n_{F}+1, j-\frac{1}{2}\right)$	$\left(n_{F}+1, j+\frac{1}{2}\right)$	$\left(n_{F}+2, j\right)$
$2(1)$	6015	6015	6015	6015
$2(1)^{\prime}$	7822	7822	7839	7822
$2(1)^{\prime \prime}$	9350	9344	9396	9350
$2(1)_{9934}$	9934	9932	9956	9934
$1(3 / 2)$	4692	4692	4692	$4691.9,4692$
$1(3 / 2)^{\prime}$	5780	5780	5780	5780,5781
$1(3 / 2)^{\prime \prime}$	6950	6951	6952	6955,6960
$1(3 / 2)_{7695}$	7695	7696	7899	7709,7720
$1(3 / 2)_{8583}$	8583	8587	8596	8623,8635
$1(3 / 2)_{8964}$	8964	8967	8973	8989,8997
$0\left(2^{+}\right)^{\prime}$	6014	6015	6015	6015
$0\left(2^{+}\right)^{\prime}$	7821	7821	7821	7832
$0\left(2^{+}\right)^{\prime \prime}$	9332	9334	9334	9406
$0\left(2^{+}\right)_{9928}$	9928	9928	9929	9949
$0\left(2^{-}\right)$	11331	11331	11331	11332
$0\left(2^{-}\right)^{\prime}$	13998	13998	13998	14010
$0\left(2^{-}\right)^{\prime \prime}$	15399	15399	15399	15407
$2(2)$	6710	6710	6711	6710
$2(2)^{\prime}$	8398	8402	8410	8398
$2(2)^{\prime \prime}$	9255	9259	9276	9255

The techniques and codes we developed are adequate to study $\operatorname{SU}(2)$ SYMQM in $d=3$ in great detail. We have a good knowledge of the discrete spectrum, and we are ready to investigate the continuum (e.g., defining scattering).

The study of $\mathrm{SU}(N) \mathrm{SYMQM}$ with $N \geq 3$ requires additional theoretical work, which is under way [J. Trzetrzelewski, J. Wosiek]. Computing analytically the $N \rightarrow \infty$ limit is not out of question.

The most interesting case $d=9$ requires an algorithm to compute $3 j$ and $6 j$ coefficients for $\mathrm{O}(9)$: this problem is solved in principle, but in practice we need them for very large representations. . . we are looking into this [V. Chilla, M. C.].

We think that it is worthwhile to devote a considerable effort to the study of $\operatorname{SU}(N)$ SYMQM in $d=9$.

