$$
\begin{gathered}
\text { Color } \\
\text { Superconducijvijy is } \\
\text { High Densijy QCD }
\end{gathered}
$$

Roberto Casalbuoni

Department of Physics and INFN - Florence

Insiscoclucijos

Motivations for the study of high-density QCD:

- Understanding the interior of CSO's
- Study of the QCD phase diagram at $\mathrm{T} \sim 0$ and high μ

Asymptotic region in μ fairly well understood: existence of a CS phase. Real question: does this type of phase persists at relevant densities $\left(\sim 5-6 \rho_{0}\right)$?

Stussissess

- Mini review of CFL and 2SC phases
- Pairing of fermions with different Fermi momenta
- The gapless phases g2SC and gCFL
- The LOFF phase and its phonons

CJI cssjc $25 C^{\prime}$

Study of CS back to 1977 (Barrois 1977, Frautschi 1978, Bailin and Love 1984) based on Cooper instability:

At $T \sim 0$ a degenerate fermion gas is unstable

Any weak attractive interaction leads to Cooper pair formation

$>$ Hard for electrons (Coulomb vs. phonons)
$>$ Easy in QCD for di-quark formation (attractive channel $\overline{3}$)
$(3 \otimes 3=\overline{3} \oplus 6)$

In QCD, CS easy for large μ due to asymptotic freedom

At high $\mu, \mathrm{m}_{\mathrm{s}}, \mathrm{m}_{\mathrm{d}}, \mathrm{m}_{\mathrm{u}} \sim 0,3$ colors and 3 flavors
Possible pairings: $\langle 0| \psi_{i \mathrm{ia}}^{\alpha} \psi_{\mathrm{jb}}^{\beta}|0\rangle$

* Antisymmetry in color (α, β) for attraction
* Antisymmetry in spin (a,b) for better use of the Fermi surface
* Antisymmetry in flavor (i, j) for Pauli principle

Only possible pairings

LL and RR

Favorite state CFL (color-flavor locking) (Alford, Rajagopal \& Wilczek 1999)
$\langle 0| \psi_{\mathrm{aL}}^{\alpha} \psi_{\mathrm{bL}}^{\beta}|0\rangle=-\langle 0| \psi_{\mathrm{aR}}^{\alpha} \psi_{\mathrm{bR}}^{\beta}|0\rangle=\Delta \varepsilon^{a \beta \mathrm{C}} \varepsilon_{\mathrm{abC}}$
Symmetry breaking pattern
$\mathrm{SU}(3)_{\mathrm{c}} \otimes \mathrm{SU}(3)_{\mathrm{L}} \otimes \mathrm{SU}(3)_{\mathrm{R}} \Rightarrow \mathrm{SU}(3)_{\mathrm{c}+\mathrm{L}+\mathrm{R}}$

What happens going down with μ ? If $\mu \ll \mathrm{m}_{\mathrm{s}}$ we get

3 colors and 2 flavors (2SC)

$$
\langle 0| \psi_{\mathrm{aL}}^{\alpha} \psi_{\mathrm{bL}}^{\beta}|0\rangle=\Delta \varepsilon^{\alpha \beta 3} \varepsilon_{\mathrm{ab}}
$$

$\mathrm{SU}(3)_{\mathrm{c}} \otimes \mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{SU}(2)_{\mathrm{R}} \Rightarrow \mathrm{SU}(2)_{\mathrm{c}} \otimes \mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{SU}(2)_{\mathrm{R}}$

But what happens in real world ?

- M_{s} not zero
(no free energy cost
- Neutrality with respect to em and color in neutral -> singlet, Amore et al. 2003)
- Weak equilibrium

> All these effects make Fermi momenta of different fermions unequal causing problems to the BCS pairing mechanism

Consider 2 fermions with $\mathrm{m}_{1}=\mathrm{M}, \mathrm{m}_{2}=0$ at the same chemical potential μ. The Fermi momenta are

$$
\mathrm{p}_{\mathrm{F} 1}=\sqrt{\mu^{2}-\mathrm{M}^{2}}
$$

$$
\mathrm{p}_{\mathrm{F} 2}=\mu
$$

Effective chemical potential for the massive quark

Mismatch:

$$
\begin{aligned}
& \mu_{\mathrm{eff}}=\sqrt{\mu^{2}-\mathrm{M}^{2}} \approx \mu-\frac{\mathrm{M}^{2}}{2 \mu} \\
& \mathrm{tch}: \quad \delta \mu \approx \frac{\mathrm{M}^{2}}{2 \mu}
\end{aligned}
$$

If electrons are present, weak equilibrium makes chemical potentials of quarks of different charges unequal:

$$
d \rightarrow u e \bar{v} \quad \Rightarrow \quad \mu_{\mathrm{d}}-\mu_{\mathrm{u}}=\mu_{\mathrm{e}}
$$

In general we have the relation: $\quad\left(\mu_{\mathrm{i}}=\mu+\mathrm{Q} \mu_{\mathrm{Q}}\right)$

$$
\mu_{\mathrm{e}}=-\mu_{\mathrm{Q}}
$$

N.B. μ_{e} is not a free parameter

Neutrality requires:

$$
\frac{\partial \mathrm{V}}{\partial \mu_{\mathrm{e}}}=-\mathrm{Q}=0
$$

Example 2SC: normal BCS pairing when

$$
\mu_{\mathrm{u}}=\mu_{\mathrm{d}} \Rightarrow \mathrm{n}_{\mathrm{u}}=\mathrm{n}_{\mathrm{d}}
$$

But neutral matter for
$\mathrm{n}_{\mathrm{d}} \approx 2 \mathrm{n}_{\mathrm{u}} \Rightarrow \mu_{\mathrm{d}} \approx 2^{1 / 3} \mu_{\mathrm{u}} \Rightarrow \mu_{\mathrm{e}}=\mu_{\mathrm{d}}-\mu_{\mathrm{u}} \approx \frac{1}{4} \mu_{\mathrm{u}} \neq 0$
Mismatch: $\quad \delta \mu=\frac{p_{\mathrm{F}}^{\mathrm{d}}-\mathrm{p}_{\mathrm{F}}^{\mathrm{u}}}{2}=\frac{\mu_{\mathrm{d}}-\mu_{\mathrm{u}}}{2}=\frac{\mu_{\mathrm{e}}}{2} \approx \frac{\mu_{\mathrm{u}}}{8} \neq 0$

Also color neutrality requires

$$
\frac{\partial \mathrm{V}}{\partial \mu_{3}}=\mathrm{T}_{3}=0, \quad \frac{\partial \mathrm{~V}}{\partial \mu_{8}}=\mathrm{T}_{8}=0
$$

As long as $\delta \mu$ is small no effects on BCS pairing, but when increased the BCS pairing is lost and two possibilities arise:

- The system goes back to the normal phase
- Other phases can be formed

In a simple model with two fermions at chemical potentials $\mu+\delta \mu, \mu-\delta \mu$ the system becomes normal at the Chandrasekhar-Clogston point. Another unstable phase exists.

The point $|\delta \mu|=\Delta$ is special. In the presence of a mismatch new features are present. The spectrum of quasiparticles is

$$
\mathrm{E}(\mathrm{p})=\left|\delta \mu \pm \sqrt{(\mathrm{p}-\mu)^{2}+\Delta^{2}}\right|
$$

For $|\delta \mu|<\Delta$, the gaps are $\Delta-\delta \mu$ and $\Delta+\delta \mu$
For $|\delta \mu|=\Delta$, an unpairing (blocking) region opens up and gapless modes are present.

$$
\mathrm{E}(\mathrm{p})=0 \Leftrightarrow \mathrm{p}=\mu \pm \sqrt{\delta \mu^{2}-\Delta^{2}}
$$

$2 \delta \mu \quad$ Energy cost for pairing
$2 \Delta \quad$ Energy gained in pairing

- 2 quarks ungapped $\mathrm{q}_{\mathrm{ub}}, \mathrm{q}_{\mathrm{db}}$
- 4 quarks gapped $q_{u r}, q_{u g}, q_{d r}, q_{d g}$

General strategy (NJL model):

- Write the free energy:

$$
\mathrm{V}\left(\mu, \mu_{3}, \mu_{8}, \mu_{\mathrm{e}}, \Delta\right)
$$

- Solve:
$\begin{array}{lll}\text { Neutrality } & \frac{\partial \mathrm{V}}{\partial \mu_{\mathrm{e}}}=\frac{\partial \mathrm{V}}{\partial \mu_{3}}=\frac{\partial \mathrm{V}}{\partial \mu_{8}}=0 \\ \text { Gap equation } & \frac{\partial \mathrm{V}}{\partial \Delta}=0\end{array}$
- For $|\delta \mu|>\Delta\left(\delta \mu=\mu_{\mathrm{e}} / 2\right) 2$ gapped quarks become gapless. The gapless quarks begin to unpair destroying the BCS solution. But a new stable phase exists, the gapless 2SC (g2SC) phase.
- It is the unstable phase which becomes stable in this case (and CFL, see later) when charge neutrality is required.

- But evaluation of the gluon masses (5 out of 8 become massive) shows an instability of the g2SC phase. Some of the gluon masses are imaginary (Huang and Shovkovy 2004).
- Possible solutions are: gluon condensation, or another phase takes place as a crystalline phase (see later), or this phase is unstable against possible mixed phases.
- Potential problem also in gCFL (calculation not yet done).

Generalization to 3 flavors

$$
\langle 0| \psi_{\mathrm{aL}}^{\alpha} \psi_{\mathrm{bL}}^{\beta}|0\rangle=\Delta_{1} \varepsilon^{\alpha \beta 1} \varepsilon_{\mathrm{ab} 1}+\Delta_{2} \varepsilon^{\alpha \beta 2} \varepsilon_{\mathrm{ab} 2}+\Delta_{3} \varepsilon^{\alpha \beta 3} \varepsilon_{\mathrm{ab} 3}
$$

Different phases are characterized by different values for the gaps. For instance (but many other possibilities exist)

$$
\begin{array}{ll}
\mathrm{CFL}: & \Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta \\
\mathrm{g} 2 \mathrm{SC}: & \Delta_{3} \neq 0, \Delta_{1}=\Delta_{2}=0 \\
\mathrm{gCFL}: & \Delta_{3}>\Delta_{2}>\Delta_{1}
\end{array}
$$

$\begin{aligned} & \text { Gaps } \\ & \text { in } \\ & \text { gCFL } \end{aligned}$	Q	0	0	0	-1	+1	-1	+1	0	0
		ru	gd	bs	rd	gu	rs	bu	gs	bd
	ru		Δ_{3}	Δ_{2}						
	gd	Δ_{3}		Δ_{1}						
	bs	Δ_{2}	Δ_{1}							
	rd					$-\Delta_{3}$				
	gu				$-\Delta_{3}$					
	rs							$-\Delta_{2}$		
	bu						$-\Delta_{2}$			
	gs									- Δ
	bd								$-\Delta_{1}$	

Strange quark mass effects:

- Shift of the chemical potential for the strange quarks:

$$
\mu_{\mathrm{\alpha s}} \Rightarrow \mu_{\mathrm{\alpha s}}-\frac{\mathrm{M}_{\mathrm{s}}^{2}}{2 \mu}
$$

- Color and electric neutrality in CFL requires

$$
\mu_{8}=-\frac{\mathbf{M}_{\mathrm{s}}^{2}}{2 \mu}, \quad \mu_{3}=\mu_{\mathrm{e}}=0
$$

- gs-bd unpairing catalyzes CFL to gCFL

$$
\begin{gathered}
\delta \mu_{\mathrm{bd}-\mathrm{gs}}=\frac{1}{2}\left(\mu_{\mathrm{bd}}-\mu_{\mathrm{gs}}\right)=-\mu_{8}=\frac{\mathrm{M}_{\mathrm{s}}^{2}}{2 \mu} \\
\delta \mu_{\mathrm{rd}-\mathrm{gu}}=\mu_{\mathrm{e}}, \quad \delta \mu_{\mathrm{rs}-\mathrm{bu}}=\mu_{\mathrm{e}}-\frac{\mathrm{M}_{\mathrm{s}}^{2}}{2 \mu}
\end{gathered}
$$

It follows:
$\left.\left.\begin{array}{ll}\frac{\mathrm{M}^{2}}{\mu} & \text { Energy cost for pairing } \\ 2 \Delta & \text { Energy gained in pairing }\end{array}\right\} \xrightarrow{\frac{\mathrm{M}^{2}}{\mu}>2 \Delta} \begin{array}{l}\text { begins to unpair } \\ \hline\end{array}\right]$

Again, by using NJL model (modelled on one-gluon exchange):

- Write the free energy: $V\left(\mu_{,} \mu_{3}, \mu_{8}, \mu_{\mathrm{e}}, \mathrm{M}_{\mathrm{s}}, \Delta_{\mathrm{i}}\right)$
- Solve:

Neutrality $\quad \frac{\partial \mathrm{V}}{\partial \mu_{e}}=\frac{\partial \mathrm{V}}{\partial \mu_{3}}=\frac{\partial \mathrm{V}}{\partial \mu_{8}}=0$
Gap equations $\frac{\partial V}{\partial \Delta_{i}}=0$

- CFL \mapsto gCFL $2^{\text {nd }} \operatorname{order}^{\circ}$ transition at $\mathrm{M}_{\mathrm{s}}{ }^{2} / \mu \sim 2 \Delta$, when the pairing gs-bd starts breaking
- gCFL has gapless quasiparticles. Interesting
 transport properties

- gCFL has μ_{e} not zero, with charge cancelled by unpaired u quarks

- LOFF (Larkin, Ovchinnikov, Fulde \& Ferrel, 1964): ferromagnetic alloy with paramagnetic impurities.
- The impurities produce a constant exchange field acting upon the electron spins giving rise to an effective difference in the chemical potentials of the opposite spins producing a mismatch of the Fermi momenta

According to LOFF, close to first order point (CC point), possible condensation with non zero total momentum

$$
\overrightarrow{\mathrm{p}}_{1}=\overrightarrow{\mathrm{k}}+\overrightarrow{\mathrm{q}} \quad \overrightarrow{\mathrm{p}}_{2}=-\overrightarrow{\mathrm{k}}+\overrightarrow{\mathrm{q}} \quad \rightarrow\langle\psi(\mathrm{x}) \psi(\mathrm{x})\rangle=\Delta \mathrm{e}^{2 \mathrm{i} \cdot \overrightarrow{\mathrm{x}}}
$$

More generally $\longrightarrow\langle\psi(\mathrm{x}) \psi(\mathrm{x})\rangle=\sum_{\mathrm{m}} \Delta_{\mathrm{m}} \mathrm{c}_{\mathrm{m}} \mathrm{e}^{2 \mathrm{i} \overrightarrow{\mathrm{q}}_{\mathrm{m}} \cdot \overrightarrow{\mathrm{x}}}$

$$
\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}=2 \overrightarrow{\mathrm{q}}
$$

$|\overrightarrow{\mathrm{q}}| \quad$ fixed variationally

$$
\overrightarrow{\mathrm{q}} /|\overrightarrow{\mathrm{q}}| \begin{gathered}
\text { chosen } \\
\text { spontaneously }
\end{gathered}
$$

Single plane wave:

$$
\begin{gathered}
\mathrm{E}(\overrightarrow{\mathrm{p}})-\mu \rightarrow \mathrm{E}(\pm \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}})-\mu \mp \delta \mu \approx \sqrt{(\mathrm{p}-\mu)^{2}+\Delta^{2}} \mp \bar{\mu} \\
\bar{\mu}=\delta \mu-\overrightarrow{\mathrm{v}}_{\mathrm{F}} \cdot \overrightarrow{\mathrm{q}}
\end{gathered}
$$

Also in this case, for $\quad|\bar{\mu}|=\delta \mu-\vec{v}_{F} \cdot \overrightarrow{\mathrm{q}}<\Delta$ a unpairing (blocking) region opens up and gapless modes are present

Possibility of a crystalline structure (Larkin \&

> Ovchinnikov 1964, Bowers \& Rajagopal 2002)

$$
\langle\psi(\mathrm{x}) \psi(\mathrm{x})\rangle=\Delta \sum_{\left|\mathrm{q}_{\mathrm{i}}\right|=1.2 \delta \mu} \mathrm{e}^{2 \mathrm{i}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}}
$$

The q_{i} 's define the crystal pointing at its vertices.

$$
P=2
$$

$P=4$

Crystalline structures in LOFF

The LOFF phase is studied via a Ginzburg-Landau expansion of the grand potential

$$
\Omega=\alpha \Delta^{2}+\frac{\beta}{2} \Delta^{4}+\frac{\gamma}{3} \Delta^{6}+\cdots
$$

(for regular crystalline structures all the Δ_{q} are equal)

The coefficients can be determined microscopically for the different structures (Bowers and Rajagopal (2002))

* Gap equation

* Propagator expansion

* Insert in the gap equation

We get the equation

$$
\alpha \Delta+\beta \Delta^{3}+\gamma \Delta^{5}+\cdots=0
$$

$\partial \Omega$

$\partial \Delta$

The first coefficient has universal structure, independent on the crystal.
 $\beta \Delta^{3}=\underline{0}$
 From its analysis one draws the following results

$$
\gamma \Delta^{5}=:!
$$

$\delta \mu_{1}=\Delta_{\text {BCS }} / \sqrt{2}$

 $\delta \mu_{2} \approx 0.754 \Delta_{\mathrm{BCS}}$$$
\Omega_{\text {LofF }}-\Omega_{\text {normal }}=-0.44 \rho\left(\delta \mu-\delta \mu_{2}\right)^{2}
$$

$$
\Delta_{\mathrm{LOFF}} \approx 1.15 \sqrt{\left(\delta \mu_{2}-\delta \mu\right)}
$$

Small window. Opens up in QCD?

(Leibovich, Rajagopal \& Shuster 2001; Giannakis, Liu \& Ren 2002)

Structure	P	G(Föppl)	$\bar{\beta}$	-	$\bar{\Omega}_{\text {min }}$	$\delta \mu_{*} / \Delta_{0}$	
point	1	$C_{\text {cov }}(1)$	0.569	1.637	0	0.754	
antipodal pair	2	$D_{\text {cout }}(11)$	0.138	1.952	0	0.754	
triangle	3	$D_{34}(3)$	-1.976	1.687	-0.452	0.872	
tetrahedron	4	$T_{d}(13)$	-5.727	4.350	-1.655	1.074	
square	4	$D_{\text {th }}(4)$	-10.350	-1.538	-	-	
pentagon	5	$D_{6 h}(5)$	-13.004	8.386	-5.211	1.607	General
trigonal bipyramid	5	$D_{3 h}(131)$	-11.613	13.913	-1.348	1.085	
square pyramid	5	$C_{4 v}(14)$	-22.014	-70.442	-	5	analysis
octahedron	6	$O_{h}(141)$	-31.466	19.711	-13.365	3.625	anaysis
trigonal prism	6	$D_{3 h}(33)$	-35.018	-35.202	-	-	(Bowers and
hexagon	6	$D_{6 h}(6)$	23.669	6009.225	0	0.754	(Bowers and
pentagonal bipyramid	7	$D_{5 h}(151)$	-29.158	54.822	-1.375	1.143	Rajagopal (2002))
capped trigonal antiprism	7	$C_{s v}(133)$	-65.112	-195.592	-	-	1
cube	8	$O_{h}(44)$	-110.757	-459.242	-	-	
square antiprism	8	$D_{4 d}(44)$	-57.363	-6.866	+ 10^{-5}	-	
hexagonal bipyramid	8	$D_{\text {6h }}(161)$	-8.074	5595.528	-2.8×10^{-6}	0.755	
augmented trigonal prism	9	$D_{3 h}(333)$	-69.857	129.259	-3.401	1.656	
capped square prism	9	$C_{40}(144)$	-95.529	7771.152	-0.0024	0.773	Preferred
capped square antiprism	9	$C_{4 v}(144)$	-68.025	106.362	-4.637	1.867	structure:
bicapped square antiprism	10 12	$D_{4 d}(1441)$ $I_{b}(1551)$	-14.298 204.873	7318.885 145076.754	-9.1×10^{-6} 0	0.755 0.754	face-centered
icosahedron cuboctahedron	12 12	$O_{h}(1551)$ $O_{h}(44 \overline{4})$	204.873 -5.296	145076.754 97086.514	-2.6×10^{-9}	0.754 0.754	34
dodecahedron	20	$I_{h}(5555)$	-527.357	114166.566	-0.0019	0.772	

Effective gap equation for the LOFF phase
(R.C., M. Ciminale, M. Mannarelli, G. Nardulli, M. Ruggieri \& R. Gatto, 2004)

For the single plane wave $(\mathrm{P}=1)$ the pairing region is defined by

$$
\begin{gathered}
\Delta_{\text {eff }}=\Delta \theta\left(\mathrm{E}_{\mathrm{u}}\right) \theta\left(\mathrm{E}_{\mathrm{d}}\right)= \begin{cases}\Delta & \text { for }\left(\mathrm{p}, \overrightarrow{\mathrm{v}}_{\mathrm{F}}\right) \in \mathrm{PR} \\
0 & \text { elsewhere }\end{cases} \\
\mathrm{E}_{\mathrm{u}, \mathrm{~d}}= \pm\left(\delta \mu-\overrightarrow{\mathrm{v}}_{\mathrm{F}} \cdot \overrightarrow{\mathrm{q}}\right)+\sqrt{\xi^{2}+\Delta^{2}}, \quad \xi=\mathrm{p}-\mu \\
\Delta=\frac{g \rho}{2} \int \frac{\mathrm{~d}}{\mathrm{v}} \int^{\delta} \int_{0}^{\delta} \mathrm{d} \xi \frac{\Delta_{\text {eff }}}{\sqrt{\xi^{2}+\Delta_{\text {eff }}^{2}}} \quad \rho=4 \frac{\mu^{2}}{\pi^{2}}
\end{gathered}
$$

How to obtain this result starting from an effective theory for fermions close to the Fermi surface? Problem:

$$
\mathfrak{L} \sim \Delta \mathrm{e}^{2 \mathrm{i} \cdot \overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}} \psi_{-\mathrm{v}}^{\mathrm{T}} \mathrm{C} \psi_{\mathrm{v}}
$$

where in the Fermi fields the large part in the momentum has been extracted

$$
\mathrm{p}=\mu \mathrm{v}_{\mathrm{F}}+\ell
$$

Solution: appropriate average procedure over the cell size

$$
\mathfrak{L} \rightarrow \Delta_{\mathrm{eff}} \psi_{-\mathrm{v}}^{\mathrm{T}} \mathrm{C} \psi_{\mathrm{v}}
$$

Average by

$$
\mathrm{g}_{\mathrm{R}}(\overrightarrow{\mathrm{r}})=\prod_{\mathrm{k}=1}^{3} \frac{\sin \left(\pi \mathrm{qr}_{\mathrm{k}} / \mathrm{R}\right)}{\pi \mathrm{r}_{\mathrm{k}}}
$$

When $\mathrm{R} / \pi \sim 1$ different from zero in a region of the order of the cell size. Condition satisfied if the gap is not too small.

For P plane waves

$$
\langle\psi(\mathrm{x}) \psi(\mathrm{x})\rangle=\Delta \sum_{\mathrm{k}=1}^{\mathrm{P}} \mathrm{e}^{2 \mathrm{i} \overrightarrow{\mathrm{a}}_{\mathrm{k}} \cdot \overrightarrow{\mathrm{x}}}
$$

an analogous average procedure gives pairing regions and effective gap given by

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{k}}=\left\{\left(\mathrm{p}, \overrightarrow{\mathrm{v}}_{\mathrm{F}}\right) \mid \Delta_{\mathrm{E}}\left(\mathrm{p}, \overrightarrow{\mathrm{v}}_{\mathrm{F}}\right)=\mathrm{k} \Delta\right\} \\
& \Delta_{\mathrm{E}}\left(\mathrm{p}, \overrightarrow{\mathrm{v}}_{\mathrm{F}}\right)=\sum_{\mathrm{m}=1}^{\mathrm{P}} \Delta_{\text {eff }}\left(\mathrm{p}, \overrightarrow{\mathrm{v}}_{\mathrm{F}} \cdot \overrightarrow{\mathrm{q}}_{\mathrm{m}}\right)
\end{aligned}
$$

We obtain the following gap equation

$$
\begin{aligned}
& \mathrm{P} \Delta=\frac{\mathrm{g} \rho}{2} \sum_{\mathrm{k}=1}^{\mathrm{P}} \iint_{\mathrm{P}_{\mathrm{k}}} \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{4 \pi} \frac{\mathrm{~d} \xi}{2 \pi} \frac{\Delta_{\mathrm{E}}}{\sqrt{\xi^{2}+\Delta_{\mathrm{E}}^{2}}}= \\
&=\frac{\mathrm{g} \rho}{2} \sum_{\mathrm{k}=1}^{\mathrm{P}} \iint_{\mathrm{P}_{\mathrm{k}}} \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{4 \pi} \frac{\mathrm{~d} \xi}{2 \pi} \frac{\mathrm{k} \Delta}{\sqrt{\xi^{2}+\mathrm{k}^{2} \Delta^{2}}}
\end{aligned}
$$

The result can be interpreted as having P quasi-particles each of one having a gap $\mathrm{k} \Delta, \mathrm{k}=1, \ldots, \mathrm{P}$.

The approximation is better far from a second order transition and it is exact for $\mathrm{P}=1$ (original FF case).

Evaluating the free energy at the CC point we see that the $\mathrm{P}=6$ case (octahedron) is favored. Then the cube takes over at $\delta \mu_{2} \sim 0.95 \Delta$

P	z_{q}	$\frac{\Delta}{\Delta_{0}}$	$\frac{2 \Omega}{p \Delta_{0}^{2}}$
1	0.78	0.24	-1.8×10^{-3}
2	1.0	0.75	-0.08
6	0.9	0.28	-0.11
8	0.9	0.21	-0.09

P	$\delta \mu 2 / \Delta 0$	Order	z_{q}	$\Delta / \Delta 0$
1	0.754	II	0.83	0
2	0.83	I	1.0	0.81
6	1.22	I	0.95	0.43
8	1.32	I	0.9	0.35

Two phase transitions from the CC point
$\left(\mathrm{M}_{\mathrm{s}}^{2} / \mu=4 \Delta_{2 \mathrm{SC}}\right)$ up to the cube case $\left(\mathrm{M}_{\mathrm{s}}{ }^{2} / \mu \sim 7.5 \Delta_{2 \mathrm{SC}}\right)$. Extrapolating to CFL ($\Delta_{2 \mathrm{SC}} \sim 30 \mathrm{MeV}$) one gets that LOFF should be favored from about

P	$\delta \mu_{2} / \Delta_{0}$	Order	z_{q}	Δ / Δ_{0}
1	0.754	II	0.83	0
2	0.83	I	1.0	0.81
6	1.22	I	0.95	0.43
8	1.32	I	0.9	0.35

$\mathrm{M}_{\mathrm{s}}^{2} / \mu \sim 120 \mathrm{MeV}$ up $\mathrm{M}_{\mathrm{s}}^{2} / \mu \sim 225 \mathrm{MeV}$

Cosscjusjoss

- Under realistic conditions (M_{s} not zero, color and electric neutrality) new CS phases might exist
- In these phases gapless modes are present. This result might be important in relation to the transport properties inside a CSO.

