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Dual superconductor
model of confinement

According to this model the QCD vacuum be-

haves like a dual superconductor, “dual” as the

roles of the electric and magnetic fields are ex-

changed: the (chromo)electric field between

two static color charges is compelled in narrow

flux tubes yielding a linearly rising potential

and confinement. Magnetic monopoles in the

dual picture are the analogue of Cooper pairs in

a superconductor: in the confined phase they

condense breaking the U(1) electromagnetic

symmetry.



What type of
superconductor is the

QCD vacuum?

Two lengths characterize a superconductor:

• the penetration length λ of an external field;

• the correlation length ξ of the Higgs con-

densate.

These two lengths determine whether the su-

perconductor is of type I (ξ > λ) or of type II

(ξ < λ). Saying which type of superconductor

the QCD vacuum is can help clarifying the dy-

namics of color confinement and of flux tubes

interactions.



ξ and λ

Dual GL theory: let ψ = seiϕ, Bµ =vect. pot.,
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The fluctuations of s around s = v describe a

scalar particle of mass mH = 2v
√

b, the photon

acquires mass mV = gv.

• In the London limit s → v we obtain:

El ∝ K0(mV xt) ⇒ λ = 1
mV

is the penetra-

tion length.

• From the equations of motion for s − v at

the lowest order in s− v:

s− v ∝ K0(mHxt) ⇒ ξ = 1
mH

is the corre-

lation length.

type I ξ > λ B > Bc normal state tubes attr.
type II ξ < λ Bc1 < B < Bc2 flux tubes tubes rep.

B > Bc2 normal state



Abelian projection
SU(N) → U(1)N−1

How can we obtain an abelian theory from a

non-abelian one?

• We make a partial gauge fixing which leaves

a residual invariance under the group U(1)N−1:

a gauge fixing G is identified with a ’t Hooft

operator φa in the adjoint representation

via GφG† = φdiag.

• The gauge G is not univoquely determined

since a diagonal transformation leaves φdiag

untouched.

• A broader invariant subgroup remains where

two or more eigenvalues of φ(x) coincide:

magnetic monopoles are located there.



Determination of λ

Ei =
<tr(W AbPr
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Cooling dependence

Our value λ̂(β = 2.5115) = 1.96 ± 0.08 is in

agreement with literature.



The operator µ
The operator µ developed by the Pisa group is
a magnetically charged operator detecting dual
superconductivity (< µ > 6= 0 in the confined
phase).

µa(~x, t) = exp
[
i
∫

d~yTr{φa(~y, t) ~E(~y, t)} ~B(~x− ~y)
]

with φa the adjoint field defining the projection
and ~B the field of the monopole sitting at ~x.
We study

ρ(t̂) =
d

dβ
ln 〈µ(t̂, n)µ(0, n)〉 = < S >|S−< S̃(t̂) >

∣∣∣
S̃(t̂)

The expected behavior is

< µ(t̂, n)µ(0, n) > = < µ >2 +γ
e−t̂/ξ̂

t̂3/2

ρ(t̂) = A + B
e−t̂/ξ̂

t̂1/2
+ C

e−t̂/ξ̂

t̂3/2

As the Higgs field couples to µ the mass 1
ξµ

of the lowest state coupling to µ is greater
or equal to the mass mH = 1

ξ of the Higgs
field. We assume (as logical) that the Higgs
condensate is the lowest energy state (ξµ = ξ).



Determination of ξ
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Our value ξ̂(β = 2.5115) = 1.28 ± 0.25 is just below λ̂.
The QCD vacuum is marginally on the type II side.



The parameter ρ̃∗

ρ(t̂) =
d

dβ
ln 〈µ(t̂, n)µ(0, n)〉

ρ̃(t̂) =
d

dt̂
ln 〈µ(t̂, n)µ(0, n)〉 =

= −
(
M̂ +

3

2t̂

)
γe−M̂ t̂/t̂3/2

< µ >2 +γ e−M̂ t̂/ t̂3/2

• The noisy < µ >2 offset in < µ(t̂, n)µ(0, n) >=< µ >2 +γ e−t̂/ξ̂

t̂3/2

is cut away by the d
dt̂

derivative;

• There are three parameters (M̂, γ, < µ >2) instead of four to
be fitted.
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We obtain ξ̂(β = 2.5115) = 1.32±0.25: the compatibil-

ity with the result from ρ (ξ̂(β = 2.5115) = 1.28±0.25)

rules out the presence of systematic effects.

∗This idea was suggested by L.Tagliacozzo hep-lat/0603022



Does ξ depend on the gauge in
which µ is defined?

• The natural physical expectation is that one only coherence
length characterize the QCD vacuum;

• This is consistent with ’t Hooft ansatz that all abelian pro-
jection are equivalent to each other;

• The equivalence between different abelian projections also
emerges clearly from numerical determinations of < µ >;

• Theoretical argument: the operator µ defined in one particular
abelian projection creates magnetic charges in every other
projection, so that the lowest state coupled to µ should be
universal;

• Anyway a numerical test of the issue was done giving ξ̂ =
1.02(20)(random gauge, black circles), ξ̂ = 1.3(8)(Polyakov
gauge, empty circles):
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Interaction between
two tubes

We study the interaction between two narrow
parallel flux tubes:
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D dTOP −D dWtd −D
(top-top) (weighted)

4 0.44(17) 0.017(9)
5 0.22(14) -0.007(15)

Closer ⇒ stronger
tubes repulsion

There are weak signs of repulsion as tubes are brought

closer to each other.



Conclusions

The aim of our study was to have an indica-

tion on the type of dual superconductor which

is realized in the QCD vacuum: with this in-

tention we followed two strategies, a numerical

determination of the parameters ξ and λ and

an analysis of the interaction between parallel

flux tubes.

• From the numerical determination we found
ξ̂(β = 2.5115) = 1.28 ± 0.25 and λ̂(β = 2.5115) =
1.96±0.08: the QCD vacuum is at border between
type I and type II, slightly on the type II side (ξ < λ).

• This evidence is confirmed by our qualitative deter-
mination based on the observation of the interac-
tion between two parallel strings: closer tubes show
a stronger (still weak) repulsion.



Order of magnitude of the
deflexion (classical)

1. Numeric minimization of the dual GL equation to obtain a
cylindrical symmetric solution wuth n flux units;

2. Superposition of two n = 1 solutions at distance d apart
(Abrikosov form): we obtain the interaction energy of two
parallel tubes;

3. Given dE
dz

(d) we calculate d(z) which minimizes the energy at
fixed extrema:

ξ/λ = 0.5 ξ/λ = 0.75 ξ/λ = 1

4. We test the model in the Bogomol’nyi limit ξ = λ (very good
agreement).

The deflexion is about 1 lattice spacing at β = 2.6.


